蔚蓝旖旎的海洋(txt+pdf+epub+mobi电子书下载)


发布时间:2020-07-09 04:49:11

点击下载

作者:黄勇,张景丽,崔今淑

出版社:延边大学出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

蔚蓝旖旎的海洋

蔚蓝旖旎的海洋试读:

前言

现代社会的飞速发展很大程度上得益于科技的进步,“科技是第一生产力”已日益成为人们的共识。但是,由于现代科学的分工越来越细,众多的学科令人目不暇接。对于处于学习阶段的广大青少年而言,难免有“乱花渐欲迷人眼”的困扰。有鉴于此,我们组织了数十名在高等院校、教育科研机构工作、有着丰富的青少年教育的专家学者,编选了这套《新编科技大博览》。它的特点是:

1.针对性强。针对青少年的实际需要,选取的均是青少年感兴趣又并未深入了解的信息。

2.编排科学。在学科类别的设置上,内容的选择安排上,都有相当的科学性。

3.难易适中。既不过于艰深,也不流于肤浅。

由于全书内容涵量巨大,我们将其拆为A、B两卷。A卷包括:形形色色的现代武器、精彩绚丽的宇宙时空、日新月异的信息科学、握手太空的航天科技、穿越时空的现代交通、蓬勃发展的现代农业、日益重要的环境科学、抗衡衰亡的现代医学、解读自身的人体科学、走向未来的现代工业,共十卷。B卷包括:玄奥神秘的数学王国、透析万物的物理时空、奇异有趣的动物世界、广袤绮丽的地理、生机百态的植物世界、扑朔迷离的化学宫殿、蔚蓝旖旎的海洋、探索神秘的科学未知,共八卷。

本书编撰得到了众多学科专家、学者的高度重视和具体指导。他们的辛劳从书稿的框架结构到内容选择,从知识主题的阐述到分门别类的归集,从编写中的问题争议到书稿最后的审议等全部过程,从而使本书具有很高的权威性、知识性和普及性。

在本书编写过程中,我们参考了相关领域的最新研究成果,谨致衷心的感谢!

由于编写时间仓促,加之水平有限,尽管我们尽了最大努力,书中仍难免有不妥之外,恳请广大读者批评指正。编者二〇〇五年三月

一、海洋地理篇

海洋的起源

生命缘于海洋,海洋是万物之母,那么,海洋本身又是怎样形成的呢?

关于海洋起源的科学假说也是多种多样的。因为人类是继地球和海洋诞生之后才出现的,所以不可能目睹海洋形成的奇观,因此,对海洋的起源问题只能以已经掌握的科学知识来进行推测。

1879年,著名生物进化论创立者达尔文的儿子G.达尔文提出了一种形成大洋的“月球分出说”。说是在地球刚刚形成的时候,地球的自转速度比现在要快得多。由于太阳的引力作用和地球的高速自转,使部分地块分离了地球,被甩出的地块在地球引力的作用下,绕着地球不停地旋转,后来便成为我们夜晚时常看到的月亮。月球被甩出后,在地球上留下了一个大窟窿,逐渐演变成今天的太平洋。但是,这种假说后来遭到了许多科学家的反对。

此后,法国学者G.狄摩切尔又提出了新的太平洋成因假说——“陨星说”。他认为,太平洋是由另一颗地球的卫星(其直径比月球大两倍)坠落到地面造成的。这颗卫星冲开了大陆的硅铝层外壳而形成巨大的陨石谷,它还可能深入地球内核,引起地球的强烈膨胀与收缩。其结果不仅形成了太平洋,而且又使其他陆壳也破裂张开,形成了大西洋等大洋。随着宇航科学的发展,这个学说的研究又重新兴盛起来了。然而,人们还是特别怀疑偶然的碰撞是否能形成占地球表面积1/3的巨大太平洋盆地,因为,无论是地球上还是月球上的陨石坑,其规模都是很小的。

1910年,关于海洋成因的一个新的假说又被提出来了。当时,30岁的德国地球物理学家魏格纳在阅读世界地图时,发现大西洋东西岸的海岸,虽然也和其他海岸一样弯弯曲曲的,但是它们的形状却很相似,好像一张被撕成两半儿的报纸。如果把这两半儿“报纸”拼合在一起,恰好形成一块完整的大陆。事情为什么会这么凑巧呢?这在魏格纳的脑海里留下了一个疑问。后来,他又发现大洋两边的大陆有着相同的地质年代和古生物化石,在地层和地质构造等方面也有某些相似之处。经过反复研究,魏格纳断定大西洋两岸原来是连在一起的,分开只是后来的事。于是,他提出了“大陆漂移说”。这个科学假说后来又被许多科学家所完善,成为地球四大洋形成的最有说服力的一种学说。

大陆漂移说认为,在距今2亿年前,地球上现有的大陆是彼此连成一片的,从而组成了一块原始大陆,或称为泛大陆。泛大陆的周围是一片汪洋大海,叫做泛大洋。在距今1亿8千万年前,泛大陆开始分裂,漂移成南北两大块,南块叫岗瓦纳古陆,包括南美洲、非洲、印巴次大陆、南极洲和澳洲;北块叫劳亚古陆,包括欧亚大陆和北美洲。以后,又经过上亿年的沧桑之变,到了距今约6500万年前,泛大陆又进一步分裂和漂移,从而形成了亚洲、非洲、欧洲、大洋洲、南美洲、北美洲和南极洲;而泛大洋则完全解体,形成了太平洋、大西洋、印度洋和北冰洋。

为了更合理地解释大陆漂移现象,科学家们又在探索新的科学依据。1961年美国科学家赫斯和迪兹提出了“海底扩张说”,事过两年,法国的凡因和马修斯也提出了这个理论。海底扩张说认为,洋底新地壳有一个不断形成的过程,地幔里的物质不断从大洋中脊上的裂谷里涌出,冷凝和充填在中脊的断裂处,从而形成新的洋底。新海底不断扩张,把年老的海底向两侧排挤,当被挤到海沟区时,它们便沉入地幔。据计算,海底扩张速度每年有几厘米,最快的每年可达16厘米;这样,就使得海底每隔3~4亿年便要更新一次。这一海底扩张的过程被深海钻探资料所证实,还可以从洋脊两侧岩石的磁性上得到证明。

到了20世纪60年代后期,在“漂移”和“扩张”理论基础上,又产生出一种崭新的科学假说,从而使海洋起源的研究进入了一个新的时期。1968年,法国学者勒比雄提出了“板块构造说”。这种学说认为,全球岩石圈不是整体一块,而是被一些构造活动带所分割,分成的一些不连续的块体称为板块。勒比雄将全球分为六大板块,即亚欧板块、美洲板块、非洲板块、太平洋板块、澳洲板块(印度洋板块)和南极洲板块。这些板块很像漂浮在地幔上的木筏,游游荡荡,存在着种种形态的漂移关系。地壳的活动就是这几个板块相互作用引起的,在板块相互交接的地带,地壳活动比较明显,常常会形成地震和火山爆发等现象。这些板块还在不断地进行相对的水平运动,当大洋板块向大陆板块运动时,板块的边沿便向下俯冲进入地幔;地幔把俯冲进来的地壳加温、加压和熔化,再运向大洋海岭的底部,然后再上升出来。这恰恰与“海底扩张说”相吻合,在地幔的相对运动中大陆确实被“漂移”了,经过很久很久的一段时间,才形成了今天地球上海陆分布的面貌。

至此,大陆漂移、海底扩张和板块构造3种理论结合了起来,构成了新的全球构造学说。我们所讨论的海洋起源问题,也就有了一个比较清晰的眉目。

海洋孕育地球生命

38亿年前,星际物质猛烈碰撞的时代已经结束了,动荡不安的地球变成了一个蓝色的星球,表面覆盖着蔚蓝色的大海,海面上遍布着岩石裸露的岛屿。在陆地表面和海洋的底部,高密度的黑色玄武岩和富含铁镁有精细花纹的硅酸岩组成了厚厚的地壳,较轻的花岗岩物质分布其上,这些物质是由浅色的,富含钾、钙、钠、铝的硅酸岩组成(这些漂浮在地壳表面的花岗岩“冰山”最终变厚,并形成了地球大陆的核心部分)。天空变明亮了,大气逐渐变薄,气候也慢慢凉下来。但是,陆地和海洋中仍然没有植物和动物的踪影。

地球上的生命是什么时候开始的?是怎样开始的?无论在什么时候这都是最让人感兴趣、最易引起激烈争论的问题。40亿年前,原始的海洋中是否充满着有机分子呢?如果是的话,那最早的有机物质又来自何方呢?有人认为,有机物质——生命的基本组成物质——是由星际中的行星或彗星带到地球上的。也有人认为,这些物质是在地球原始的海洋中产生的。但是,不管有机物质来自哪里,生命是在海洋中开始的。

在陆地上已经硬化成为岩石的古老沉积物中,发现了有关生命产生时地球的外貌和最早的有机体的性质的线索。目前,地球上最古老的沉积岩在1971年发现于格陵兰岛的Isua山,年龄约37亿年。Isua山的沉积物质包括一系列由细颗粒组成的岩石和黑色硬化的熔岩,呈奇怪的管状和枕状,好像硬化的牙膏从管中挤出来一样。这些奇形怪状的岩石被称为枕状玄武岩,它们是在熔融的熔岩喷出海面,并被冰冷的海水不断冷却的过程中形成的。在南部非洲巴伯顿绿岩带的岩石中也发现了古老的玄武岩。另外一些看上去像已经硬化的却又正在冒泡的泥浆池。今天,在地热活跃的地区,如美国的黄石国家公园,缓慢沸腾的泥浆池随处可见。在澳大利亚和加拿大北部,也曾发现一些类似的距今32~40亿年的玄武岩。但是,最令人吃惊的发现是在南非,地质学家在一种硬化的二氧化硅岩石即燧石中,发现了一种与众不同的、微小的米粒状化石。他们认为,这些化石是曾经生活在热泥浆中的一种原始细菌的遗迹。最近在深海中的一些发现似乎可以证明,嗜热微生物可能起源于冒着气泡的泥浆池或者是有火山活动的海底地区。

1977年,地质学家在西雅图海岸外的胡安·德富卡海脊的深海热液中发现了一些不同寻常的新的海洋生命。在海平面下25米以下,巨蚌、居住在管中的蠕虫(多毛虫)、蟹和其他一些奇怪的海洋生物聚集在从海底裂缝中喷发出来的热水周围。而在这些深海热液的研究中,最令人吃惊的发现是,这里和其他地方所发现的海洋生物,是以化能合成细菌为生的。化能合成是指有机体利用热、水和化学物质如硫化氢,来制造有机物的过程。与此相对,光合作用是指植物利用光能、水和二氧化碳来制造有机物和氧气。地球上的绝大部分生态系统都是利用光合作用来维持生命循环的。深海中以化能合成为基础的繁荣的食物链的发现,使全世界的科学家都震惊了,而且,这一发现也为生命开始于深海底热液活动地区,而不是海洋表面,提供了可能性。现在,我们知道,化能合成细菌可以在深海以及其他不利于生命存在的环境中繁殖,比如黄石国家公园著名的热喷泉和泥浆池及墨西哥湾天然的油气田。但生命起源于何处我们仍不清楚。是否微小的细菌靠着地球在热泉、沸腾的泥浆池或深海热液中产生的热量繁衍起来,并随后迁到浅海来利用太阳巨大的能量呢?

到32亿年前,地球上的环境仍非常不适于生命的存在。炙热的岩浆在海底和陆地上漫流,沸腾的热喷泉随处可见,大气中仍含有相对较多的水蒸气和二氧化碳。但是,简单的单细胞生命已经开始孕育了。

在澳大利亚菲格特里形成的岩石中,地质学家发现了大棒状及圆球状的化石,而这些岩石的年龄为32亿年。这些化石类似于现代的光合细菌和蓝绿藻,现在称为蓝细菌。类似的化石在冈弗林特燧石矿岩石中也有发现,这一燧石矿是20亿年前在安大略省西部苏必利尔湖沿岸沉积形成的。地质学家发现,这里的化石具有奇怪的拱顶状和柱状的分层构造,似乎是生物造成的。但许多年过去了,它们的起源仍是一个谜。在澳大利亚鲨鱼湾的潮汐浅塘中,发现有类似的短粗柱状的蓝细菌群落存在;最近,在巴哈马群岛的浅水潮沟中发现了更大的这种群落。这些原生的给人深刻印象的柱体被称为叠层石,高度或者宽可以生长到几米。形成叠层石的海藻向上生长,形成了拥有致密的纤维质的有机质层,这些有机质层周期性地被沉积物覆盖,有时也会生成像水泥一样的碳酸钙覆盖层。一旦草食性动物发展起来,叠层石只能存在于有潮流、盐度高、周期性干旱或其他可抑制水下生物摄食的环境中。但在这样的水下生物出现之前,叠层石的数量还是很多的。一些种类的年龄超过了30亿年,这进一步证明,浅海中的生命开始出现。

到30亿年前,天空渐渐明净起来,地球慢慢变凉,地球表面开始发生细微的变化。虽然火山继续喷发着,但是在广阔的浅水区和沸腾的泥洼里,充满了细菌和原始藻类。潮汐水塘被一层蓝绿色的有生命的粘液覆盖着,叠层石随处可见。在深海的热液活动区细菌也一样繁生。石灰石沉积和新的光合作用生物继续使大气中的二氧化碳浓度降低,气候更加凉爽了。

大气中的二氧化碳可以吸收地球表面的热辐射。二氧化碳浓度的增高,使吸收的热量增加了,气候变暖了,这一现象称为温室效应。科学家们认为,地球的早期阶段,也进行着类似的过程,只不过是二氧化碳的浓度下降使地球的气候变冷,而不是变暖而已(科学家们认为,更早时期二氧化碳浓度降低的效应被增加的太阳辐射抵消了)。

地球上最早的生命形式是微小的单细胞生命。随后出现了多细胞生命,这是进化中最有争议性、最神秘的阶段。有机体获得了细胞,而细胞是由一个细胞核和特殊的细胞内结构组成的。多细胞生命是否是由已存在的单细胞生命简单地演化来的?或者根据细胞内结构的共生性,是否可以认为多细胞生命是由简单的单细胞生命和大分子物质结合而成的呢?不管是何种方式,多细胞的海洋生物出现于20~30亿年前。没有人确切知道这是在什么时候发生的,是怎样发生的。来自化石和岩石的证据表明,在多细胞生命的演化过程中,大气中氧气的出现是一个关键的因素。

在20~30亿年前,地球的大气主要是二氧化碳和水蒸气,因为这时还没有办法产生大量的氧气。但在某种程度上,早期光合生物制造的氧气已经开始在大气中富集;制造出来的氧气要多于消耗掉的氧气。古代沉积物的锈化痕迹,为追溯大气中氧气的演化过程提供了线索。氧气是一种非常活跃的气体,当它与铁结合时,会生成铁锈。在氧气成为大气的主要部分之前,黑色的富铁沉积物从陆地上剥离并被搬运到海洋,过了一段时间,这些沉积于海底的物质被埋藏,最终硬化成岩。全世界年龄在38~23亿年的岩石是由黑色的富铁层与浅色的贫铁层交互形成的,被称为条纹铁岩石。黑色层表明,铁进入海洋时并没有与氧气发生反应,而浅色层则代表了某种季节性的波动。

大约20亿年前,条纹铁沉积消失了,红色地层开始形成。这些红色地层是铁受到大气中氧气的氧化而形成的红色的岩层,它们表明,大气中的氧气浓度已经可以使陆地上沉积物中的铁发生氧化。在北美西南部和大峡谷的红色岩墙是由于沉积物暴露于富氧大气中,使沉积物中的铁大量氧化而形成的。大气已经开始向富氧性转化。

20亿年前,早期的海洋藻类和细菌繁殖着,进行着光合作用,向大气中释放的氧气越来越多。然而,地球表面上的环境条件仍极不利于海洋生命的生长。当大气中的氧分子电离形成臭氧,地球表面就能免受紫外线的伤害。早期的地球,大气中没有足够的氧气,不能形成臭氧来保护地球表面的有机体免受阳光的直接烤晒。另外,有机体利用氧气与有机物质反应而获得能量,这个过程称为氧化作用。但是氧气在反应中如此活跃,所以细胞必须进化出一种方式来利用这一强大的能源,而不至于在氧化过程中伤到自己。太阳能对地球上大多数的生命形式而言,仍是一种相对不可利用的能源,生命的生长受到了限制。

大约10亿年前,大气中有了足够的氧气,有效的臭氧层开始形成,有机体已经具备了安全有效地利用氧气的方法。这时水的表层成了适于居住的环境;太阳的能量可以被利用了,海洋的植物开始繁盛起来。地球的气候和海洋的温度稍微凉了一些,大的陆地板块已经形成。

