Scientific American Supplement, No. 643, April 28, 1888(txt+pdf+epub+mobi电子书下载)


发布时间:2020-07-05 08:52:37

点击下载

作者:Various

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

Scientific American Supplement, No. 643, April 28, 1888

Scientific American Supplement, No. 643, April 28, 1888试读:

NEW YORK, APRIL 28, 1888

Scientific American Supplement. Vol. XXV., No. 643.Scientific American established 1845Scientific American Supplement, $5 a year.Scientific American and Supplement, $7 a year.

TABLE OF CONTENTS.

TABLE OF CONTENTS1ARCHÆOLOGY.—The Subterranean Temples of India.—The 0subterranean temples of India described and illustrated, the I.2wonderful works of the ancient dwellers in Hindostan.—3 7illustrations.51BIOGRAPHY.—General F. Perrier.—Portrait and biography of 0II.the French geodesian, his triangulations in Algiers and Corsica. 2—1 illustration.641The Crown Prince of Germany—Prince William and his son.— 0Biographical note of Prince William, the heir to the German 2throne.—1 illustration.6310BIOLOGY.—Poisons.—Abstract of a lecture by Prof. III.2MEYMOTT TIDY, giving the relations of poisons to life.731The President's Annual Address to the Royal Microscopical 0Society. —The theory of putrefaction and putrefactive 2organisms. —Exhaustive review of the subject.641CHEMISTRY.—Molecular Weights.—A new and simple 0IV.method of determining molecular weights for unvolatilizable 2substances.711CIVIL ENGINEERING.—Concrete.—By JOHN LUNDIE.—A 0practical paper on the above subject.—The uses and proper V.2methods of handling concrete, machine mixing contrasted with 6hand mixing.71Timber and Some of its Diseases.—By H. MARSHALL WARD.0— The continuation of this important treatise on timber 2destruction, the fungi affecting wood, and treatment of the 7troubles arising therefrom.71ENGINEERING.—Estrade's High Speed Locomotive.—A 0comparative review of the engineering features of M. Estrade's VI.2new engine, designed for speeds of 77 to 80 miles an hour.—1 6illustration.61Machine Designing.—By JOHN B. SWEET.—First portion of a 0Franklin Institute lecture on this eminently practical subject.—2 2illustrations.6710METEOROLOGY.—The Peak of Teneriffe.—Electrical and VII.2meteorological observations on the summit of Teneriffe.651MISCELLANEOUS.—Analysis of a Hand Fire Grenade.—By 0CHAS. CATLETT and R.C. PRICE.—The contents of a fire VIII.2grenade and its origin.7110How to Catch and Preserve Moths and Butterflies.—Practical 2directions for collectors.7510The Clavi Harp.—A new instrument, a harp played by means 2of keys arranged on a keyboard—1 illustration.751Inquiries Regarding the Incubator.—By P.H. JACOBS.—Notes 0concerning the incubator described in a previous issue 2(Supplement, No. 630).—Practical points.65PHYSICS.—The Direct Optical Projection of Electro-dynamic 1Lines of Force, and other Electro-dynamic Phenomena.—By 0Prof. J.W. MOORE—Second portion of this profusely IX.2illustrated paper, giving a great variety of experiments on the 7phenomena of loop-shaped conductors.—26 illustrations.21The Mechanics of a Liquid.—An ingenious method of 0measuring the volume of fibrous and porous substances 2without immersion in any liquid.—1 illustration.691PHYSIOLOGY.—Artificial Mother for Infants.—An apparatus 0resembling an incubator for infants that are prematurely born.—X.2Results attained by its use.—1 illustration.741Gastrostomy.—Artificial feeding for cases of obstructed 0œsophagus.—The apparatus and its application.—2 2illustrations.7410PHOTOGRAPHY.—How to Make Photo-Printing Plates.—The XI.2process of making relief plates for printers.711TECHNOLOGY.—Improved Current Meter.—A simple 0apparatus for measuring air and water currents without indexes XII.2or other complications.—1 illustration.701The Flower Industry of Grasse.—Methods of manufacturing 0perfumes in France.—The industry as practiced in the town of 2Grasse.7010Volute Double Distilling Condenser.—A distiller and condenser 2for producing fresh water from sea water.—3 illustrations.6910The Argand Burner.—The origin of the invention of the Argand 2burner.75THE CROWN PRINCE OF GERMANY—PRINCE WILLIAM AND SON [From a Photograph]

THE CROWN PRINCE OF GERMANY—PRINCE WILLIAM AND HIS SON.