大约7.5亿年前,我们故事的背景开始改变。曾经是分离的岩石“冰山”块儿,通过构造板块在地球表面的运动,变成了一个横跨赤道,东西向延伸的庞大的超级大陆。板块构造运动很早就开始了,它是造成陆块运动、洋壳产生与消亡和地球上许多不稳定因素发生的原因,对地球、海洋和生命的演化方式有着极其重要的影响。古老的岩石和冰川遗迹表明,超级大陆的许多地方被冰覆盖着,这时的地球可能处于第一次也是最冷的一次冰期,甚至近赤道的地区也被冰雪覆盖了。一些科学家认为,这时的地球好像一个巨大的雪球,但对这一观点仍存在着争议。研究者们无法确定产生这样一次大的冰期的原因,提出的新理论把重点放在了赤道周围大陆的影响上。但是在大约5.9亿年前,地球又变暖了,环境变得有利于生命发生又一次演化。大约5.5亿年前,前寒武纪结束,古生代开始。海洋中的生命不断繁殖增加着。非常低等的生命形式进化成更高等的种类丰富的生物,这是进化史上的一次重大的飞跃。许多年来,地质学家一直对这一现象迷惑不解,他地球表面积的70.8%,是由浩瀚的海洋组成。辽阔的海洋是生命的摇篮。们在化石记录中寻找其间缺失的联系。到1964年,地质学家R.C.Sprigg在澳大利亚南部的埃迪卡拉山的古代海滩沙中,发现了一种奇特的软体动物遗迹化石。这些化石中,数量最多的是一种环形的遗迹,形状像现代的水母:因此这一时期被称为水母时代,时间恰恰在古生代之前,距今约6亿年。在埃迪卡拉岩层中,还保存着蠕虫状动物、奇特的底栖动物和复叶状生物的痕迹和藏身处。在埃迪卡拉动物群落中,许多生物都很难归入现代的海洋生物种类之中。一些科学家认为,它们与海胆(棘皮动物)、蠕虫和甲壳类(节肢动物)有关。而德国古生物学家Adolf Seilacher提出了新的解释。他认为,这些外表奇特的生物与现代种类无关,而是代表着已经灭绝的生命形式,它们脆弱的垫状躯体易被新生的捕食者摄食。虽然继这次发现之后,在全球除了南极洲以外的每个大陆上都找到了埃迪卡拉动物群落,但它们似乎并没有在古生代之前的化石记录中出现。现在我们还不清楚,埃迪卡拉的海洋生物的灭绝是由于大灾难,还是由于不断变化的环境条件,或者只是被更成功进化的捕食者吃光了。

埃迪卡拉动物群落显著地说明了在古代海洋研究中采样所存在的问题。许多年来,地质学家们都是假定,在古生代以前,地球上根本没有生命存在,这并不是因为有证据表明确实没有生命,而是因为我们找不到生命存在的证据。在古生代以前,海洋中的生命基本上都是软体动物,既没有骨骼,也没有壳体,要成为化石保存下来,从地质角度来看,是不可思议的。因为大部分的软体海洋动物死亡后将沉入海底并很快腐烂。如果它们的遗体由于某种原因被软泥或沙快速埋藏,那么,它们能保存下来的几率就大大提高了。如果周围的沉积物受到富含硅钙等矿物的水的冲刷作用,可能会形成含有完整软体动物遗迹的岩层。如果一种生物具有壳体或骨骼,将更可能形成化石,这就是为什么我们对晚些时候的生命更加了解的原因。一旦由于纯粹的运气或推断发现了化石,我们想要知道化石是什么,以及它的生活方式,就得依赖于化石保存的完整程度。而且我们对现代生物种类的了解也会影响我们对化石的解释,而那些成为化石的生物,实际上一点也不像生活在现代海洋中的生物。

海洋的水来自太空

我们的故事发生在45亿年前的银河系中。大量的尘埃和小行星围绕着早期的太阳旋转。这些转动的物质既有微小的灰尘,也有直径几百公里的小行星。不久,大大小小的物质开始相互碰撞。最初,碰撞是缓慢的,引力将撞碎的空间物质结合在一起,形成了一个岩石体,这就是地球的雏形。随着越来越多的碰撞物的聚集,地球逐渐长大了,其引力场也变得越来越强,使周围旋转的星际物质越来越快地被拉向地球,以更强的力量冲击着地球表面,形成巨大的陨石坑,释放出大量的热。在强大热量的作用下,地球的外层开始熔化,形成了一个沸腾的熔岩浅海。还有大量的热被地球内部吸收,埋藏在成吨的不断生长的岩石下面。这样的过程持续了几百万年,直到地球长成现在的大小。

在地球早期的生长过程中,巨大的星际碰撞有规律地发生着,把大量的尘埃释放到大气中,遮住了所有的阳光,使地球陷入彻底的黑暗中。彗星、大量凝固的气体和冰块以及小行星撞击着地球,猛烈的风暴在地球上肆虐。巨大的撞击和不断的火山喷发产生的大爆炸使埋藏于岩石中的水和气体释放到大气中。这时的大气,条件恶劣,密度很大,由二氧化碳、水蒸气、氮气和其他几种气体组成。尘埃、蒸汽和火山灰形成的黑云笼罩着天空,狂雷巨闪划破黑暗,炽热的岩浆海在地面上沸腾着、激荡着。早期地球的黑暗让人无法想像它会变成一个蓝色的星球。

我们是怎样知道所有这些发生在大约45亿年前的事情的呢?科学家们利用一种新技术来估测地球诞生的时间,放射性测年。地球上所有的元素由于它们原子核内的中子和质子数的不同,而有一定的原子量。一些元素如铀、镭、钾和碳,由于同一种元素的原子核内中子数不同而有几种不同的表现形式,称为元素的同位素。同位素原子量虽然不同,但它们的化学性质是相同的。一些同位素不稳定,具有放射性。放射性同位素以一定的速率衰变,衰变速率称为半衰期。元素的半衰期就是这种元素从原始质量衰变到一半时所花费的时间。如果地质学家知道了某种元素的半衰期,他们就可以通过测定母体和子体(衰变的产物)的质量来计算岩石的年龄。例如,碳有三种同位素:两种是稳定的(碳12和碳13);一种是不稳定的,即具有放射性(碳14)。当碳14衰变时,放出热量,生成氮14。碳14的半衰期是5570年,也就是说,在某种物质中的碳14需要花5570年的时间使一半的碳14转变为氮14。地质学家们可以通过测定现在岩石中碳14和氮14的量,来估计岩石的年龄,这就是碳测年法。

科学家们认为陨石和地球具有相同的年龄,通过对陨石进行放射性测年,得出陨石已经有45亿岁了。现在,科学家们认为地球在早期形成过程中受到一个巨大的小行星撞击,使地球的一部分脱离出去,形成了月球。所有的月球岩石的测年结果都略小于45亿年。古陨石坑,尤其是月球表面上的古陨石坑中的岩石的测年结果表明,大约45亿年前,地球已经长到了现在的大小,彗星和小行星的撞击频率开始减慢。

到44亿年前,撞击的减少使岩浆海的活动减弱,地球的表面开始冷却,慢慢地,冷凝的岩浆形成一层薄而黑的地壳覆盖着地球。虽然行星撞击和火山喷发时不时地把地壳撕开,把炽热的岩浆喷向天空,但是,随着撞击的不断减少,冷却的不断进行,地球表面形成了越来越厚的地壳。冷却使大气中的水蒸气冷凝,水滴以降雨的形式落到地面上。不久,暴雨冲刷大地,形成了第一个水的海洋。这时的海水是酸性的,而且非常热,水温大概有100℃。火山喷发和大量的降雨把一些元素带入海洋中,使海洋稍稍有一点儿盐度。环绕地球的大气仍充满着二氧化碳,并且密度大,具有腐蚀性。随着越来越多冷凝水的形成,阳光开始穿透黑云。这时海的周围矗立着高高的环形山,但水的侵蚀力量是巨大的,凶猛的洪水冲出深谷,冲蚀着山峰。最近的几次小行星撞击使海洋产生了滔天巨浪,海啸席卷了整个地球。因为那时的月球更接近地球,所以海洋中的潮汐作用很强。

大气中的二氧化碳开始溶入海洋,与海洋中的碳酸根离子结合形成碳酸钙或石灰石。随着沉积在海底的石灰石越来越多,大气中的二氧化碳逐渐减少,天空变得明亮起来。碳酸钙调节着海洋的酸性,使海洋的化学环境略带苦涩,其作用就像胃酸过多的人服用的抗酸药物一样。太阳的辐射增加,使地球的温度上升,大量的水从海洋中蒸发出来,使海平面下降,露出许多陆地。在雨水和河流的风化作用下,更多的矿物质从新的陆地进入海洋,海洋的盐度开始上升。

在这一时期,地球上的气候变化可能异常剧烈,同时火山喷发、地震海啸仍不断改造着地球表面。一些科学家认为,在这段时期,灾难性的小行星碰撞仍时有发生,海洋以几十年为周期不断地蒸发着、改造着。

海水的家族成员

海洋水是含有一定数量的无机质和有机质的溶液,主要溶解有氮、氧和二氧化碳等气体物质,以氯化物为主的各种盐类,以及其他许多种化学元素。

在为数众多的溶解于海洋水的元素中,氯化物和硫酸盐含量约占盐类总含量的99%,其中氯化钠、氯化镁等氯化物则占4/5以上。氯化钠(食盐)味道发咸,氯化镁和硫酸镁味道发苦,所以海洋水不仅有咸味儿,也有苦味儿。

全世界的海洋水里到底含有多少盐类呢?如果把它们全部提取出来,那是非常惊人的。据科学家计算,全球海洋水中盐类总含量约5亿亿吨,体积有2200万立方。这个数字有多大呢?打个比方,如果把海水全部蒸发掉,整个大洋底部将平均有60米厚的盐层,如果把这么多盐类均匀地铺在地球表面,则有45米厚;如果把它们全部倒入北冰洋,不仅可以将北冰洋填平,而且会在洋面上堆起500米高的盐层;如果把它们堆积到印度半岛上,盐层的高度甚至可以把世界第一高峰——珠穆朗玛峰完全埋没。

微量元素在海水内的含量微乎其微,但由于海洋水总储量非常庞大,所以这些元素也十分可观。例如,1000吨海洋水中含铀仅有3克,但在整个海洋中铀的总储量高达40多亿吨,比陆地上已知铀的总储量大2000~3000倍,大约相当于燃烧8000万亿吨优质煤所释放的能量。1000吨海洋水中含金0.0004克,整个海洋就有500多万吨;在1000吨海洋水中含碘60克,整个海洋就多达930亿吨。

海色和水色

海色和水色,听起来是一致的,其实是两个不同的概念。海色,是人们看到的大面积的海面颜色。经常接触大海的人,会有这样的感受,海色会因天气的变化而变化。当阳光普照、晴空万里的时候,海面的颜色会蓝得光亮耀眼;当旭日东升、朝霞映辉之下,或者夕阳西下、光辉反照之际,可以把大海染得金光闪闪;而当阴云密布、风暴逞凶的时候,海面又显得阴沉晦涩,一片暗蓝。水色,是指海洋水体本身所显示的颜色。它是海洋水对太阳辐射能的选择、吸收和散射现象综合作用的结果,与天气状况没有什么直接的关系。平时,我们看到的灿烂阳光,是由红、橙、黄、绿、青、蓝、紫等7种颜色的光合成的。这些不同颜色的光线,波长是不相同的。而海水对不同波长的光线,无论是吸收还是散射,都有明显的选择性。在吸收方面,进入海水中的红、黄、橙等长波光线,在30~40米的深处,几乎全部被海水吸收,而波长较短的绿、蓝、青等光线,尤其是蓝色光线,则不容易被吸收,且大部分被反射出海面;在散射方面,整个入射光的光谱中,蓝色光是被水分子散射得最多的一种颜色。所以,看起来,大洋的海水就是一片蓝色了。

海洋水的透明度与水色取决于海水本身的光学性质,它们与太阳光线有一定的关系。一般,太阳光线越强,海水透明度越大,水色就越高(科学家按海水颜色的不同,将水色划分为不同等级,以确定水色的高低),光线透入海水中的深度也就越深。反过来,太阳光线越弱,海水透明度就越小,水色就越低,透入光线也就越浅。所以,随着透明度的逐渐降低,海洋的颜色一般由绿色、青绿色转为青蓝、蓝、深蓝色。

此外,海洋水中悬浮物的性质和状况,对海水的透明度和水色也有很大的影响。

从地理分布上看,大洋中的水色和透明度随纬度的不同也有不同。热带、亚热带海区,水层稳定,水色较高,多为蓝色;温带和寒带海区,水色较低,海水并不显得那样蓝。当然,海水所含盐分或其他因素,也能影响水色的高低。海水中所含的盐分少,水色多为淡青;盐分多,就会显得碧蓝了。

海和洋

对于地球上浩瀚的水面世界,人们通常把它笼统地叫做“海洋”。其实,在地理学上海(sea)和洋(ocean)的概念不同。洋是海洋的主体,约占海洋总面积的89%,所以一般称之为大洋。它离大陆较远,面积广阔,水深一般在2000~3000m以上,海水呈深蓝色,透明度大,其水文气象状况不受大陆的影响,具有自己独立完整的系统。世界上公认的大洋有四个,即太平洋、大西洋、印度洋和北冰洋。各大洋及其边缘海所占自然地理区的百分比如下表所示。不过在海洋学上还有“南大洋”的划分,把副热带耦合线以南直到南极大陆边缘的广大海域称为南大洋。因为这个沟通三大洋的南部海域,有其独特的水文物理和气候特性,所以在区域海洋学上有重要意义。海则附属于各个大洋边缘濒临陆地的水域,它们有些为大洋的一部分,如菲律宾海;有些以岛链与大洋相隔,如东海;有些以狭窄、孤立的海峡与大洋相连,如南海。海的水深浅不一,浅的只有几十米,深的也有数千米。浅海(shallo wsea)的海水透明度小,水色有时带绿色,近岸处甚至可能混浊。不过,有的海因历史原因又叫湾(bay),如墨西哥湾、孟加拉湾等。另外,相邻海区之间的狭窄水道称为海峡(strait),是连接洋或海的咽喉,如巴士海峡是太平洋与南海的重要通道。大洋及其边缘海所占自然地理区的百分比

海底世界

在海洋的深处,地形高低起伏的复杂程度不亚于陆地。在世界海洋的底部,既有崇山峻岭,也有深沟峡谷;既有宏伟的高原、起伏的丘陵,也有广阔的平原、阶地,可谓姿态万千。从总体上看,世界海洋的海底形态可分为三大单元,即大陆边缘(continental margin)、大洋盆地(ocean besin)和称中央海岭或洋中脊(mid-oceartic ridge)。

大陆边缘包括海岸带(coastal zone)、大陆架(continental shelf)、大陆坡(continental slope)和大陆隆(continental nise),约占海洋总面积的22%。海岸带是海陆的交界处,大致为潮间带的范围。有些岸段地势平坦,涨潮时被海水淹没,落潮时可露出十几千米宽的滩涂;有些岸段陡峭,海岸带很窄。海岸带是海陆相互作用最为激烈的地带,此处波浪的输沙作用强,科学家称之为“高能地带”。

从海岸带的低潮线向外延伸,到海底坡度陡增的边缘为止是大陆架。它是大陆在海洋中的自然延伸部分,占海洋总面积的7%左右,海底坡度平缓,起伏不大,全球平均水深约60m。大陆架的宽度因地而异,最窄的仅数千米,最宽的可超过1000km,平均宽度约75km。大陆架一般覆盖有深厚的陆源沉积物层。由于海平面升降变化,在第4纪冰期,大陆架的大部分曾经露出海面成为陆地。

由大陆架继续向深海伸展,海底坡度急剧增大,形成向大洋盆过渡的大陆坡和大陆隆地带。大陆坡占据这个过渡带上部,水深在200~3000m之间,坡度较陡;大陆隆大部分位于3000~4000m等深线之间,坡度较缓。几乎所有的大陆坡麓都被一道道海底峡谷所切割,谷壁陡峭,呈“V”形断面,谷深可达几百米,谷长达十几千米到几百千米。有些峡谷上端靠近河口,而峡谷的下端大都有“冲积扇”——扇形沉积锥。多数大陆坡上的海底峡谷是由大陆架流下的强大浊流沿海底裂缝雕凿而成的。

在太平洋北部和西部及其他大洋的边缘还有海沟(ocean trench)与岛弧(island arc)。海沟出现在海洋板块俯冲带起始处,由一个板块俯冲到另一个板块底下,中间低凹,便形成了海沟。海沟中的海槽(ocean trough),深度往往超过7000m,有些海沟,如马里亚纳海沟深达上万米。未俯冲的板块一侧火山活动活跃,往往火山成为岛弧,如阿留申群岛、琉球群岛等。当海沟紧邻大陆时,火山活动在陆地上形成。岛弧、海沟处常发生深源地震。

大洋盆是世界海洋中面积最大的地貌单元,是海洋的主体,水深大约在4000~6000m之间,占洋底总面积的70%以上。大洋底并非一望无垠的平原,由于洋底海岭、海隆、群岛和海底山脉的分割,大洋盆地分成近百个独立的海盆,真可谓气象万千。其中最引人注目的是大洋中央海岭,它如同潜伏洋底的巨龙,绵延各大洋总共约80000km。大西洋中央海岭凸出洋底约2500~3000m。相比之下,印度洋和太平洋较低,约凸起2000~3000m。中央海岭少数高峰露出洋面,形成孤立岛屿,如大西洋的冰岛等。在中央海岭的脊部,有一条几乎和海岭一样长的裂谷,深度约1000~3000m,宽度约25~50km。海底扩张学说认为,它是洋壳(ocean crust)的扩张中心,新的洋底物质就在那里形成。