At a moment when the entire world has its eyes fixed upon the invalid of the Villa Zurio, it appears to us to be of interest to publish the portrait of his son, Prince William. The military spirit of the Hohenzollerns is found in him in all its force and exclusiveness. It was hoped that the accession of the crown prince to the throne of Germany would temper the harshness of it and modernize its aspect, but the painful disease from which he is suffering warns us that the moment may soon come in which the son will be called to succeed the Emperor William, his grandfather, of whom he is morally the perfect portrait. Like him, he loves the army, and makes it the object of his entire attention. No colonel more scrupulously performs his duty than he, when he enters the quarters of the regiment of red hussars whose chief he is.

His solicitude for the army manifests itself openly. It is not without pride that he regards his eldest son, who will soon be six years old, and who is already clad in the uniform of a fusilier of the Guard. Prince William is a soldier in spirit, just as harsh toward himself as severe toward others. So he is the friend and emulator of Prince Von Bismarck, who sees in him the depositary of the military traditions of the house of Prussia, and who is preparing him by his lessons and his advice to receive and preserve the patrimony that his ancestors have conquered.

Prince William was born January 27, 1859. On the 29th of February, 1881, he married Princess Augusta Victoria, daughter of the Duke of Sleswick-Holstein. Their eldest son, little Prince William, represented with his father in our engraving, was born at Potsdam, May 6, 1882.—L'Illustration.

GENERAL F. PERRIER.

Francois Perrier, who was born at Valleraugue (Gard), on the 18th of April, 1835, descended from an honorable family of Protestants, of Cevennes. After finishing his studies at the Lyceum of Nimes and at St. Barbe College, he was received at the Polytechnic School in 1853, and left it in 1857, as a staff officer.

Endowed with perseverance and will, he owed all his grades and all his success to his splendid conduct and his important labors. Lieutenant in 1857, captain in 1860, major of cavalry in 1874, lieutenant-colonel in 1879, he received a year before his death the stars of brigadier-general. He was commander of the Legion of Honor and president of the council-general of his department.

General Perrier long ago made a name for himself in science. After some remarkable publications upon the trigonometrical junction of France and England (1861) and upon the triangulation and leveling of Corsica (1865), he was put at the head of the geodesic service of the army in 1879. In 1880, the learned geodesian was sent as a delegate to the conference of Berlin for settling the boundaries of the new Greco-Turkish frontiers. In January of the same year, he was elected a member of the Academy of Sciences, as successor to M. De Tessan. He was a member of the bureau of longitudes from 1875.

In 1882, Perrier was sent to Florida to observe the transit of Venus. Thanks to his activity and ability, his observations were a complete success. Thenceforward, his celebrity continued to increase until his last triangulating operations in Algeria.GENERAL FRANCOIS PERRIER.

"Do you not remember," said Mr. Janssen recently to the Academy of Sciences, "the feeling of satisfaction that the whole country felt when it learned the entire success of that grand geodesic operation that united Spain with our Algeria over the Mediterranean, and passed through France a meridian arc extending from the north of England as far as to the Sahara, that is to say, an arc exceeding in length the greatest arcs that had been measured up till then? This splendid result attracted all minds, and rendered Perrier's name popular. But how much had this success been prepared by long and conscientious labors that cede in nothing to it in importance? The triangulation and leveling of Corsica, and the connecting of it with the Continent; the splendid operations executed in Algeria, which required fifteen years of labor, and led to the measurement of an arc of parallels of nearly 10° in extent, that offers a very peculiar interest for the study of the earth's figure; and, again, that revision of the meridian of France in which it became necessary to utilize all the progress that had been made since the beginning of the century in the construction of instruments and in methods of observation and calculation. And it must be added that General Perrier had formed a school of scientists and devoted officers who were his co-laborers, and upon whom we must now rely to continue his work."

The merits of General Perrier gained him the honor of being placed at the head of a service of high importance, the geographical service of the army, to the organization of which he devoted his entire energy.

In General Perrier, the man ceded in nothing to the worker and scientist. Good, affable, generous, he joined liveliness and good humor with courage and energy. Incessantly occupied with the prosperity and grandeur of his country, he knew that true patriotism does not consist in putting forth vain declamations, but in endeavoring to accomplish useful and fruitful work.—La Nature.

General Perrier died at Montpellier on the 20th of February, 1888.THE PRESIDENT'S ANNUAL ADDRESS TO THE ROYAL MICROSCOPICAL 1SOCIETY.

Retrospect may involve regret, but can scarcely involve anxiety. To one who fully appreciates the actual, and above all the potential, importance of this society in its bearing upon the general progress of scientific research in every field of physical inquiry, the responsibilities of president will not be lightly, while they may certainly be proudly, undertaken.

I think it may be now fairly taken for granted that, as this society has, from the outset, promoted and pointed to the higher scientific perfection of the microscope, so now, more than ever, it is its special function to place this in the forefront as its raison d'etre. The microscope has been long enough in the hands of amateur and expert alike to establish itself as an instrument having an application to every actual and conceivable department of human research; and while in the earliest days of this society it was possible for a zealous Fellow to have seen, and been more or less familiar with, all the applications to which it then had been put, it is different to-day. Specialists in the most diverse areas of research are assiduously applying the instrument to their various subjects, and with results that, if we would estimate aright, we must survey with instructed vision the whole ground which advancing science covers.

From this it is manifest that this society cannot hope to infold, or at least to organically bind to itself, men whose objects of research are so diverse.

But these are all none the less linked by one inseverable bond; it is the microscope; and while, amid the inconceivable diversity of its applications, it remains manifest that this society has for its primary object the constant progress of the instrument—whether in its mechanical construction or its optical appliances; whether the improvements shall bear upon the use of high powers or low powers; whether it shall be improvement that shall apply to its commercial employment, its easier professional application, or its most exalted scientific use; so long as this shall be the undoubted aim of the Royal Microscopical Society, its existence may well be the pride of Englishmen, and will commend itself more and more to men of all countries.

This, and this only, can lift such a society out of what I believe has ceased to be its danger, that of forgetting that in proportion as the optical principles of the microscope are understood, and the theory of microscopical vision is made plain, the value of the instrument over every region to which it can be applied, and in all the varied hands that use it, is increased without definable limit. It is therefore by such means that the true interests of science are promoted.

It is one of the most admirable features of this society that it has become cosmopolitan in its character in relation to the instrument, and all the ever-improving methods of research employed with it. From meeting to meeting it is not one country, or one continent even, that is represented on our tables. Nay, more, not only are we made familiar with improvements brought from every civilized part of the world, referring alike to the microscope itself and every instrument devised by specialists for its employment in every department of research; but also, by the admirable persistence of Mr. Crisp and Mr. Jno. Mayall, Jr., we are familiarized with every discovery of the old forms of the instrument wherever found or originally employed.

The value of all this cannot be overestimated, for it will, even where prejudices as to our judgment may exist, gradually make it more and more clear that this society exists to promote and acknowledge improvements in every constituent of the microscope, come from whatever source they may; and, in connection with this, to promote by demonstrations, exhibitions, and monographs the finest applications of the finest instruments for their respective purposes.

To give all this its highest value, of course, the theoretical side of our instrument must occupy the attention of the most accomplished experts. We may not despair that our somewhat too practical past in this respect may right itself in our own country; but meantime the splendid work of German students and experts is placed by the wise editors of our journal within the reach of all.

I know of no higher hope for this important society than that it may continue in ever increasing strength to promote, criticise, and welcome from every quarter of the world whatever will improve the microscope in itself and in any of its applications, from the most simple to the most complex and important in which its employment is possible.

There are two points of some practical interest to which I desire for a few moments to call your attention. The former has reference to the group of organisms to which I have for so many years directed your attention, viz., the "monads," which throughout I have called "putrefactive organisms."

There can be no longer any doubt that the destructive process of putrefaction is essentially a process of fermentation.

The fermentative saprophyte is as absolutely essential to the setting up of destructive rotting or putrescence in a putrescible fluid as the torula is to the setting up of alcoholic fermentation in a saccharine fluid. Make the presence of torulæ impossible, and you exclude with certainty fermentative action.

In precisely the same way, provide a proteinaceous solution, capable of the highest putrescence, but absolutely sterilized, and placed in an optically pure or absolutely calcined air; and while these conditions are maintained, no matter what length of time may be suffered to elapse, the putrescible fluid will remain absolutely without trace of decay.