海底的山脉

和陆地一样,海底并不是一马平川,它也是一个跌宕起伏的世界。

陆地上有连绵的群峰,海底有雄伟的山脉;陆地上有巍峨的青藏高原,海底有逶迤万里的太平洋东部高地……海底山脉绝不比陆地的崇山峻岭逊色,这已经被无数次科学考察所证实。

早在1918年,德国一艘名为“流星”号的海洋考察船在大西洋进行海底考察时,偶然从回声探测仪上发现,大西洋中部的海底比两边高出许多,由东往西竟是1000千米长的凸起高地。这使科学家们惊叹不已。

在这之后的3年中,他们做了几万次探测试验,终于发现那里隐藏着令人难以置信的海底山脉。

后来,通过对大西洋的全面调查,科学家们找到了这座山脉的“两极”。它始于冰岛,经大西洋中部一直延伸至南极附近,曲曲弯弯长达一万多千米。山脉走向与大西洋的形态一致,也是“S”形,平均宽度在1000千米以上,比两侧洋底平均高出2000米。它是由一系列平行的山系结合在一起形成的,山脉露出水面的顶峰,组成了一串珍珠般美丽的岛屿,其中包括冰岛、亚速尔群岛、圣赫勒拿岛与特里斯坦—达库尼亚群岛等。

然而,大西洋海底这座使人难以想象的山脉,却只是全球海底山脉不起眼的一部分。

海洋学家在研究了世界各大洋的探测资料后宣布:世界各大洋底都存在着类似的海底山脉。如果把它们像火车一样一节节地接起来,总长度超过65000千米,可以绕地球一圈半。而且,它们的高度一般不超出相邻的洋底1000米至3000米,宽度超过1000千米,总面积相当于亚、欧、非、美洲全部陆地面积之和。

洋底的地形分布也有一定的规律。在各大洋中,都有大致作南北走向的巨大的海底山脉,绵延1万多千米,在洋底东部还有一个大洋中脊。印度洋中部除存在一条“入”字形的中央海岭外,东部还有一条南北走向的长达6000千米的东印度洋海岭。北冰洋虽然较浅,但在中部也有两条略成南北走向的海岭。

在海底山脉的两侧,多为大洋盆地,深度一般在3700~6000米之间。大洋盆地中分布有孤立突兀的海台和较为平缓的海底高原。它们将整个大洋盆地分割成若干个海盆,较大的有,太平洋中的东北海盆和南太平洋海盆等。印度洋中的中印度洋海盆、西澳大利亚海盆和南澳大利亚海盆等。大西洋中的西欧海盆、佛得角海盆和巴西海盆等。北冰洋中的南森海盆、加拿大海盆和马卡罗夫海盆等。风光绮丽的夏威夷岛,就是太平洋海底山的一部分。它的最高处超出水面4200米,而山根却在水下6000米的深处。也就是说,这座海洋山峰的高度在1万米以上,竟比珠穆朗玛峰还要高1000多米。科学家们发现,海底山脉多数是由橄榄岩、玄武岩等火山岩太平洋的阿留申群岛附近的海底地形,中部为“山脉”石构成的。它们并不是杂乱无章的,而是呈条带状排列着。海底山脉多发育在海底高原和隆起的高地上。这些高原、高地是岩浆喷发时形成的。

科学考察表明,海底地壳下岩浆对流活动时,地壳发生裂隙,岩浆沿着这些裂隙喷发到海底表面,造成了纵横数千米的海底高原和海底高地。而在这些高原和高地上,又升起一座座海底火山。经过漫长的岁月,火山喷发形成的火山岩便堆成了今天的海底山脉。

你到过海边吗?当你感受清新的空气、享受舒适的海水浴时,是否也被海岸的风光所吸引呢?

海岸地貌

海岸是邻接海洋边缘的陆地。也就是说,海岸是我们观海时,当时海水边的那一带陆地。地貌学上的海岸就不同了,它是指现在海陆之间正在相互作用着和过去曾经相互作用过的地方。

地理学家把海岸简单地划分为两种类型:一类是由非海洋因素所形成的海岸;另一类则主要由波浪和海流的作用形成。

许多海岸的形状是陆地上的流水作用造成的。由于侵蚀作用,河流在流入海洋时,切出了河谷。这些河谷尽管现在被海水淹没,但形状却大致保持了下来。

河流挟带沉积物经过漫长地质历史时期的沉积,可以生成弧状或鸟足状的三角洲或者连绵的沉积平原,潮起潮落,留下无数五彩斑斓的贝类。

冰川也有助于海岸的形成。冰期时大冰川的覆盖与切割会在地表留下冰川作用的痕迹。一些称为峡湾的深谷就是冰川在海平面以下的地方切出来的。冰川消退后,海水淹没了这些深谷,形成峡湾。

火山作用也能形成海岸。在夏威夷群岛和日本、东印度群岛等地有明显的例证。

上面说的这些海岸都是由非海洋因素形成的,而波浪和海流形成的海岸更是鬼斧神工。海的破坏性作用叫海蚀作用。海蚀作用会形成高度大致相同、断续分布的洞穴。这些洞穴或大或小,高低错落,宛如海岸上跳动的音符,当海风掠过时会发出呜呜声音,相互唱和。这些洞穴在波浪的长期作用下,不断加深和扩大,顶部崖岩悬空,以致在重力作用下崩塌,这样就会形成陡崖。站在崖上看千帆点点,波澜壮阔,使人心旷神怡。

最让人叹为观止的,还是一些洞穴在相向波浪的强烈作用下被蚀穿相互贯通,形成拱门状的地形。以后在海岸看见一些天然的石拱桥,可不要太惊奇哦!

海洋沉积下来的物质,通常使海岸线变得较为平直。例如美国德克萨斯州的外海海岸,便是沙滩沉积作用造成的。但沉积作用也可以造成海岸的曲折,特别是在比较严直的海岸上伸出来的地方更为明显。沙嘴可能是在两个相邻的涡流中间夹着一个静水带的地方形成的,由海流搬运的沉积物被带进静水区就会沉积下来。

在热带海洋的沿岸地带,各种造礁生物如石珊瑚、石灰质藻类、水螅虫类和苔藓虫类在海岸形成中也起着积极作用,它们从海水中吸收石灰,并以之建造自己的骨骼。在珊瑚和藻类死亡或者它们被波浪和激浪击碎以及破碎产物后来被胶结的过程中,由这些骨骼形成块状岩——珊瑚灰岩或礁灰岩,形成了特有的海岸线。

美丽的海岸地貌风光千姿百态,是大自然的杰作,也是一道独特的风景线。

世界第一大洋——太平洋

太平洋位于亚洲、大洋洲、南极洲和南、北美洲之间。南北长约15900千米,东西最大宽度约19900千米,面积17968万平方千米。占世界海洋总面积的49.8%,占地球总面积的35%。太平洋是地球上四大洋中最大、最深和岛屿、珊瑚礁最多的海洋。

太平洋西南以塔斯马尼亚岛东南角至南极大陆的经线与印度洋分界,东南以通过南美洲最南端的合恩角的经线与大西洋分界,北经白令海峡与北冰洋连接,东经巴拿马运河和麦哲伦海峡、德雷克海峡沟通大西洋,西经马六甲海峡和巽他海峡通印度洋,总轮廓近似圆形。

太平洋平均深度为4028米,最大深度为马里亚纳海沟,深达11034米,是目前已知世界海洋的最深点。平均盐度约35‰,最高达36.5‰。

太平洋通常以南、北回归线为界,分南、中、北太平洋,或以赤道为界分南、北太平洋,也有以东经160°为界,分东、西太平洋的。北太平洋:北回归线以北海域。地处北亚热带和北温带。主要属海有东海、黄海、日本海、鄂霍次克海和白令海。中太平洋:位于南、北回归线之间。地处热带。主要属海有南海、爪哇海、珊瑚海、苏禄海、苏拉威西海、班达海等。南太平洋:南回归线以南海域。地处南亚热带和南温带。主要属海有塔斯曼海、别林斯高晋海、罗斯海和阿蒙森海。

太平洋约有岛屿一万个,总面积440多万平方千米,约占世界岛屿总面积的45%。大陆岛主要分布在西部,如日本群岛、加里曼丹岛、新几内亚岛等;中部有很多星散般的海洋岛屿(火山岛、珊瑚岛)。

太平洋海底北半部有巨大海盆,西部有多条岛弧,岛弧外侧有深海沟。北部和西部边缘海有宽阔的大陆架,中部深水域水深多超过5000米。夏威夷群岛和莱恩群岛将中部深水区分隔成东北太平洋海盆、西南太平洋海盆、西北太平洋海盆和中太平洋海盆。海底有大量的火山锥。边缘浅水域水深多在5000米以上,海盆面积较小。

全球约85%的活火山和约80%的地震集中在太平洋地区。太平洋东岸的美洲科迪勒拉山系和太平洋西缘的花采状群岛一带,活火山多达370多座,有“太平洋火圈”之称,地震频繁。

太平洋的气候分布、地区差异主要是由于水面

洋流

及邻近大陆上空的大气环流影响而产生的。南、北太平洋最冷月平均气温从回归线向极地为20~16℃,中太平洋常年保持在25℃左右。太平洋年平均降水量一般为1000~2000毫米,多雨区可达3000~5000毫米,而降水最少的地区不足100毫米。

在寒暖流交接的过渡地带和西风带内,太平洋多狂风和波涛。太平洋北部以冬季为多,南部以夏季为多,尤以南、北纬40℃附近为甚。中部较平静,终年利于航行。

在太平洋生活着的动、植物,无论是浮游植物或海底植物以及鱼类和其他动物都比其他大洋丰富。太平洋浅海渔场面积约占世界各大洋浅海渔场总面积的1/2,海洋渔获量占世界渔获量一半以上,秘鲁、日本、中国舟山群岛、美国及加拿大西北沿海都是世界著名渔场。盛产鲱、鳕、瓵、鲑、鲭、鳟、鲣、沙丁、金枪、比目等鱼类。海兽有海豹、海象、海熊、海獭、鲸等。

太平洋近海大陆架的石油、天然气、煤很丰富,深海盆地有丰富的锰结核矿层(所含锰、镍、钴、铜四种矿物的金属储量比陆地上多几十倍至千倍),此外海底砂锡矿、金红石、锆、钛、铁及铂金砂矿储量也很丰富。

“S”形的大洋——大西洋

大西洋位于欧、非与南、北美洲和南极洲之间。面积9336.3万平方千米,约占海洋面积的25.4%,约为太平洋面积的一半,为世界第二大洋。

大西洋的轮廓略呈S形。南接南极洲;北以挪威最北端-冰岛-格陵兰岛南端—戴维斯海峡南边-拉布拉多半岛的伯韦尔港与北冰洋分界;西南以通过南美洲南端合恩角的经线同太平洋分界;东南以通过南非厄加勒斯角的经线同印度洋分界。

大西洋平均深度为3627米。最深处达9219米,在波多黎各岛北方的波多黎各海沟中。平均盐度为35.4‰。亚热带纬区最高可达37.3‰。

重要的属海和海湾有加勒比海、墨西哥湾、地中海、黑海、北海、波罗的海、比斯开湾、几内亚湾、哈得孙湾、巴芬湾、圣劳伦斯湾、威德尔海、马尾藻海等。

重要的岛屿和群岛有大不列颠岛、爱尔兰岛、冰岛、纽芬兰岛、古巴岛、伊斯帕尼奥拉岛及加勒比海和地中海中的许多群岛。格陵兰岛也有一小部分位于大西洋。

大西洋海底地形特点之一是大陆棚面积较大,主要分布在欧洲和北美洲沿岸。超过2000米的深水域占80.2%,200~2000米之间的水域占11.1%。大陆棚占8.7%,比太平洋、印度洋都大。其二是洋底中部有一条从冰岛到布韦岛,南北延伸约15000多千米的中大西洋海岭。在赤道地区被狭窄分水鞍所切断,一般距水面3000米左右,有些部分突出水面,形成一系列岛屿。整条海岭蜿蜒成S形,把大西洋分隔成与海岭平行伸展的东西两个深水海盆。在南半球,中大西洋海岭主体向东向西还伸出许多横的山脊支脉,如伸向非洲西南海岸的沃尔维斯海岭(鲸海岭),伸向南美洲东海岸的里奥格兰德海丘。南桑威奇海沟深达8428米,为南大西洋的最深点。中大西洋海岭的北端则相反,海底逐渐向上隆起,在格陵兰岛、冰岛、法罗群岛和设得兰群岛之间,海深不到600米。

大西洋气温年温差不大,赤道地区不到1℃,亚热带地区为5℃,北纬和南纬60度地区为10℃,仅大洋西北部和极南部超过25℃。北部盛行东北信风,南部盛行东南信风。温带纬区地处寒暖流交接的过渡地带和西风带,风力最大。在南北纬40~60度之间多暴风;在北半球的热带纬区5~10月常有飓风。大西洋地区的降水量,高纬区为500~1000毫米,中纬区大部分为1000~1500毫米,亚热带和热带纬区从东往西为100~1000毫米以上,赤道地区超过2000毫米。

大西洋渔业资源丰富,西北部和东北部的纽芬兰和北海地区为主要渔场,盛产鲱、鳕、沙丁鱼、鲭、毛鳞鱼等,其它尚有牡蛎、贻贝、螯虾、蟹类以及各种藻类等。海洋渔获量约占世界的1/3~2/5左右。南极大陆附近产鲸、海豹和磷虾,海兽捕获量也很大。加勒比海、墨西哥湾、北海、几内亚湾和地中海均蕴藏有丰富的海底石油和天然气。

“个性”独特的大洋——印度洋

印度洋位于亚、非、澳洲及南极洲之间,是世界第三大洋,面积7491.7万平方公里,平均深度3711米。最深处为7209米(爪哇海沟)。大陆架虽不算大,但也有317万平方公里。印度洋是个“个性”独特的大洋。首先是赤道横贯它的北域,使印度洋主体部分处于赤道带、热带和亚热带这些热带气候区内,因而人们称其为“热带性海洋”。这里的水面平均温度可达到20~27℃,平均含盐度达34.8‰。其中,红海盐度达41‰,为世界上含盐度最高的海域,其中深海底个别地点曾测到270‰以上的盐度值,几乎达到饱和溶液浓度。印度洋在洋流运行上,还有个近似于“游戏”的奇特现象,即北部海随着季节的不同。会产生所谓方向相反的独特“季风海流”。其流动方向是:冬季受亚洲大陆高气压和赤道低气压制约,印度洋北部会吹东北季风,形成了反时针的海流;夏季印度洋西北部又变成低气压中心,夏季风由西南向东北输送,又形成了正时针海流。这种随季而变的海流,在其他大洋是没有的。

印度洋资源以石油最丰富。波斯湾是世界海底石油的最大产地。20世纪80年代,这里即有32个海底油田投入开采,产油量占世界海底石油产量的1/3以上。从波斯湾到西欧、日本、美国的航线,成为世界上最主要的石油运输线。海生哺乳动物中的儒艮,为印度洋的特产,由于这种动物形状似人,又有“人鱼”之称。印度洋的东、北、西三面大陆海岸,红树林种类繁多,构成一种奇特的海滨森林景观。

印度洋的地质年代非常年轻,是世界上最年轻的大洋,它是冈瓦纳古陆破裂和解体的产物。但其洋底的地壳扩张形式,却颇具特色:它不但有东西方向的扩张运动,还有南北方向的扩张运动。在大扩张运动中,同时又“套”着小扩张运动,如马达加斯加岛与非洲大陆主体的分离,就是一种特殊的洋底小扩张运动的结果。印度洋板块北行与亚欧板块发生碰撞时,产生了世界上最雄伟的喜马拉雅山,并使山北的青藏地区,抬升为世界最高的高原。所有这些东、西、南、北、不同方向的扩张运动,总合起来,就形成了印度洋底复杂的地形结构。印度洋今日的“人”字型大洋的中脊,即为印度洋底地壳产生的地方。在大洋中脊的周围还形成了不少海盆。

世界上最小的洋——北冰洋

北冰洋位于地球最北部的世界面积最小的大洋。介于亚欧大陆、北美大陆和格陵兰岛之间。面积1310万平方千米,占世界海洋的4.1%。平均深度1225米,最大深度(位于格陵兰岛东北)5527米。因面积小,又称北极海。大陆架面积占大洋的39.6%。这里全年气温较低。洋底有石油和天然气资源。这里是沟通大西洋和太平洋,连接欧洲、亚洲和北美洲的捷径。挪威海北冰洋的边缘海。与巴伦支海的界线是挪威北角与熊岛连线,与格陵兰海的界线是扬马延岛同冰岛的连线;冰岛—法罗群岛—设德兰群岛—挪威塔德角是其同大西洋的分界。面积138.3万平方千米。是世界著名渔场之一,盛产鳕、鲱、白鲑等鱼。

最大最深的海——珊瑚海

在全世界的大海中,面积超过200万平方公里的有八个,超过300万平方公里的只有三个,400万平方公里以上的只有珊瑚海一个。珊瑚海的总面积达到479.1万平方公里。

珊瑚海是南太平洋的属海。它的西边是澳大利亚大陆,南连塔斯曼海,东北面被新赫布里底群岛、所罗门群岛、新几内亚(伊里安岛)所包围。珊瑚海的海底地形大致由西向东倾斜,大部分地方水深3000—4000米,最深处有9174米,也是世界上最深的海。

珊瑚海地处热带,全年水温都在20℃以上,最热的月份超过28℃。它的周围几乎没有河流流入,海水清澈透明,人们可以清晰地看到20米以下的物体,水下光线充足。海水的盐度在27—38‰之间。这些条件都非常适合珊瑚虫的生长。细小的珊瑚虫便在大陆架和浅滩上繁殖生长,发育成为众多的珊瑚礁。这些珊瑚礁一般只是略略露出水面,色彩斑斓地点缀在澄清的碧水中,呈现出一派绮丽的热带风光。

珊瑚海中有着世界最大的珊瑚礁——大堡礁。礁石周围的海水中,飘动着各种各样色彩鲜艳的生物,同珊瑚的色彩相映衬,构成了一个光怪陆离的童话世界。

珊瑚海中还生活着成群的鲨鱼,因此有的人又称它为“鲨鱼海”。

没有海岸的海——马尾藻海

有海必有岸,似乎是常识。然而,在大西洋中却存在着一个没有岸的海,它的名字叫马尾藻海,又叫萨加索海。它实际上只是大西洋中一个特殊的水域。

提到马尾藻海,不得不提及哥伦布航海中的一个小故事。那还是在1492年哥伦布横渡大西洋时,9时16日他们的船队突然发现前方出现一片生气勃勃的绿色区域,惊喜地认为陆地就在前方。可是经过一段流行到达这片绿色区域时,出现在他们面前的却是大片大片的茂密的马尾藻。他们费了好大的力气才摆脱马尾藻的纠缠,冲出这片绿色海域,仍然航行在浩瀚的大洋上。此后,这一片水域就被叫做马尾藻海。

马尾藻海大致在北纬20~35°、西经40~75°之间,面积达数百万平方公里,在这广大的水域中,漂浮着密密丛丛的,以马尾藻为主的水生植物,好似一派草原风光。

有趣的是,这些海草几乎都是漂浮的,尽管都很新鲜,却没有真正的根、茎、叶之分,而是由主干、分枝和气束等组成。它们能直接从海水中摄取养分。所谓的“叶”,很像花瓣,呈黄褐色,含有叶绿素。据推算,马尾藻海中的海草有几千万吨之多。

如此多的水草是如何形成的一直是个谜。有人认为,它们是从西印度群岛漂来的。但科学家们说,海草离开了苗床,要长时间保持新鲜状态是不可能的。因此,另一种观点认为它们是“土生土长”的。持这种观点的人说,它们最初可能来自海底苗床,随后进化到具有海面漂浮生活的能力,同时还能长出幼芽。形成新草。如此子子孙孙地繁衍,终于形成了今天的巨大规模。但是,无论上述哪种解释,都是属于推测,都没有足以说服人的科学证据。

红色的海——红海

红海是非洲和亚洲之间的狭长海域,是印度洋的地中海。红海南以阿拉伯海的亚丁湾与印度洋相接,北经苏伊士运河与大西洋的地中海相连。全长2250多千米,东西最宽处仅306千米,总面积45万平方千米。平均水深560米,最大水深3039米。

由于狭窄,红海两岸岸线几乎呈平行趋势,并广泛地发育着珊瑚礁群,浅滩、暗礁和小岛极多。红海的中部有一道很深的海沟,人们称其为中央海槽。中央海槽大部分水深在1500米左右,其中段变化急剧,出现几处深邃裂隙,裂隙呈V字形,红海的最深处就在这里。裂隙深处有多处南北走向的炽热水潭。

红海是非洲和阿拉伯半岛大陆地壳断裂带的中间部分,是大陆分离的产物。大约在5000万年前,非洲大陆与亚洲大陆开始分离,3500万年前苏伊士湾开裂,2500万年前红海北部形成,300~400万年前,红海南部出现。运动速度估计为每年1.5~1.6厘米。据科学家考证:现在红海仍以每年2.2厘米的平均速度继续分离着。

红海是名副其实的“红”海。通常情况下,红海海水的颜色与其他海洋无大区别,呈深青绿色。然而在有些时候,红海的部分水域海水会呈现红褐色。你若闭目想象一下,无际的海洋红浪翻滚,似火如血,那气势将何等壮观!其实红海的红,并不真这种红色珊瑚是造成红海海水发红的原因之是海水红,而是因为红海里有大一量呈红色的海藻所致。当这种海藻繁殖旺盛时,海水的颜色就变红了。红海的名称也就是来源于这红色的藻类。

红海地处干热地区。年平均气温在25~28℃之间,降水极少,年蒸发量可达2100毫米,而且没有常年河注入。故而红海是世界上盐度高、水温高的海域之一。平均盐度为40~35‰,平均水温23℃。有人估计红海全部海水更新大约需要20年的时间。全海区上空尘埃极多,故红海上空总是昏沉沉一片,能见度极差。加之沙暴、热闪光、暗礁险滩和水流湍急,再加之红海又缺乏天然良港,故在这里航行极为困难。然而人类的伟大就在于征服大自然,尽管红海的自然条件很差,但红海是人类历史上首见记载的大海域之一。公元前2000年,古埃及人就在海上从事商业活动,公元前1500年红海海图已绘制完成,公元前800年人类已提出了开凿沟通地中海运河的伟大设想,公元前就曾开凿过沟通尼罗河与红海的浅水水道。人类对红海的研究对解决大陆漂移和海底结构等海洋地质问题,具有重大意义。

黑色的海——黑海

亚欧大陆中部,有个辽阔的海域。该海域的海水颜色不同于一般大海,它不呈蔚蓝色,而呈现黑色。“黑海”正由于其颜色而得名,在阳光下,黑色的海水闪烁着晶晶亮光,犹如镶嵌在大地上的一颗黑宝石。但是,黑海又处于中纬度地区,暴风雨络绎不绝,致使乌云遮天盖地,天海浑然一色,如若有人身临其境,则心惊肉跳,仿佛末日降临。

为什么黑海的颜色是黑色的呢?原来,黑海海域辽阔,但它的出口只的一处,同地中海相连接,即西面的土耳其海峡。海峡有的地方又窄又浅,最窄处只有700米宽,最浅处只有33米深,流量受阻,使黑海与地中海的海水未能及时大量交换。大家知道,黑海表层海水受顿河、第聂伯河、多瑙河等大量淡水流入的影响,密度较小;而黑海深层海水受地中海高盐度海水的影响,密度较大。这样,密度大的海水在下层,密度小的海水在上层,使得200米以下的海水静静地躺在海底,与外界隔绝,氧气得不到补充。缺氧之后,水中的硫花细菌活跃起来。把海底大量有机物分解,形成硫化氢。高浓度的硫化氢把海底淤泥染得黑魊魊的。黑色的海底贪婪地把照射到海水中的各种颜色的光全部吸收。因此,我们看到的黑海的海水,便是黑色一片了。

最小的海——马尔马拉海

马尔马拉海位于亚洲小亚细亚半岛和欧洲的巴尔干半岛之间,东西长270公里,南北宽约70公里,面积为1.1万平方公里,是世界上最小的海。此海海岸陡峭,平均深度为183米,最深处达1355米。海中的岛上盛产大理石,希腊语“马尔马拉”就是大理石的意思。马尔马拉海的地理位置相当重要,其东北端经博斯普鲁斯海峡通黑海,西南部经达达尼尔海峡与地中海和大西洋相通,是欧、亚两洲的天然分界线。

盐度最低的海——波罗的海

都说海水又咸又涩,可是,从波罗的海中舀起来的水,几乎尝不到咸味。这是为什么呢?

当然很容易找到答案:盐度低。是的,波罗的海的海水含盐度仅有7‰~8‰,大大低于全世界海水的平均含盐度(35‰);波罗的海各个海湾的盐度更低,只有2‰左右。因此,这里的海水当然很淡了。可是,你知道波罗的海为何含盐度这么低吗?

波罗的海位于欧洲大陆与斯堪的纳维亚半岛之间,从北纬54°起向东北延伸到北极圈附近。波罗的海形成的时间不长,这里的冰河时期结束时还是一片被冰水淹没的汪洋。后来大水向北极退去,最低洼的谷地形成了大海,因此,这里的水质原本就比较好。除此之外,波罗的海处于高纬度地区,气温低,海水蒸发量很小。这里又受西风带影响,降水较多;四周还有许多河川注入大量淡水。大西洋和波罗的海的通道又浅又窄,盐度高的海水不易进来。因此,波罗的海成为世界最淡的海。

最著名的陆间海——地中海

陆间海,又称陆间地中海,是指那些被几块大陆所环绕的海洋。地球上陆间海的面积约占大洋总面积的8.2%。

这里所谈陆间海,是陆间海中最最有名气者,它就是位于欧、亚、非三大洲之间的地中海。希伯来人和古希腊人称它为大海。古罗马人把它看作罗马帝国的中心海。英、法、西、葡、意等语意为“陆地中间之海”。中国古籍《岭外代答》称地中海为西大食海。

地中海东西长4000千米,南北最宽处为1800千米,面积约为252万平方千米。平均水深为1494米,最大水深为5530米。北部岸线曲折,多海湾,南部岸线较平直。

地中海的海底地形以大陆架狭窄,陆坡陡峭,深海盆被海脊所分割为主要特点。欧洲向南突出的伊比利亚半岛、亚平宁半岛和巴尔干半岛,将地中海北部分为利古里亚海、亚得里亚海和爱琴海。西西里岛和突尼斯北端之间的一个水下海脊,将地中海分为东、西两部分。西部有阿尔沃兰海盆、阿尔及利亚海盆和第勒尼安海盆;东部有爱奥尼亚海盆和黎凡特海盆。亚得里亚海深度仅几十米至几百米,爱奥尼亚海盆深度在3000~4000米间,爱琴海中岛屿星罗棋布。

关于地中海的成因,海底扩张和板块学说认为:它是特提斯海(古地中海)的残存水域。中世纪时,特提斯海的范围逐渐缩小。现在的地中海是中生代到新生代中新世间,非洲板块和欧亚板块非常复杂的相对运动而造成的。

在气象学上,“地中海式气候”可谓赫赫有名,其特点是:夏季炎热干燥,冬季温暖潮湿,春季天气多变,秋季时间暂短。由于这种气候特征在地中海地区分布最广、最为典型,故全世界凡属此种类型的气候均被冠以“地中海式气候”之名。此外,强风盛行是地中海又一大气候特征。

地中海由于蒸发大于降水和径流,故水位低于大西洋,且盐度较大。表层平均盐度约为38‰。

自古以来,地中海就是欧、亚、非各国交往贸易的通道。苏伊士运河到直布罗陀海峡的地中海航线,是世界上最繁忙的水道之一。沿岸有贝鲁特、塞得港、亚历山大、阿尔及尔、马赛、巴塞罗那、热那亚、那不勒斯等港口。地中海有丰富的藻类,还有海豚、龙虾、牡蛎和螃蟹、墨鱼、水母、珊瑚等经济生物。沿岸还是晒盐的良好场所。

北方航道——挪威海

挪威海的名称或许是因与挪威相邻而来。挪威海是北冰洋的边缘海,也有人将它认作大西洋北部的边缘海。其东北面与巴伦支海相邻,西北接格陵兰海,东界挪威,南邻北海。面积138万平方千米,平均水深1742米,最大水深4487米。海底一条连接格陵兰岛、冰岛、法罗群岛和苏格兰北部的海岭将挪威海与大西洋分开。挪威海虽地处高纬,其北部已位于北极圈内,但因北大西洋暖流自南向北地流经该海区,故这里表层水温显著高于其他同纬度海区。2月水温2~7℃,8月8~12℃,且一般不封冻。海水含盐度34~35‰。由于暖流与寒流在此交汇,挪威海的冰岛、挪威、设得兰群岛和法罗群岛的沿海水域都成为极好的渔场,盛产鳕、鲱、白鲑等鱼类。

半岛环抱的内海——渤海

渤海是我国的内海,它三面深入陆地,在辽宁、河北、山东、天津三省一市之间。辽东半岛南端老铁山角,与山东半岛北岸蓬莱遥相对峙,像一双巨臂把渤海环抱起来。渤海通过渤海海峡与黄海相通。渤海海峡口宽45海里,有40多个岛屿,较大的有长山岛(庙岛)、砣矶岛、钦岛和隍城岛等,总称庙岛群岛或长山列岛。其间构成8条宽狭不等的水道,扼渤海的咽喉,是京津地区的海上门户,形势极为险要。渤海古称沧海,又因地处北方,故有北海之称。

渤海的面积约9.7万平方千米,平均水深25米,所以,渤海的海水总容量不过1730立方千米。渤海沿岸水浅,特别是河流注入的地方仅几米深;而东部的老铁山水道最深,达到78米。辽东湾、渤海湾和莱州湾从北、西、南三面环绕渤海中央浅海盆地。沿岸有辽河、海河、黄河等20多条大小河流注入。由于这些河流含泥沙较多,所以渤海海域泥沙淤积极盛,海底地势平坦,海水也容易淤浅。由于大量泥沙的输入,致使其近岸部分的海水呈现黄色。

渤海地处北方,海水较浅,盐分较淡,冬季有结冰现象。渤海盛产对虾、蟹和黄花鱼。沿岸产盐,以“长芦盐”最为有名。

海洋石油主要富集在浅海大陆架,因为这些地区在地质历史上有雄厚的产生石油的物质基础——大量的有机物。渤海海域只有9万多平方千米,其中有油气前景的盆地面积约占2/3。

渤海盆地的形成,同中生代燕山运动的影响是分不开的。运动所产生的纵横交错断裂,使地渤海海域示意图壳形成断陷盆地,相继出现大面积的内陆湖泊群。渤海湖洼厚度巨大的第三纪沉积岩层,为有机物质的埋藏、保存和转化成油气,创造了有利的地质条件。渤海油气盆地是胜利、大港和辽河等油气田向海底的延伸部分。

渤海也是我国在近海中最早勘探开发的海域,自1966年钻探出第一口油井后,迄今已找到11个油气田。总之,渤海盆地的拗陷面积大,第三纪地层厚,储油构造多,含油层系也多,是我国油气资源比较丰富的海域之一,也是勘探程度最高的一个海域。

最大的海湾——孟加拉湾

在全球范围内,总面积超过200万平方公里的海湾只有1个,它就是印度洋东北部的孟加拉湾。孟加拉湾位于印度半岛和中南半岛、安达曼群岛、尼科巴群岛之间,孟加拉国就在它的北岸。此海湾面积约217.2万平方公里,由北而南逐渐加深,最大深度为5258米,平均深度2586米;表层水温一般为25—27℃;平均盐度30—40‰。发源于我国的恒河和布拉马普特拉河从北部注入湾中,形成宽广的河口。注入海湾的河流,还有印度的默哈纳迪河、戈达瓦里河和克里希纳河等。海湾沿岸地区有多种喜温生物,如斯里兰卡沿海浅滩的珍珠贝、恒河河口的红树林等。孟加拉湾是太平洋和印度洋之间的重要海上通道,沿岸有印度的加尔各答、马德拉斯和孟加拉国的吉大港等重要港口。

石油湾——波斯湾

波斯湾(Persian Guny)是印度洋阿拉伯海北部的海湾。简称“海湾”,又称“阿拉伯湾”。位于阿拉伯半岛和伊朗高原之间。西北起阿拉伯河河口,东南至霍尔木兹海峡,长970公里,宽56~338公里,面积24万平方公里。平均水深28米,最深处102米。含盐度38~41‰。夏季水温30~33℃′。东南半部多珊瑚环绕的岛屿。湾底和沿岸为世界石油蕴藏最多(53%)的地区,沿岸多为世界主要石油生产和输出国。世界最重要的石油运输航道,每天运出石油曾达400万吨。湾内盛产鱼类和珍珠贝。

最浅的海——亚速海

世界最深的海是南太平洋的珊瑚海,最深处达到9174米:平均深底最大的海是南极洲附近的斯科舍海,它的平均深度为3400米;而亚速海却是世界最浅的海。

亚速海位于俄罗斯和乌克兰之间,面积为38840平方公里,平均深度只有8米,最深处也只有14米。亚速海的面积也很小,只有3.8万平方公里。

亚速海的南边是面积比它大11倍的黑海,通过刻赤海峡,这两个邻居可以彼此来往。亚速海很像黑海的一个港湾。

亚速海的海水含盐量(9—11‰)比黑海低得多,鱼产量大大超过黑海,海中出产棱鲱、棱鲈、瓵、鳊等鱼类,是当地的重要鱼产区。

远东的十字路口——马六甲海峡

在苏门答腊岛和马来半岛之间,有一狭长水道。它,就是闻名遐迩的马六甲海峡。

海峡西起韦岛,东到皮艾角,东西长约1080公里。如果把东头的出口处新加坡海峡连同在内,长度达1188公里。该海峡呈东南向西北逐渐展开的喇叭形,最窄处仅37公里。水深一般在25—113米,由东南向西北加深,20万吨巨轮通行无阻。