But suffer the slightest infection of the protected and pure air to take place, or, from some putrescent source, inoculate your sterilized fluid with the minutest atom, and shortly turbidity, offensive scent, and destructive putrescence ensue.

As in the alcoholic, lactic, or butyric ferments, the process set up is shown to be dependent upon and concurrent with the vegetative processes of the demonstrated organisms characterizing these ferments; so it can be shown with equal clearness and certainty that the entire process of what is known as putrescence is equally and as absolutely dependent on the vital processes of a given and discoverable series of organisms.

Now it is quite customary to treat the fermentative agency in putrefaction as if it were wholly bacterial, and, indeed, the putrefactive group of bacteria are now known as saprophytes, or saprophytic bacteria, as distinct from morphologically similar, but physiologically dissimilar, forms known as parasitic or pathogenic bacteria.

It is indeed usually and justly admitted that B. termo is the exciting cause of fermentative putrefaction. Cohn has in fact contended that it is the distinctive ferment of all putrefactions, and that it is to decomposing proteinaceous solutions what Torula cerevisiæ is to the fermenting fluids containing sugar.

In a sense, this is no doubt strictly true: it is impossible to find a decomposing proteinaceous solution, at any stage, without finding this form in vast abundance.

But it is well to remember that in nature putrefactive ferments must go on to an extent rarely imitated or followed in the laboratory. As a rule, the pabulum in which the saprophytic organisms are provided and "cultured" is infusions, or extracts of meat carefully filtered, and, if vegetable matter is used, extracts of fruit, treated with equal care, and if needful neutralized, are used in a similar way. To these may be added all the forms of gelatine, employed in films, masses and so forth.

But in following the process of destructive fermentation as it takes place in large masses of tissue, animal or vegetable, but far preferably the former, as they lie in water at a constant temperature of from 60° to 65° F., it will be seen that the fermentative process is the work, not of one organism, nor, judging by the standard of our present knowledge, of one specified class of vegetative forms, but by organisms which, though related to each other, are in many respects greatly dissimilar, not only morphologically, but also embryologically, and even physiologically.

Moreover, although this is a matter that will want most thorough and efficient inquiry and research to understand properly its conditions, yet it is sufficiently manifest that these organisms succeed each other in a curious and even remarkable manner. Each does a part in the work of fermentative destruction; each aids in splitting up into lower and lower compounds the elements of which the masses of degrading tissue are composed; while, apparently, each set in turn does by vital action, coupled with excretion, (1) take up the substances necessary for its own growth and multiplication; (2) carry on the fermentative process; and (3) so change the immediate pabulum as to give rise to conditions suitable for its immediate successor. Now the point of special interest is that there is an apparent adaptation in the form, functions, mode of multiplication, and order of succession in these fermentative organisms, deserving study and fraught with instruction.

Let it be remembered that the aim of nature in this fermentative action is not the partial splitting of certain organic compounds, and their reconstruction in simpler conditions, but the ultimate setting free, by saprophytic action, of the elements locked up in great masses of organic tissue—the sending back into nature of the only material of which future organic structures are to be composed.

I have said that there can be no question whatever that Bacterium termo is the pioneer of saprophytes. Exclude B. termo (and therefore with it all its congeners), and you can obtain no putrefaction. But wherever, in ordinary circumstances, a decomposable organic mass, say the body of a fish, or a considerable mass of the flesh of a terrestrial animal, is exposed in water at a temperature of 60° to 65° F., B. termo rapidly appears, and increases with a simply astounding rapidity. It clothes the tissues like a skin, and diffuses itself throughout the fluid.

The exact chemical changes it thus effects are not at present clearly known; but the fermentative action is manifestly concurrent with its multiplication. It finds its pabulum in the mass it ferments by its vegetative processes. But it also produces a visible change in the enveloping fluid, and noxious gases continuously are thrown off.

In the course of a week or more, dependent on the period of the year, there is, not inevitably, but as a rule, a rapid accession of spiral forms, such as Spirillum volutans, S. undula, and similar forms, often accompanied by Bacterium lineola; and the whole interspersed still with inconceivable multitudes of B. termo.

These invest the rotting tissues liked an elastic garment, but are

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载