马六甲海峡是沟通太平洋和印度洋的重要通道,扼太平洋和印度洋之咽喉,战略地位极其重要,历来是兵家瞩目之地。如今,海运业十分发达,各种船只穿梭往返,好一派繁忙景象,每日通过的客货轮达150余艘,每年过往的船只超过5万艘,通过的巨型油轮也愈来愈多,在商业航运上也有巨大的意义。

马六甲海峡地处赤道附近,属典型的热带雨林气候。年平均气温25~26℃,年降雨量2000~2500毫米,几乎每天都有降雨。雨是说来就来,但来的快去的也干脆,雨过天晴,风光明媚。

马六甲海峡属沿岸主权国。1971年11月6日,马来西亚、新加坡和印度尼西亚联合宣布,该海峡为三国共同管理。

地中海的咽喉——直布罗陀海峡

这个海峡得名于东北侧的直布罗陀港。公元711年,丹吉尔总督、北非摩尔人塔里格率领军队,渡过海峡,站在如今的直布罗陀港口的一块巨大的山岩上指挥作战,打败了10万西班牙军队。为了炫耀这次战争的胜利,塔里格命人在这里修筑一个城堡,并把山头命名为“直布尔·塔里克”,在阿拉伯语言中,就是“塔里克山”的意思。后来欧洲人就把它音译为“直布罗陀”了。

直布罗陀海峡和地中海一起构成了欧洲和非洲之间的天然分界线。海峡的北岸是英属直布罗陀和西班牙,南岸是摩洛哥。海峡全长58公里,宽13—43公里,西宽东窄,平均深度310米。对于大西洋和地中海来说,直布罗陀海峡真像它们的咽喉一样重要。

直布罗陀海峡除了有强大的“累凡特风”(地中海西部一带的强风,以直布罗陀海峡为最大),还盛吹东、西风,大西洋中的盐度较低的海水,通过自西向东的洋流,从海峡表层源源输入地中海;地中海中的较咸和较重的海水,约在海峡122米深水处流入大西洋,而且进水多,出水少。这就保证了地中海水量的稳定,使它不致萎缩成一个盐海。

直布罗陀海峡连接地中海和大西洋,是地中海地区经大西洋通往南欧、北非和西亚的重要航路。1869年苏伊士运河通航后,尤其是波斯湾的油田得到开发之后,它的战略地位更加重要。每天有千百艘船只通过海峡,运输十分繁忙。

西方世界的生命线——霍尔木兹海峡

霍尔木兹海峡位于西亚的阿曼半岛和伊朗之间,把盛产石油的波斯湾和通往印度洋的阿螺湾联系起来了。波斯湾宽180—320公里,而霍尔木兹海峡最窄处仅38.9公里,它是波斯湾的唯一出口。如果将这一海峡封锁住,西方世界的主要石油来源就被切断了,西方的工业、交通等就会陷入瘫痪。因此,人们称它为“西方世界的生命线”。

霍尔木兹海峡虽然只有150公里长,却是石油运输最繁忙的海峡。每小时约有12艘油轮进出海峡,平均每5分钟就有一艘油轮通过。每年有占世界出口总量一半以上的石油从这里运出。从霍尔木兹海峡开出的油轮,一部分经红海、苏伊士运河或好望角运往西欧、南北美。

最长的海峡——莫桑比克海峡

莫桑比克海峡位于非洲大陆东南部和马达加斯加岛之间,呈东北一西南走向,全长1670公里,是世界最长的海峡。

据地质学家研究,大约在1亿多年以前,马达加斯加岛是和非洲大陆连在一起的,后因地壳变迁,岛的西部下沉,便形成了这条又长又宽的海峡。此海峡平均宽450公里,北端最宽处达960公里。大部水深2000米以上,最深点为3533米。莫桑比克海峡既宽且深,能通巨型轮船。从波斯湾驶向西欧、南欧和北欧的超级油轮,都是经由这条海峡,再过好望角驶往目的地的。

莫桑比克海峡两岸岸线平直,有非洲南部第一大河赞比西河注入。海峡南口有印度礁和欧罗巴岛,北口有众多的岛屿和珊瑚礁。海底及大陆架有大量重砂矿。鱼产主要有鲔鱼、沙丁鱼、鲨鱼和比目鱼等。

运输最繁忙的海峡——英吉利海峡

位于英国和法国之间的英吉利海峡(法语称拉芒什海峡)和它东部的多佛尔海峡(法语称加来海峡)是世界海运最繁忙的海峡。两段海峡总长约600公里(其中多佛尔海峡长30—40公里),西深东浅,最深处达172米。

英吉利海峡西临大西洋,向东通过多佛尔海峡连接北海,地处国际海运要冲,也是欧洲大陆通往英国的最近水道。海峡两岸工农业发达,水道密布,因此,海峡中国际船只往来不绝,平均每天有四五百艘船只通过海峡,年货运量有七八亿吨以上,这在世界上是独一无二的。良好的气候,细软的沙滩和富有吸引力的海滨。使旅游业得到发展。

英吉利海峡和多佛尔海峡地处西风带,海水自西向东流入,而海峡西宽东窄,从最宽处180公里到最窄处33.5公里,呈喇叭形,这就造成了很大的海潮,最大高度可达9—12米。1966年,法国已在圣马洛湾附近的朗斯河多少年来,神秘的海底世界一直是人类探索口,建成了一座总容量达24万和研究的方向。1960年1月,人类第一次成千瓦的潮汐发电站,每年可发电功地到达马里亚纳海沟深处。5.5亿度。

大海中的万丈深渊——马里亚纳海沟

“万丈深渊”是用来形容深之极的一句成语。世界虽没有这么深(一万丈相当于3.3万多米),但万米深渊是存在的,那就是太平洋中的马里来纳海沟。它是世界最深的海沟。

1957年8月18日,前苏联的一艘“斐查兹”号考察船,使用超声波测深仪,发现北纬11°20.9′、东经124°11.5′的地方深度最大,最深处达11034米。

1960年1月23日8时23分,美国两位科学家乘“特里斯特”号深潜艇首先深入海底探险,到达了世界最深点——斐查兹海渊的底部,然后又完全返回水面。这是人类第一次潜入地表最深的地方。当深潜艇潜入距海面240米以下的海域,发现已进入了一片漆黑的世界。他们凭借探照灯,窥见舱外清澈的海水中,仍有水母在游动,更使人惊奇的是。在万米以下的水中,竟还有两三厘米长的红虾生活着;潜艇着底以后,还发现一条长30厘米、宽15厘米的骨质鱼。这里的海底也有淤泥沉积,水温比3100米深处的温度(1.4℃)还要高1℃。

在“特里斯特”号之后一年,一艘法国的“阿基米德”号深潜艇,也完成了相似的探险活动。

海底为什么有这样深的海沟呢?科学家说,马里亚纳海沟已有6000万年的历史。它的产生是太平洋板块在西行俯冲时,插到了亚欧大陆板块的下面,深深地沉陷,由此形成了万米深渊。而两大板块的互相碰撞挤压,便海沟附近的地层被高高地抬起,形成群岛,马里亚纳海沟附近的马里亚纳群岛就是这样形成的。

世界第一大岛——格陵兰岛

“格陵兰”的含义是“绿色的土地”。可是,这里却是一片白茫茫的冰雪世界,85%的地面上覆盖着厚厚的冰层。实际上它是仅次于南极洲的第二大冰库,冰层平均厚度为1515米,最厚处达3410米。这里的冰块有260万立方公里,如果全部融化,可以填满世界最大的陆间海——地中海;如果让它们流入海洋,全世界的海洋就要升高6.5米。

格陵兰岛有五分之四的面积在北极圈内。最北端的莫里斯-杰苏普角距北极才707公里,是地球上距北极最近的陆地。岛上寒冷异常,经常出现巨大的暴风雪。北极圈以内还会出现极昼、极夜现象。每到10月份,岛上的大部分地区开始进入漫漫的长夜,天空中持续5个月不见太阳,只有月亮和满天星斗。第二年3月才开始出现太阳。从4月到9月,虽然终日可见太阳,但升得不高,只在地平线上打转转。因此,格陵兰岛一年中从太阳那里得不到多少热量。岛上只会降雪而不会降雨,积雪终年不化,在压力的作用下慢慢变成了冰,最后形成了巨大的冰层。

格陵兰虽然是一片冰雪世界,但不是毫无生机。每到夏季,沿海岸一带会出现一片绿色。岛上生活着驯鹿、北极熊、北极狐和海豹等动物。近海还有鲸、鳕鱼、沙丁鱼等。岛上生活着5万多居民,绝大部分是爱斯基摩人和北欧人的混血人种。90%的人口居住在较为温暖的西南沿岸。岛上居民养着5万多条狗,人们带着狗去打猎,驾着狗拉的雪橇去观赏冰雪景色。

格陵兰这个世界第一大岛的面积达217.6万平方公里,相当于西欧面积的总和。比中国第一大岛台湾大60倍。

寒冷大陆的“热带”——乔治岛

乔治岛是南极洲设得兰群岛中最大的岛,长78公里,宽28公里。

乔治岛是火山岛,形成于6000万年前。因为它处在南极板块、南美板块和太平洋板块的交汇处,现在仍是火山和地震频繁活动的区域。海岸有5级阶地,就是该岛地壳不断上升的最好见证。

乔治岛位于南极洲的低纬地区,具有南极洲海洋性气候的特点,有人因此风趣地称它为“寒冷大陆南极洲的热带”。实际上这个热仍然十分寒冷:年平均气温-2.8℃。即使是最温暖的1月,平均气温也只有1.5℃;最冷月8月的平均气温-7.8℃。绝对最低气温-28.5℃。降水量较多,年平均550毫米;多大风,年平均风速7.2米/秒,记录到最大风速52米/秒,全年风速10米/秒以上的大风日多达205天。由于天气相对较暖和,降水较丰沛,冰雪的年累积量和消融量都较大。目前冰雪覆盖面积占全岛面积的85%。在没有常年冰雪覆盖的地方,除地衣、苔藓、藻类等低等植物外,还有一种石竹科和三种禾本科植物。沿海一带则是企鹅的世界,也是海鸟和海豹活动的场所。

乔治岛的出名则是中国、智利、原苏联、阿根廷、巴西、波兰等国在此建立起南极科学考察站之后的事。

我国在南极的第一个科学站——中国南极长城站建在乔治岛南岛的菲尔德斯半岛东海岸的阶地上。站址的地理坐标是,南纬62°13′、西经58°58′,海拔约10米,离岸约100米。东临麦克斯韦湾、西接德雷克海峡,南隔菲尔德斯海峡与纳尔逊岛相望,与祖国首都北京相距约17500公里。长城站建设了工作楼、宿舍楼、库房等设施,为南极科学考察创造了基本的工作与生活条件。

蝎子的天堂——大钦岛

大钦岛位于北岛群的南端,在其北面有一小岛相随,名为小钦岛。

大钦岛上之所以有这么多的蝎子生长繁衍,与大钦岛上特殊和自然环境有密切的关系。这里林木茂盛,花草丛生,枯叶成堆,顽石遍布,为蝎子的生存繁衍提供了十分有利的条件。由于大钦岛上人烟稀少,捕捉蝎子为数尚少,故蝎子在大钦岛得以大量繁衍。

蝎子喜爱群居,至少三五成群,多者几十甚至上百的聚集在一处适宜隐蔽的地方。在一些堰坝或石堆里,你若仔细去观察一番,有时可发现上百只大小不一的蝎子抱在一起,形成奇特的蝎子球。

大钦岛上,也是经常可见海市蜃楼的地方。1984年7月29日下午4时,在大钦岛的正西方向,曾连续出现过两次海市蜃楼。在4时40分左右,只见海面上突然出现了一片层层叠叠的山峦坡谷,其上遍布高高低低、大大小小的各种建筑物,尤其是那高磊的烟囱十分引人注目,烟囱里还冒着黑烟呢!还有各种车辆在街道上穿梭来往,路上有许多游移的黑点,影影绰绰,极像街上的行人在行走。这次海市蜃楼持续40分钟,至5时20分才逐渐消失。正当游人们余兴未尽,留连忘返之际,海面上又一次出现极为壮观的海市蜃楼,时间是5时30分,离前一次的幻景只相差10分钟,使观看的人们又一次大饱眼福。这种机遇一生难得,确实使人终生不忘。

世界上最大的珊瑚岛——大堡礁

大堡礁位于澳大利亚东北的珊瑚海上,包括600多个岛礁和浅滩,长2013公里,宽16—20公里,最宽处有240公里,总面积达20.7万平方公里,构成了澳大利亚昆士兰州东海岸外的天然长堤。

珊瑚礁是由一种微小的腔肠动物——珊瑚虫制造出来的。珊瑚虫原来生活在海底的石灰质高地上,吃海藻等食物,消化之后,就分泌出石灰质。老的珊瑚虫死去后,它们的骨骼也就和石灰质混在一起了,新的珊瑚虫继续在原来的石灰质上生长。就这样,成千上万年过去了,便形成了巨大的珊瑚礁群。有的露出水面,成为海岛。因为它们像堡垒一样护卫着海岸,因此称为堡礁。大堡礁的珊瑚体厚度已达200多米,它已有三千万年的历史。由于大堡礁附近的海域有适合珊瑚生长的水温、盐度等条件,这里的珊瑚礁特别多、特别好,形成了澳大利亚独特的风景区。

大堡礁由350多种五彩缤纷的珊瑚组成,有的像傲雪的红梅,有的像开屏的孔雀,有的像繁茂的树枝,还有的像精雕细刻的工艺品……坐飞机从上空俯瞰,珊瑚礁宛如艳丽的鲜花,开放在碧波万顷的大海上。其中的格林岛上还设有精巧的水下观察室,游人们在那里可以观看珊瑚洞穴里栖息着的数百种美丽的鱼类和稀奇古怪的海生动植物。有被珊瑚虫寄生的重达140公斤的巨蛤,有能施放毒液的华丽的狮子鱼和形如石头的石头鱼,还有敢于偷袭潜水员的昆士兰甡鱼。……好像水晶宫一般。

现在,大堡礁遭到了以珊瑚虫为食的荆冠类海星的威胁,有的礁脉已经被破,必须积极采取保护措施。

奇异的动物园——龟岛

南美洲西海岸外的太平洋洋面上,散布着16个大岛、几百个小岛,面积约8000平方公里。这些岛屿统称加拉帕戈斯群岛。东距厄斥多尔海岸约1000公里,是厄瓜多尔的领土。这里人口稀少,7800平方公里的土地上,仅有居民3000多,主要集中在圣克鲁斯、圣马里亚、伊萨贝尔和圣克里斯托巴巴尔四个岛上。

加拉帕戈斯是西班牙语译音,意为“龟”。据说,大约在400多年前,一个西班牙人偶然来到南美洲西海岸附近一处荒凉的岛屿上,发现栖息着大量巨龟,遂叫该岛为“龟岛”,也就是现今加拉帕戈斯群岛中的一个岛。龟岛的名称一直沿用至今。

龟岛上的龟不仅数量多,而且体形巨大,身长多在1米以上,体重达200多公斤。性情温顺,喜居低洼地,以仙人掌和树叶为食,特别能喝水。

龟岛虽位处赤道附近,并被太平洋环绕,但受洋流等的影响,干旱少雨,生长着仙人掌和稀疏的灌丛,一派荒漠景色。巨龟为了喝上足够的清水,有时不得不日夜兼程,“远涉”数英里,寻找水源。因此,人们沿着巨龟踏出的道痕,往往能找到供人们利用的水。

卓越的生物学家达尔文曾于1835年的9、10月间在龟岛被奇特的生物所吸引住,在这里逗留了1个多月。达尔文把这种巨龟叫做黑龟。在它的《环球旅行记》一书中,用生动的文字对巨龟作了详细记述。其中写道,“在靠近水源的地方,可以看到一幅非常有趣的景色,有许多这种动物,一队正伸长头颈匆匆地向前跑路,另一队已经喝饱了水向着返回方向跑。当另一只龟走到泉源边的时候,它就不顾四周的任何观众,只知把自己的头连同眼睛伸进水里去,贪心不足地大口大口地的把水吞进肚子里……”

人类“文明”的发展,也打破了巨龟宁静的生活,甚至给它们带来了灭顶之灾。行驶在东太平洋上的船只,常常光顾这些荒凉的岛屿,捕杀巨龟,一尝龟肉为快。成千上万只龟就在“文明”人士的手下丧生,使巨龟的数量显著减少。

龟岛上还栖息着一种巨蜥,叫钝嘴鬣蜥。它与我们日常见到的陆栖小蜥不同,它体形较大,长度一般有1米左右,脊背上长出一溜儿类似鱼鳍的刺。这种巨蜥善于游泳,常常成群结队到海中戏水与觅食。有时它们也喜欢在海边光秃的岩石上行阳光浴。巨蜥的命运比巨龟要好多了,大概是它们的肉味不佳,很少受到人类的宰杀,得以世代繁衍不息,能够保持较大的数量。

水火交融的岛——冰岛

在一般人的想象中,冰岛一定是一个终年千里冰封的岛国,其实冰岛是一个冰与火的世界。

冰岛是欧洲西北、大西洋北部的岛国,靠近北极圈,因此气候十分寒冷,年平均气温不到5℃,岛上有13%的地方常年被冰雪覆盖着。然而冰岛又是一个火热之岛,是全球火山活动最剧烈的地区之一。大约每隔5年就有一次剧烈的火山爆发,喷发后的熔岩在岛上横流。因此,那里的许多高山和平原都是由冷凝了的熔岩流形成的。冰川和熔岩流的面积各占全岛的十分之一。

冰岛的温泉也特别多,大小温泉有200多个。它们的温度各不相同,有的适合于洗澡,有的可以用来做饭,把土豆和鸡蛋放在有的泉中,一会儿就煮熟了。有的温泉是间歇温泉。最大的间歇泉名叫“盖济尔”泉。“盖济尔”是“一拥而出”或“腾空而起”的意思。它每隔6小时左右喷发一次,每次持续5分钟,水柱可高达70米,最低时也有24米。

在一片冰天雪地的国度里,这么多的温泉是怎么形成的呢?原来,由于这里火山活动频繁,地下没有完全冷凝的熔岩把地下水烤得很热,然后热水沿地层的裂缝涌出后,就形成了很多温泉。

冰岛的首部叫雷克雅未克,意思是“冒烟的城市”,其实这里冒的不是烟,而是温泉水气凝结的水雾。雷克雅未克的市民们做饭、取暖都不烧煤和柴,而是使用管道运输的热水和暖气。所以,雷克雅未克是世界少有的“无烟城市”。人们还利用地热发电,培植瓜果蔬菜等,尽管外面大雪纷飞,寒风刺骨,人们在温室里好像置身于热带国家中一样。

最大的半岛——阿拉伯半岛

大约在1000多万年以前,地中海与印度洋之间的大陆是连在一起的,后来发生了地壳大变动,陆地中间陷落成为红海,红海东边的一块土地成了一个略呈长方形的半岛,这就是阿拉伯半岛。半岛位于亚洲西南部,东北临波斯湾和阿曼湾,东南靠阿拉伯海,北以亚喀巴湾北端至阿拉伯河口一线为界,西隔红海与非洲大陆相望。阿拉伯半岛南北长约2240公里,东西宽约1200—1900公里,总面积约为322万平方公里,是世界上最大的半岛。

阿拉伯半岛大部分地区气候炎热,没有常年有水的河流和湖泊。炎热干燥的气候形成了大片沙漠,其面积约占半岛总面积的三分之一。半岛南部的鲁卜哈里沙漠达65万平方公里,比我国最大的沙漠——塔克拉玛干沙漠还大一倍。半岛上居民主要以牧业为生,多数放养骆驼,半岛及其附近的海湾中蕴藏着丰富的石油和天然气。

半岛上有沙特阿拉伯、也门共和国、阿曼、阿拉伯联合酋长国、卡塔尔、科威特等国,其中的沙特阿拉伯是世界上生产石油最多的国家,有“石油王国”之称。

阿拉伯半岛是伊斯兰教的发源地,那里的主要居民阿拉伯人多信奉伊斯兰教。每年,世界各地有不少的伊斯兰教徒前往沙特阿拉伯西部的麦加和麦地那朝圣。

二、海洋环境篇

海面是平的吗

人们通常认为,海面相当平坦,尽管海面有被风、海底地震等引起的种种波浪和潮汐引起的海面涨落。

随着测量技术的发展,特别是海洋卫星的发射升空,人们发现,甚至在风平浪静时,全球大洋各处海面也是坑坑洼洼的,有些区域海面凸出来,有些区域凹下去,两者之间最大可相差100多米。因为海面的凸凹不平是在1000千米以上的广泛范围内逐渐变化的,因此,航海者感觉不到海面凹凸不平。

目前已经发现,全球海洋表面有三个较大的隆起区域,一个在澳大利亚东北部海区,隆起高达76米;第二个区域在北大西洋,隆起高度是68米;另一个在非洲东南部,隆起区域高为48米。另外,还发现有三个较大凹陷区域,一个在印度半岛以南的印度洋上,凹陷深度是112米;另一个凹陷区域在加勒比海,凹陷深度为64米;还有一个区域在加利福尼亚以西,凹陷深度为56米。此外,在巴西沿海和佛德角群岛附近区域,也有隆起或凹陷15米左右的几个区域。

海平面有升有降

现在,人类正面临着海平面上升对人类的严重威胁。有人说,温室效应就是导致海平面上升的罪魁祸首。其实,问题远非如此简单。科学家们研究指出,迄今引起海平面变化的因素不下十多种。例如导致海水体积变化的就有大陆冰盖的增减、水圈体积的变化、大洋水温的变化和大气温度的变化等四种。而引起洋盆体积变化的则有岩石圈的分化作用、洋盆的干涸、大地水准面的变化等多种。

地质学家告诉我们,在地球的漫长发展历史中曾经有过7次特大的冰期,每次冰期都引起海平面大幅度下降,即大陆冰川体积的变化相应引起海平面的变化。

海洋作为一个开放系统不停地与地球内部存在的水分进行着循环与交流,由于现代地幔水陆续不断地渗入海中,而导致海平面正以每年1毫米的速度上涨。科学家计算,在距今6500万年的新生代以来,由于地球内部地幔水的加入,迄今实际上使海平面升高了65米。

海水的盐度、密度和温度对海平面的升降具有特殊的作用。据推算,如果全球海水的盐度从35降低到34.9,就足可使全球平均海平面上升1.9厘米;当全球海水的温度升高1℃,则海平面大约相应升高0.6厘米。由此可见,海水盐度、密度和温度虽然造成的效应较小,但它们毕竟是影响海平面的最基本因素。

海底扩张速率的变化将直接影响海平面的升降。当海底板块扩张速度加快时,洋中脊体积变大,结果使海水溢出正常的海岸线而侵入大陆内部,海平面升高;反之,当海底板块扩张速度变慢时,洋中脊即变冷收缩,海底下沉,海平面下降。科学家估计,海底板块扩张速度每变化10%、并持续1000万年时,则可产生20米海平面变化。

总之,引起海平面升降的因素很多,而且这些因素是相互联系、相互作用的,它们绝不是孤立的。

海洋与陆地的温差

海面和陆地比较起来,海洋就像饿极了的孩子似的,贪婪地吸收着太阳送来的热量,不愿把好不容易到来的太阳能量放弃掉;陆地就和海面不一样,它的胃口小,不能一下子吸收很多太阳辐射来的能量,剩下的就反射回空中去了。

既然海水吸热多,为什么海水会没有陆地热?

科学家经过研究,发现陆地是一种不能很好传热的固体,既不透明又不流动,太阳即使再厉害些,也晒不透它;因为不能很好地传热,晒了一整天,它所吸收的热量还只是集中在不到一毫米厚的表层内。而海上的情况就不同了。海水是半透明的,太阳光可以透射到水下一定的深度,也就是说,太阳的辐射能可以达到海水的一定深度之内。经过长期的观测计算,人们发现到达水面的太阳辐射能,大约有60%可以透射到1米的深度,有18%可以达到海面以下10米的深度,人们甚至在海面下100米深度的地方仍然发现有少量的太阳辐射能。而这些,在陆地上是不可能的。

海水吸热,不仅胃口大,而且还会把已经吸收的热量送到透射不到阳光的深层海水中贮存起来呢。

海洋是依靠海水的流动来输送热量的。比如说,海流就可以把赤道附近的热海水送到两极方向去,而两极方向的冷海水也可通过海流向温暖的地方流动;风浪则可以形成海水温度的上下交换。

当然,除了风浪,海水还有一种对流作用。这种对流作用是由于冷热海水的重量不同而形成的。就像冷空气重热空气轻一样,海水也是冷的重热的轻。于是,冷而重的海水就会自动下沉,暖而轻的海水会自动上升。有了这种对流作用,冬天的大海也不会很冷了,随着表层较冷的海水不断下沉,下层较暖的海水会自动升上来补充的。

海洋与全球二氧化碳平衡

目前,关于全球气候变暖的事实已为人们普遍接受。据研究,本世纪80年代气候变暖最为明显,近百年5次平均气温最高的年份均出现在这10年里。但是,有关气候变化的原因、趋势及其对全球生态环境的影响如何?目前存在着一些不同的认识。这些认识大致可以归为两种。

一种观点认为,全球气候变暖与“温室效益”(green-house effect)有直接关系。由于全球工业化进程的加速,向大气中排放的温室气体(包括二氧化碳、甲烷、氟里昂、氮氧化合物等)的含量迅速增长,阻挡了地面辐射热的散失,致使大气温度升高。根据近30多年来的观测结果,人们对大气中二氧化碳含量的时空变化已有所了解。据研究,在工业革命以前,大气中的二氧化碳含量的体积分数约-6为(270~290) ×10。尽管世界各地上空的二氧化碳含量有所不同,但有两点则是共同的。一是,大气中二氧化碳含量在逐年增加,其年度变化率比较一致。二是,各地二氧化碳含量具有明显的季节变化。据科学家的研究表明,大气中二氧化碳含量的体积分数正在以每-6年0.8×10,而现在大气中二氧化碳含量的体积分数已增加到340×-610的速度增长。有人估计,按此速度在今后50年内大气中的二氧化碳的含量将比工业革命以前增加1倍,由此而引起的大气温度将升高1.5~3.0℃,地球气候将产生明显的变化。据政府间气候变化专业委员会的预测,如果人类对环境不采取任何保护措施,100年以后全球地面气温将增加4℃多,海平面每10年升高3~10cm,到21世纪末将升高0.3~1.0m。甚至有的科学家认为,今后50~200年内由于全球气温升高,南极西部冰的融化可能导致海平面上升5m,地球上可能出现像中生代那样的世界性的动物灭绝。尽管这些预测都有一定的根据,但又都是不确定的。人们现在可以肯定的是,大气中二氧化碳含量在迅速增加,气候在变暖,如果这个过程继续下去的话,地球气候无疑将发生明显的变化。

另一种观点认为,目前的气候变暖与“温室效应”并无直接的关系。它与地球上一个温和的冰后期一致,也许是19世纪末结束的“小冰期”的后果。也就是说,全球增温是地球气候循环中的自然现象。关于全球变暖的发展趋势,他们根据极地区域冰核中氧同位素资料,推测出地球气候的自然循环,认为目前地球气候处于自然冷却期,这将抵消二氧化碳的影响。还有人指出,地球上已知的化石燃料只够使用100~200年,人类不可能无休止地使用化石燃料;同时考虑到海洋、植被等对二氧化碳的吸收能力,全球二氧化碳循环将达到新的平衡。在这种情况下,今后地球生态环境会发生明显的变化,但不可能会招致毁灭性的灾难。但是,这种假说目前尚缺乏较多的证据,也无法否定全球增温与大气中二氧化碳含量增加相吻合的事实。因此,迄今多数科学家相信“温室效应”理论。但是,这个理论有一个关键问题还没有解决,这就是海洋在全球二氧化碳平衡中的作用问题,即海洋吸收、储存和转移大气中二氧化碳的能力有多大?海洋对大气中二氧化碳增加的反馈作用如何?等等。这是海洋与全球变化关系中的主要问题之一。

研究表明,大气中的二氧化碳通过海—气界面进入海洋,并通过海洋中各种化学的、物理的和生物的过程吸收、储存和转移。因此,海洋对大气中二氧化碳含量的变化起着重要作用。据初步估计,人类每年向大气中排放的二氧化碳,大约有一半进入海洋。海洋在吸收和储存二氧化碳方面,是通过化学和生物的作用,把大气中的二氧化碳转化为碳的化合物。海水的二氧化碳化合物形态主要是碳酸(HCO),而海洋植物对二氧化碳的利用,以及碳酸钙、碳酸镁等23的形成,都会直接影响海水中二氧化碳的含量。观测表明,二氧化碳在海洋中的垂直分布变化很大,海洋表层中二氧化碳的储存量占整个海洋中的二氧化碳含量的85%,而占海洋体积90%的中、深水层二氧化碳储存量仅占15%。这说明海洋中尚具有储存二氧化碳的巨大潜在容量。研究还表明,海洋中的二氧化碳与大气中的二氧化碳并不处于平衡状态,这与海洋的物理过程有关。例如,在北纬50°的大西洋,二氧化碳从大气进入海洋,那里的表层海水向北冰洋方向流动,水温迅速降低,二氧化碳在海水中的溶解度增加,海—气之间二氧化碳不平衡加剧,使大气中更多的二氧化碳进入海洋。而在赤道太平洋,由于深层冷水涌升到温度较高的海面,海水中二氧化碳出现过饱和,此时海洋便向大气释放二氧化碳。初步估计,海—气之间这种二氧化碳交换速率,大约每年每平方米为20mL二氧化碳。另外,据估算海洋储存二氧化碳的能力,仅溶解碳(不包括颗粒有机碳和无机碳)一项,大约为大气储存能力的56倍。

海洋对大气中二氧化碳的另一个重要影响,是碳的运输和转移在海洋二氧化碳分布和海—气之间交换速率所起的控制作用。它包括水平运输和垂直转移,主要取决于海洋环流、生物生产力和物理—化学过程。现已发现,其中生物过程的贡献尤为重要,特别是所谓的“生物泵”在垂直转移过程中发挥了重大作用,它促进了碳从海表层向深层的转移。研究表明,生物的初级生产主要限于真光层,浮游植物在那里进行光合作用吸收二氧化碳,并将其转化为颗粒态,即浮游植物细胞,然后通过食物链逐级转化为更大的颗粒。而在中层带则由浮游动物的活动所控制。因此,海洋碳的垂直转移主要依靠浮游动物的碎屑和粪粒来完成。另外,由于在光合作用的过程中同时有大量的产品以溶解有机碳的形式释放到海水中,它又可以被异养微生物利用转化为颗粒有机碳,所以溶解有机碳在化学过程中也起着不可忽视的作用。

研究还表明,海洋中碳酸盐(主要碳酸钙和碳酸镁)的形成和沉积是碳转移的另一个途径。碳酸钙和碳酸镁的表现溶度积与海水的温度、盐度、压强有关,但研究发现,温度和盐度并不是影响海水碳酸钙饱和度的主要因素,决定的因素是碳酸根。而影响碳酸盐浓度主要是海水中的二氧化碳浓度。

尽管目前关于海洋对大气中二氧化碳的作用研究已经取得了不少重要成果,但是还有许多的未知领域有待进一步探讨。因此,在全球变化研究中已经把它作为全球海洋通量研究的主题列入计划,以确定和深入了解在全球尺度海洋控制碳及其有关生源要素通量变化的过程,估计海洋与大气、海底和陆架界面间的交换量,进而为研究和预测长期气候变化服务。

海冰、冰盖对气候的影响

地球上的海冰和冰盖主要分布在两极和高纬度区域,它在维持气候和对气候变化的影响十分显著。

迄今的研究表明,海冰的变化主要通过与气温间的关系对局部地区的气象产生影响。区域性的海冰变化与天气尺度的大气变化有关联;在年际时间尺度和半球空间尺度上,大气与海冰变化之间有明显的相关性。近年来通过模拟和卫星资料推算的冰情证实,气旋活动与海冰范围减少有相互加强的倾向,即海冰密集度异常小时有利于气旋的形成。研究还表明,北大西洋风暴路径有随海冰边缘自北向南移动的趋势,在薄冰年份,西白令海气旋频度增大,在厚冰年份,东白令海气旋活动更为频繁。在南极区域,气旋路径的季节变化与海冰范围季节变化一致,气旋活动的年际变化与海冰范围的年际变化也很一致。

科学家曾经利用大气环流模式,对冰盖范围变动的气候效应进行试验研究,发现当北极冰盖完全消失时,大气出现统计上很显著的变化,主要造成纬向气流普遍减弱和高纬地区明显增暖;而南极冰的减少会使经向温度梯度减小,并使南纬25°以南地区西风强度减小。研究还表明,海冰面积异常总是伴随出现气候系统的其他部分的异常。人们还发现20世纪前30~40年中,北极海冰覆盖面积的普遍减小与同期的北极气温偏高相一致。

有人利用冰—海洋—大气耦合模式对大气中二氧化碳浓度增加导致气候变暖的响应进行了模拟研究,发现若大气中的二氧化碳增加4倍时,每年夏季北极海冰将完全消失,而南极终年不见海冰。这时冬季高纬度地区对流层下部增温最大,北极中部从夏到冬近地面气温增加幅度为4~13℃。由此可见,在模拟研究大气温室效应和气候变暖中,必须以现在气候条件下的海冰分布为背景。另外,流冰还造成热量和盐分的大范围水平输送。研究表明,冰生成区释放到大气中去的潜热基本上提供给融冰区的海洋和大气。由流冰导致的这种热量平流输送的量级可能与常年冰上的铅直热通量一样大。北极中部大部分平流潜热是由从Fram海峡进入东格陵兰海的冰输送引起的。此外,人们还可以从极地海冰范围的变化分析中,找到预示气候变化趋势的征兆。

海洋中的气团变性

由于地面上得到的太阳辐射的多少不同,各地的气温不同。总的说来,总是赤道和低纬地区受热多,气温高;而两极和高纬地区则受热少,气温低。空气在某一源地较长时间的停留,就会形成具有该地特性的气团。在极地海洋或大陆上就会形成干冷的气团,在热带海洋上又会形成湿热的气团。各地形成的气团,又要随大气环流而移动,当气团离开源地后,它的性质也会随着所经过的环境而发生变化,这就是气团变性。

海洋上的气团,经常出现你来我往的交替现象。海洋中的天气也就随之而变化。

气团的属性主要指它的温度、湿度和层结稳定度。气团变性的物理过程主要为增热或冷却,蒸发或凝结,垂直运动和层结稳定度的变化等。

当极地大陆上形成的干冷气团入海时,或北半球的干冷气团向偏南方向移动时,就会产生增温、增湿等物理过程,于是使气团的稳定度变差,甚至出现不稳定层结,容易形成对流和降水天气。

在热带洋面上形成的气团,在北半球向北移时,则又会变冷变干,并使气层层结趋于稳定。当这种气团移至冷暖洋流交界处时,在冷洋流一侧,可出现大范围的海雾。

对于海上气团变性的研究,除了过去常用的天气学分析(即天气图方法)、诊断分析(物理量判断)和理论研究(对流体力学方程求解)外,在1974年2月和1975年2月,在世界气象组织的领导下,日本、韩国、澳大利亚、美国等国两次在东海以冲绳岛为中心的六边形海区进行了气团变性实验(ANTEX),以弄清自海面到大气中的能量和动量输送过程,寻找北半球中纬度大洋西部流上空,冬季气团变性强烈的原因。

实验结果表明,在冷空气爆发时期,暖洋流(黑潮)海区提供的2总热能高达700~800瓦/米。感热和潜热的输送,还随天气形势变化而变化。气团在海上的变性,在云、降水和气团结构上都有明显的反映。在大陆和近海区低云量少,而在暖流上空则低云量多。在大陆的低云几乎全为层云,而在海上的低云多为对流云,在暖流上空的低云则为强烈发展的对流云。在降水方面,大陆降一般雨,海上降阵雨多,在暖流上空则都是阵性降水。冷气团初临海上时,几乎无云,逆温层也比较低,经过一些时间的开始变性,云量逐渐增多,逆温层也逐渐上抬。

平流雾

因为海雾的种类很多,人们按照生成的原因不同,把海雾分成平流雾、混合雾、辐射雾和地形雾四种。海上出现最多,危害最大的是平流雾。那么,这种雾是怎样形成的呢?

由于空气在海面上水平流动,就产生了这种雾。一般情况是,当暖湿空气经过冷的海面时,受到海面的冷却,温度下降,空气达到过饱和状态,多余的水汽就凝结出来,以小水滴的形式悬浮在海面上的空气中。凝结的小水滴达到了一定的密度时,就形成了雾,人们叫它平流冷却雾,也称暖平流雾。这种雾比较浓,雾区范围大,持续时间长,能见度很低。另一种情况是,当冷空气流到暖的海面时,海水蒸发在空气中的水汽达到饱和状态,就形成了雾,人们叫这种雾是平流蒸发雾,也叫冷平流雾,也有人叫它冰洋烟雾。这种雾虽然雾区很大,雾层却不厚,雾也不浓。

暖湿空气流经较冷的海面,最容易在海面上产生很浓的海雾。因此,那些周围被较暖的海域或陆地包围的冷水区,特别容易形成平流雾。海洋上的冷水区多数是由极地海域或江河流出来的冷海流。像潮流、我国东部沿海的近岸冷海流等。也有的是深层的冷水在某些海岸附近涌升上来造成的,例如,非洲西海岸、智利和加利福尼亚沿海等地。一旦有暖而潮湿的空气移到这些冷海面上,就会形成大范围的海雾。因此,冷、暖流交汇的海域,往往是海雾经常出没的地方。

咆哮的西风带

航行在南大洋的船只,最关心的是西风带,最怕的也是西风带。因为那里盛行西风,风大,浪高,航行的船只在山丘一样的浪峰中剧烈起伏,险象环生。航海者谈西风带而色变,故有“咆哮的西风带”、“发疯的西风带”之说。

下面的航海日记,为我们描述了西风带的可怕、惊险。

1991年3月3日,我们离开南极中山站,整装北归。3月5日,根据气象预报得知,在距我船西部15个经距处有一低气压正在形成,按照移动速度计算,我船不会与它相遇,最多它只能远远地尾随我们,风速最多不会超过8级。3月6号,我船已移到南纬55°,距在南纬60°处东行的气旋中心已超过500千米,按常理,已脱离危险区。可事实出乎所有人的意料,当时风速突然加大到35米/秒以上,浪高达20米,如山的巨浪狂啸着从船尾滚滚而至,将船尾部盘结的粗缆全部打散,冲入海里。缆绳掉入海中,随时有可能缠上螺旋桨,给我们带来灭顶之灾。后甲板工由铆钉固定的一吨重的蒸汽锅被连根拔起,像陀螺一样在甲板上滚来滚去。后甲板的门也被巨浪冲破。船在大海中像个醉汉左右摇摆,减摇装置全部投入工作,船的单边倾斜仍超过30°。单机推进的“极地”号船随时可能遭受灭顶之灾。船长守在驾驶室里,两天两夜没合眼。

当时的险情历历在目,如果当时是逆浪航行,我们全体乘员和“极地”号船早就被西风带的狂风巨浪吞没了。

西风带让人如此触目惊心,那么,什么是西风带,它在哪里呢?

通俗的说法是,在南北纬40~60°之间,经常刮着西风,风速很大。北纬40~60°之间多为陆地;而南纬40~60°之间几乎全部是辽阔的海洋,表层海水受风的影响,产生一个相应的自西向东的流动,它像腰带一样,环绕在南极大陆周围,这就是西风带。

物理海洋学家认为,在南半球,西风带的北界位置是亚热带辐合带,南界位置是南极辐散带,在它们之间,是西风漂流区,即西风带。

海洋灾害

海洋自然环境发生异常或激烈变化,导致在海上或海岸发生的灾害称为海洋灾害。海洋灾害主要指

风暴潮

灾害、巨浪灾害、海冰灾害、海雾灾害、大风灾害及地震

海啸

灾害等突发性的自然灾害。

人类活动导致海洋自然条件改变而引发之灾害,称为人为海洋灾害或人为海洋自然灾害。多数无突发性,但某些人为海洋灾害,如赤潮,在许多海区也有突发性,这已引起人们越来越多的注意。

引发海洋灾害的原因主要有大气的强烈扰动,如热带气旋、温带气旋等;海洋水体本身的扰动或状态骤变;海底地震、火山爆发及其伴生之海底滑坡、地裂缝等。

海洋自然灾害不仅威胁海上及海岸,有些还危及自岸向陆广大纵深地区的城乡经济和人民生命财产的安全。例如,强风暴潮所导致的海侵(即海水上陆),在我国少则几千米,多则二三十千米,甚至达70千米,一次海潮曾淹没多达7个县。

上述海洋灾害还会在受灾地区引起许多次生灾害和衍生灾害。如:风暴潮、风暴巨浪引起海岸侵蚀、土地盐碱化;海洋污染引起生物毒素灾害,再引起人畜中毒等。

海浪

海浪(ocean wave)是发生在海洋表面的一种波动现象。它和风的关系十分密切,民间所谓“无风不起浪”或“无风三尺浪”,就是对海浪现象的经验之谈。根据现代科学理论,海浪分为风浪、涌浪和近岸浪3种。风浪是指在风的直接作用下产生的水面波动,海面同时出现许多波高不同、周期不等的波浪,呈现出极其复杂的海面波动起伏状况;涌浪是在风停后海区内尚存的波浪,或传出风区以外的波浪,这种波浪外形比较规则、整齐,波面比较圆滑,波峰线长;近岸浪则是由外海的风浪或涌浪传到海岸附近,因受地形影响而改变波动性质的海浪。此外,风浪和涌浪同时出现时,还会形成混合浪。

海浪蕴藏着巨大的能量。据研究,若以世界大洋波浪平均波高101m、周期6s计算,全球海洋波能功率达7×10kW之巨,估计其中可9开发利用的能量有2.7×10kW。因此,开发利用海浪能资源是个很引人注意的问题。但是,另一方面,海浪的巨大能量也往往构成对海上活动的严重威胁。据统计,在目前世界上的海难事故中,有70%是由狂风巨浪造成的。1969—1982年间就有15艘万吨巨轮在太平洋西北部海域遭遇巨浪而沉没。近十几年来,随着海上油气开发迅速发展,海上作业平台日益增多,因风暴浪袭击,平均每年都要损失1~2座石油平台,都造成重大经济损失和人员伤亡。

潮汐

在海边人们总会发现海水时涨时落的现象,人们把这种现象比喻成“大海的呼吸”。白天大海的呼吸叫作“潮”,晚上大海的呼吸叫作“汐”。这种海水有节奏的涨落现象就是潮汐。那么,潮汐究竟是如何产生的呢?

地球和月亮的距离是384400千米,这大约等于9次环地球旅行的路程。太阳到我们地球的距离还要大得多,大约有15000万千米。这么远的距离,施了什么魔法而使地球上的海水进行呼吸的呢?直到1685年,英国著名的科学家牛顿发现万有引力定律,才真正解开了这个谜。

万有引力定律告诉我们,宇宙间任何两个物体之间均有引力发生。因而,地球和月球之间有引力,地球和太阳之间也有引力。月球是地球的卫星,距离地球比其他天体近,因而月球就比其他天体对地球的引力大。

月球对地球各点的引力是不一样的,因地球各点距月球中心距离的不同而出现差异。在上中天时距月球中心最近,引力最大;在下中天时距月球中心最远,引力最小。由于月球的引力和地月运动的离心力在地心处平衡,即大小相等,方向相反,而在地球其他各个地方就出现了差异,这样就在各地出现一个合力。这种合力的出现会使地球上的海水产生运动,这就是“引潮力”。由于引潮力在地球各点上的方向和大小各不相同,从而形成了地球上的潮汐现象。经过推算,月球的引潮力大约是太阳引潮力的2.17倍。同样,也可计算出其他天体对地球的引潮力。但是,宇宙中的天体虽多,对地球能产生显著引潮力作用的却不多。这是因为有些天体质量虽大,但距离太远;或距离虽近,潮汐但质量又太小。只有月球和太阳的引潮力比其他天体大得多,因此,月球对海洋潮汐起了主宰作用。

由于天体是在不断运动着,随着月球、地球、太阳三者相对位置的变化,使得海水发生了周期性的涨落,出现了复杂的潮汐运动现象。风暴潮

风暴潮是指由于大风和伴随着的大气压力急剧改变而导致海洋或湖泊水面异常升降的现象,因而也叫“气象海啸”、“风暴增水”或“风暴减水”。但是,就其危害程度而言,以风暴增水为烈。特别是当风暴增水与天文大潮同时发生时,由于两种增水叠加在一起,可使水位异常抬升,海水向内陆侵袭,在沿海地区造成重大自然灾害。因此,现在海洋预报中发布的风暴潮警报主要指风暴增水。

在世界的热带和温带沿海地区,风暴潮经常发生。在热带地区发生的风暴潮是由热带气旋(如

台风

飓风

等)引起的,其特点是水位变化急剧,增水大。主要出现在夏、秋季节,尤以夏季最为显著。这类风暴潮分布地域甚广,包括北太平洋西部、南中国海、东中国海、北大西洋西部、墨西哥湾、南印度洋西部、孟加拉湾、阿拉伯海、南太平洋西部等区域。其中,我国东南沿海、菲律宾沿海、日本沿海、美国东海岸和墨西哥湾、孟加拉湾等,热带气旋频繁,出现风暴潮的次数也最多,被认为是世界海洋灾害的重灾区。例如,据统计,在我国沿海增水1m以上的风暴潮平均每年发生14次,造成严重灾害的风暴潮平均每年2次。迄今世界上有记录的风暴潮增水,最高记录是7.5m,相当于一座三层楼的高度,发生在美国东海岸;其次是在孟加拉湾沿岸发生的一次风暴潮记录为7.2m。我国有记录的风暴潮最高记录是5.94m,1980年发生在广东湛江的南渡。

由温带气旋引起的风暴潮主要发生于冬、春季,其特点是水位变化不剧烈,增水较小,持续时间较长。这类风暴潮多发生在温带沿海地区,如北海、波罗的海、美国东海岸、日本沿海、我国北部沿海等。温带气旋引起的风暴增水与热带风暴增水相比较小,迄今已知的最大风暴增水不超过4m,但同样也会造成灾害。以我国渤海为例,据统计,1950—1981年间,在渤海湾发生1m以上风暴潮增水的过程有244次,平均每年8次,其中有5次造成严重的自然灾害。

对于风暴潮灾害,生活在沿海地区人是有深切体验的。1970年11月13日,在孟加拉湾沿岸发生的一次强风暴潮,潮水不但淹没了大片土地和村庄,而且夺走了近30万人的生命,超过了1923年日本关东大地震的死亡人数。我国历史上也有许多风暴潮灾害记载。例如,1696年6月1日,在长江口一带发生的一次风暴潮,曾使上海、宝山、崇明、吴淞一带被潮水淹死10万余人。1895年4月28日,渤海湾遭受风暴潮袭击,几乎摧毁了大沽口的所有建筑物,造成2000多人死亡。建国以来,由于记录较完备,对风暴潮的灾害有更清楚的认识。例如,1969年7月28日在汕头地区发生的一次风暴潮,使当地水位急增3m,汕头市平均浸水1.5~2.0m,成了“水城”,给当地人民生命和财产造成重大损失。1992年夏发生了一次近年来特大的风暴潮,几乎波及整个东部沿海地区。尽管海洋部门及时做出了比较准确的预报,并采取预防措施,大大减轻了灾害程度,但仍然造成不可抗拒的损失,包括淹没田地3000多万亩,海堤决口1万多处、长约1100km,倒塌房屋近10万间,直接经济损失90多亿元,人员伤亡280多人。触目惊心的风暴潮灾害,引起了各沿海国家的广泛关注。许多海洋学家开展了风暴潮的科学研究,成为海洋科学和灾害学的一个重要研究领域。台风

每年夏季,我国东南沿海一带,经常受到台风的侵袭。它虽则可以带来雨水,但也会造成灾害。

台风发源于热带洋面,因为那里温度高,湿度大,又热又湿的空气大量上升到高空,凝结致雨,释放出大量热量,再次加热了洋面上的空气。洋面又蒸发出大量水气,上升到高空,温热空气以更大的规模迅速上升。这样往返循环,便渐渐形成了一个中心气压很低、四周较冷、空气向低气压区大量汇集的气旋中心。因为这种气旋发生在热带海洋上,所以又叫它为“热带气旋”。在一般情况下,热带气旋并不一定都能发展成为台风,只有当热带气旋继续不断得到更多高温高湿空气的补充,并在气旋的上空形成一个强有力的空气辐散区,使从低层上升到高空的暖湿空气不断向四周辐散出去,这时,热带气旋就可能发展成为台风。

台风是一个巨大的空气旋涡。它的直径从几百公里到一千多公里,高度一般都在9公里以上,个别的甚至伸展到27公里。台风中心有一个直径约为10公里的空心管状区,气象学上称为“台风眼区”。台风眼内盛行下沉气流,多半是风和日丽的好天气。从台风眼向外,四周就是巨大而浓厚的云墙,这是狂风暴雨最厉害的地方。

台风移动时,就像陀螺那样急速旋转着前进。它行走的路线总是弯弯曲曲的,但每年几乎都遵循比较固定的路线移动。影响我国的台风主要是西北太平洋台风和南海台风。它的活动路径随季节而有所不同:1—4月,绝大多数台风仅在北纬10度以南活动,对我国没有什么影响。5—6月,主要路径有两条:一条在北纬10—15度间由东向西行,进入南海;另一条在东经120—125度之间发生转向,向东北方向的日本移去。7—9月,是西北太平洋台风的活动高峰期。台风生成后,沿北纬10—25度间自东向西移动,影响我国东南沿海,有时甚至能侵入到华北和东北一带。也有部分台风未能继续西行而在海上转向东北。10—12月,台风活动路径南退,主要在北纬17度以南自东向西移动,影响南海;一部分在台湾以东海面向东北移动。

台风的风速很大,最大风速一般为每秒40—60米,个别强台风的最大风速可达到每秒110米。一次台风过程,降雨量一般达200—300毫米,有时甚至可达1000多毫米。因此,台风经过的地方常常会引起洪涝灾害。从1989年1月1日起,我国开始统一使用国际规定的热带气旋名称和等级标准。即当热带气旋中心位置不能精确确定,而且平均最小风力小于8级称为低气压;热带气旋中心位置能确定,但中心附近的平均最大风力小于8级称为热带低压,达到8—9级称为热带风暴,10—11级称为卫星上拍摄到的台风空气旋涡强热带风暴,12级或12级以上称为台风。飓风

一次普通的飓风所释放的能量相当于几个原子弹爆炸的能量,1分钟的能量足够美国50年的用电。

但是,飓风无法控制,它们毫无束缚地把能量释放到大气层,却常常把死亡和灾难带给广阔的沿海地区。

1970年,飓风袭击了孟加拉国,引起潮浪,吞没了至少20万人的生命。1900年美国德克萨斯州嘎米斯顿的一场飓风掀起了巨大风潮,使6000人丧生。1954年,在日本北端的岛屿,北海道函馆海湾,一条大型渡船被飓风击沉,1000人葬身大海。

飓风是在大海产生的,条件是水温高于华氏80.6°(摄氏27°),这意味着北部海面通常不会产生飓风。温暖的海洋形成漏斗状气流,升至12200米的高空,气流冷却形成积云。由于高空气流扩散,从海面上沿漏斗上升的气流不断加强。地球的自转导致气流旋转,飓风由此产生一股直径650公里的强劲风暴,在旋转中,风速每小时达320公里。

飓风的中心称为风眼,直径约32公里。风眼温度适中,只有微风,一切都很平静,显然是由离心力形成的。因此在飓风袭击的地方,在另一半到来之前都有一小段平静,而后骚乱再起。

飓风在洋面形成之后往往再度加强,因为水的热量使漏斗中部气流上升加快,但到了陆地,由于森林和高山的阻挡,并且由于它不再有水气上升所提供凝结的热源,所以飓风一旦到了陆地,没几天就会消失。海啸

海啸,是一种特殊的海浪,是由火山、地震或风暴引起的一种海浪。海啸波,在大洋中不会妨碍船只的正常航行,但近岸时却能量集中,具有极大的破坏力。

由于海底或海边地震,以及火山爆发所形成的巨浪,叫做地震海啸。通常在6.5级以上的地震,震源深度小于20~50公里时,才能发生破坏性的地震海啸。产生灾难性的海啸,震级则要有7.8级以上。

世界上有记载的由大地震引起的海啸,80%以上发生在太平洋地区。在环太平洋地震带的太平洋西北部海域,更是发生地震海啸的集中区域。海啸主要分布在日本环太平洋沿岸,太平洋的西部、南部和西南部,夏威夷群岛,中南美和北美沿岸等地。世界上最常遭受海啸袭击的国家和地区,主要有日本、印度尼西亚、智利、秘鲁、夏威夷群岛、阿留申群岛、墨西哥、加勒比海地区、地中海地区等。我国是一个多地震的国家,但发生海啸的次数并不多。1883年,在东南亚的巽他海峡中,由于喀拉喀托火山喷发,产生了一次极强的海啸,掀起的巨浪高达35米,使印度尼西亚岛屿沿岸遭到严重破坏,同时毁坏了巽他海峡两岸的1000多个村庄。巨浪迅速在大洋中传疯狂的海啸播,急速穿过印度洋,绕过非洲南端的好望角进入大西洋,仅32个小时就传到英国和法国的沿海地带,其距离大约相当于地球圆周一半的路程。这次海啸,也使东印度群岛遭到惨重的损失。

1946年4月1日凌晨,夏威夷群岛万籁俱寂,酣睡的人们正在享受美梦的甜润。突然,海水奔腾咆哮地猛冲上来,使海岸边较高的地方也被海水吞没,几分钟后海水又迅猛地溃退而去,以至于平时不见天日的海底珊瑚礁也露了出来,成群来不及逃走的鱼儿搁浅在海滩上乱蹦乱跳;15分钟后,海水以比第一次更凶猛的势头再一次猛扑上岸,人们清楚地看到一堵高大直立的“水墙”迅速地向前推进。如此来回数次,3个小时后,海面才恢复了平静。这次海啸给夏威夷带来沉重的灾难,使163人死亡,大批房屋倒塌,海水深入内陆1公里以上,海港中停泊的一艘17000吨海轮被抛到岸上,一块重约13吨的石头被抛到20米以上的高空。估计经济损失达2500万美元。这次海啸是由相距数千公里的阿留申海域海底地震爆发引起的,海啸波每小时推进约820公里,到群岛沿岸浪高达8米。

有的海啸是由台风、强低压、强寒潮或其他风暴引起的巨浪,称为风暴海啸。在世界大洋中,印度洋的孟加拉湾沿岸,是世界上受风暴海啸危害最严重的地区。例如,1970年11月12日,印度洋上的飓风袭击了孟加拉沿岸,席卷了整个哈提亚岛,波浪高达20米,夷平了很多村落,50多万头牲畜被海水溺死,并使30余万人丧生,100万人无家可归。

目前,人们发现的世界上最高的海啸,是在美国阿拉斯加州东南的瓦尔迪兹海面上由地震引起的海啸,浪高达67米,大约相当于20层楼之高!

造成海啸最主要的原因是海底地壳发生了断裂,有的地方下陷,有的地方上升,引起强烈的震动,产生出波长特别长的巨大波浪,传到岸边或海港时,使水位暴涨,冲向陆地,产生巨大的破坏作用。1923年9月1日著名的日本大地震发生时,横滨就受到过海浪的冲击,几百座房屋被带进海里。事后发现,那里附近的海底不仅断裂开来,而且有巨大的移动,隆起与下陷的部分高度相差达270米,难怪造成了恶浪滔天的景象。

海底火山喷发也会造成海啸。像1983年,爪哇附近喀拉喀托岛上的火山喷发时,在海底裂开了300米深的坑,激起的海浪高达35米,造成极其惨重的损失。水下火山的喷发,还会使海水沸腾,使大量的鱼类和海洋生物遭到灭顶之灾。

因海斜坡上的物质失去平衡而产生的海底滑坡现象,也能引起海啸。另外,受到风暴袭击时,海面可升到异乎寻常的高度,产生“风暴海啸”。

人类活动也能造成海啸。比如试验核武器时,巨大的水下核爆炸同样能引起海啸,不过能量要小得多,不至于造成大的灾难。洋流

海洋中的海水,按一定方向有规律地从一个海区向另一个海区流动,人们把海水的这种运动称为洋流,也叫做海流。

海流与河流是不一样的。海流比陆地上的河流规模大,一般长达几千公里,比长江、黄河还要长,宽度则相当于长江最宽处的几十倍甚至几百倍。河流两岸是陆地,河水与河岸界限分明,一目了然;而海流存在于茫茫的大海中,海流的“两岸”依然是滔滔的海水,界限不清,难以辨认。

海洋中的这种“河流”,曾经协助过许多航海者。哥伦布的船队,就是随着大西洋的北赤道暖流西行,发现了新大陆;麦哲伦环球航行时,穿过麦哲伦海峡后,也是沿着秘鲁寒流北上,再随着太平洋的南赤道暖流西行,横渡了辽阔的太平洋。

海洋中的这种“河流”还可以为人们传递信息。航行在海洋上的船员,有时把装有各种文字记录的瓶子投进海洋,就好像陆地上的人们把信件投入绿色的邮筒一样。这种奇异的“瓶邮”,为人类认识洋流、传送情报做出过重大贡献,也发生过许多非常有趣的故事。

1956年的一天,美国的一个叫道格拉斯的年轻人,从佛罗里达州的海港驾着游艇驶向大海,打算在海上玩个痛快。他的妻子则在家里准备了一顿丰盛的晚餐,等待着他的归来。可是,他这一去便杳无踪影,尽管海岸防卫队出海反复搜寻,也没有发现任何线索。

两年后,美国佛罗里达州的有关部门突然收到一封来自澳大利亚的来信。打开一看,里面有一封信和一张没有填上数字的银行支票,支票上的签名正是失踪的道格拉斯。支票上的附言写道:“任何人发现这张字条,请将此支票连同我的遗嘱寄给美国佛罗里达州迈阿密海滩我的妻子雅丽达·道格拉斯。由于引擎出故障,我被吹向了远海。”信上说,支票和附言是在澳大利亚悉尼市北部的阿伏加海滩上一个封紧的果酱瓶子里发现的。

美国的佛罗里达海岸距离澳大利亚的悉尼,大约有4.8万公里。小小的果酱瓶,横渡辽阔的大西洋漂到非洲,再横渡印度洋进入太平洋,最后来到遥远的澳大利亚海滨。

不过,洋流邮递只是人们在万般无奈的情况下的一种碰运气的举动,实际上是常常靠不住的。1498年,哥伦布为了解脱航行中的困境,曾在一张羊皮纸上给西班牙国王写了一份报告,装在一个椰子壳里投入大海,希望海流迅速把它带到西班牙去。可是,海流却把它漂到了大西洋比斯开湾的一个荒滩上,直到1856年才被人们发现,整整延误了358年!

今天,海洋里还漂着许多载有各种信息的瓶子,不过大多是为了研究海流而由科学工作者投放的。

洋流的形成因素

经过研究,人们发现,洋流既可以是一支浅而狭窄的水流,仅仅沿着海洋表面流动,也可以是一股深而广阔的洪流,数百万吨海水一齐向前奔流。

影响洋流形成的因素很多,通常认为,主要是风“玩”的把戏,其次是海水密度不同的作用,而地球的自转、大陆轮廓和岛屿的分布、海底的起伏、季节的变化和江河入海的水量等等,也对洋流的形成与分布产生不小的影响。

你想想,如果风总是朝着一个方向吹,那么会怎样呢?盛行风在海洋表面吹过时,风对海面的摩擦力,以及风对波浪迎风面施加的风压,迫使海水顺着风的方向在浩瀚的海洋里作长距离的远征,这样形成的洋流称为风海流。风海流也叫漂流,是洋流系统中规模最大、流程最远的洋流。同时,受地球自转偏向力的影响,表面海水的流动方向则与风向发生偏离,北半球表面洋流的流向偏往风向的右方,而南半球则偏向左方,即北半球向右偏,南半球向左偏。

表面海水的流动,由摩擦力带动了下层海水也发生流动;由于自上而下的层层牵引,深层海水也可以流动。只是流速受摩擦力的影响越来越小。到达某一深度时,流速只有表面流速的4.3%左右。这个深度就是风海流向深层水域影响的下限,称为风海流的摩擦深度,大洋中一般在200~300米深处。例如,表面洋流的流速若是50厘米/秒,这个深度上的流速仅为2厘米/秒。

海洋表面风力越强,风速越大,表面风海流的流速就越大,它所能影响的深度也越大。

由于海水密度在水平方向上分布不均匀而产生的海水流动,称为密度流。

世界上一些著名的洋流,如湾流、黑潮、赤道流等,都是与海洋水密度分布有关的洋流。而大西洋与地中海之间,地中海与黑海之间,分别通过直布罗陀海峡和土耳其海峡的水体交换,更是因盐度差异而形成密度流的典型例子。

海水具有连续性和不可压缩性,一个海区的海水流出,相邻海区的海水就要来补充,这样形成的洋流称为补偿流。补偿流既有水平方向的,也有垂直方向的。例如,在离岸风的长期吹送下,表层海水离开海岸,相邻海区的海水就会流到这个海区,形成水平方向上的补偿流;同时,下层海水也上升到海面,来补偿离岸流去的海水,形成垂直方向上的上升流。上升流在大陆的西海岸比较明显,秘鲁和智利海岸、加利福尼亚海岸、非洲的西南和西北海岸都有分布。洋流在表层流动遇到海岸或岛屿时,不仅在水平方向上发生分流,而且在垂直方向上产生下降流和底层流。补偿流常常配合风海流和密度流,形成大洋表层巨大的环流。

根据洋流的温度,可以分为性质不同的暖流和寒流。洋流的水温比流经海区水温高的称为暖流,水温比流经海区水温低的称为寒流。暖流大多发源于低纬海区,从较低纬度流向较高纬度,一般水温较高,盐度较大,含氧量较低,浮游生物的数量较少,海水透明度较大,水色大多发蓝。寒流大多发源于高纬海区,从较高纬度流向较低纬度,一般水温较低,盐度较小,含氧量较高,浮游生物数量较多,海水透明度较小,水色多呈暗绿色。通常在北半球由南向北流的是暖流,从北向南流的是寒流,南半球则正好相反。

此外,根据海洋的垂直分布状况,还可以分为表层洋流和深层洋流;根据洋流流向流速的变化大小,还可以分为稳定流和非稳定流。一般我们常说的洋流,大多是指稳定流。

庞大的“暖水管”

大西洋的赤道南北,也有两个与太平洋位置大体相似的大洋环流。

北大西洋的北赤道洋流,大致从佛得角群岛开始,沿北纬15~20°之间自东向西流动,至安的列斯群岛附近,称安的列斯暖流。南大西洋的南赤道洋流,从非洲沿岸流向美洲沿岸,到南纬7°附近巴西东部向东突出的罗克角,分为南、北两支。

在大西洋南北两个环流中,以墨西哥湾暖流最著名。墨西哥湾暖流,又简称湾流,是世界大洋中宽度最大、流程最长、水温最高、影响最深远的暖流。习惯上,人们把佛罗里达暖流、墨西哥湾暖流和北大西洋暖流,合称为一个湾流系统。

这个规模巨大的湾流,总流量为7500~10000万立方米/秒,比黑潮暖流大近一倍,几乎相当于世界陆地上所有河流总流量的40倍。

湾流汇聚了大西洋南北两股赤道洋流,又在加勒比海和墨西哥湾内流动了较长的时间,成为热量丰富的强大暖流。据测量和计算,每小时约有900亿吨温暖的海水从墨西哥湾流入大西洋;湾流每供给英吉利海峡1米长海岸线的热量,约相当于燃烧6万吨煤的热量;每年带给挪威沿海的热量,约相当于这里太阳辐射量的1/3左右,用这些热量可以发出强大的电能。湾流的热量非常庞大,人们形象地称它为永不停息地输送热量的“暖水管”!

这个庞大的“暖水管”使流经地区的水温和气温显著上升。这样,西欧和北欧的西部,便形成了典型的温带海洋性气候。所以,西北欧的斯堪的纳维亚半岛上生长着郁郁葱葱的针叶林和混交林,而北美东北部的格陵兰岛则绝大部分是白雪皑皑的冰封世界。湾流对西北欧气候的影响,以冬季最为明显。挪威西部沿海1月平均气温为0℃左右,北极圈内的巴伦支海西南部终年不封冻,位于北纬69°附近的前苏联科拉半岛的摩尔曼斯克,成为举世罕见的高纬地区的不冻港。你如果到那一地区去,会发现许多奇特的自然现象:那里有南面吹来的凛冽寒风,有北方刮来的习习暖风;那里有夏季纷纷飘扬的六月雪,有冬天阴云缠绵的元月雨;那里有大雁春天向南飞行,海鸥则秋天向北展翅。

受湾流的影响,北大西洋东西两侧海域,气候迥然不同。英国设得兰群岛以东海域,1月平均气温约为3.4℃;而同纬度的加拿大拉布拉多半岛东北海域,却为-19℃。两者竟相差22.4℃!

“转向”环流和北冰洋洋流

印度洋的大洋环流,受地理环境的影响,南、北具有不同的组成和特点。

印度洋南部的大洋环流比较稳定。低纬海区在盛行东南信风的吹送下,南赤道洋流自东向西横过印度洋,势力强大,流向稳定。而印度洋北部因受大陆限制和季风环流的影响,冬夏洋流要“转向”,形成随着季节转换而变换流向的洋流系统。从10月到第二年4月,这里受东北季风的影响,北部海水自东向西流动,形成反时针方向的冬季环流,尤以12月和1月表现得最为明显。从5月到9月,这里受西南季风的影响,北部海水自西向东流动,形成顺时针方向的夏季环流,尤以7月和8月最为典型。

北冰洋地处高纬,面积最小,气候严寒,冰覆盖广,即使是夏季,冰雪覆盖的面积也在2/3左右。那么,北冰洋里有没有洋流呢?回答是:有。

北大西洋暖流有一支流向东北。同时,北冰洋海水经过格陵兰岛附近海域,分别形成拉布拉多、东格陵兰等寒流。这样,就组成了北冰洋这一海域反时针的大洋环流。

裂流

波浪到达海岸时也可以产生裂流,有时也被误称为裂潮。不慎卷入裂流的游泳者可能会被大海吞没。但是当人们了解裂流的特征后,就可以找到求生的办法。当波浪向岸边传播时,一系列的波峰线或波谷线平行海岸。冲浪者都知道,波浪的高度沿着这条线发生变化。波浪冲击海岸时,浪峰击岸处发生水的堆积,这些水由高处流向低处,然后流向大海,形成裂流。外海的海底地形通常控制着裂流的产生。同样,向海的水流经过海滩或者冲浪带的障碍物时也可以形成裂流。裂流虽然很危险,但其发生的范围很小。在与裂流抗争时,游泳者应沿着侧面或对角线游,而不应该逆流而上。

波浪也可以引起回转流,尤其在陡峭的海滩,从而形成沿岸流。回转流通常是波浪带到岸边的水回流向大海而引起的。波浪以一定的角度撞击海滩,就会形成微弱的沿岸流。沿岸流并不具危险性,但它们在沿岸泥沙的搬运中起着重要的作用。与岸平行的海流通常会给构筑沿岸防波堤造成麻烦。防波堤是一种垂直于海滨的人工构筑物,用来防止沿岸泥沙的流失。然而,泥沙在防波堤的一边堆积的同时会导致另一边受到侵蚀。正如一个人的河滩变得越来越宽敞时,他的邻居的河滩则会逐渐变小甚至消失。

每年,人们要花费上千万元来防止海岸侵蚀,但是海岸沉积物的流失是海洋自身运动的自然结果。比如在很多地方,冬天强烈频繁的波浪将大量的泥沙从海滩冲刷到离岸处形成沙洲,而到了夏天,相对较为平和的海浪又将泥沙搬运回海滩。有趣的是,某一海滩在冬天消

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载