大海绝密惊爆(txt+pdf+epub+mobi电子书下载)

作者:周广双

出版社:武汉大学出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

大海绝密惊爆

大海绝密惊爆试读:

前言

地球是上百万种生物的家园,也包括我们人类。地球是目前人类所知宇宙中唯一存在生命的天体。我们必须认识地球,爱护地球,具有保护地球家园的意识,以回报地球母亲的无限恩赐。

地理则是指地球表面环境中各种的自然现象和人文现象,以及它们之间相互的关系等。地理环境空间广大,地理事物多种多样,地理关系错综复杂。我们每天享受着地球所带给我们的一切,然而又有谁能够清楚地知道我们生活的地球究竟是什么样子呢?

是的,地球所隐藏的奥秘,那简直是无穷无尽。从地表到地核,从沙漠到海洋,从高山到河流,真是无奇不有,怪事迭起,奥妙无穷,神秘莫测,许许多多的难解之谜简直不可思议,使我们对自己的生存环境是捉摸不透。破解这些谜团,就有助于我们人类社会向更高层次不断迈进。

地球奥秘是无限的,科学探索也是无限的,我们只有不断拓展更加广阔的生存空间,发现更多的丰富宝藏,破解更多的奥秘现象,才能使之造福于我们人类的文明,我们人类社会才能不断获得发展。

为了普及科学知识,激励广大读者认识和探索地球的无穷奥妙,我们根据中外最新研究成果,特别编辑了这套《地理科学丛书》,主要包括地学、地球、地理、海洋、探险等方面的内容,具有很强系统性、科学性、可读性和新奇性。

本套作品知识全面、内容精炼、图文并茂,形象生动,通俗易懂,能够培养我们的科学兴趣和爱好,达到普及科学知识的目的,具有很强的可读性、启发性和知识性,是我们广大读者了解科技、增长知识、开阔视野、提高素质、激发探索和启迪智慧的良好科普读物,也是各级图书馆珍藏的最佳版本。

太平洋成因之谜

太平洋是当代地球上最大的构造单元,而在海底扩张和板块构造说中的古太平洋,则更是前所未有的巨大。与后来的大西洋、印度洋和北冰洋相比,它有着许多特有的、与众不同的演化史,如环太平洋的地震火山带,广泛发育的岛弧—海沟系,大洋两岸地质构造历史的显著差异……这就使许多人相信太平洋可能有着它自己与众不同的成因。如果像海底扩张论所讲的那样,大西洋、印度洋和北冰洋都是由于海底扩张的原因由古太平洋孕育而成,那么,作为母亲的古太平洋成因又该如何解释呢?

长期以来,科学家们提出过许多关于太平洋成因的假说,其中最引人注目的是19世纪中叶,乔治·达尔文(1879年)提出的“月球分出说”。

达尔文认为:地球的早期处在半熔融状态,其自转速度比现在快得多;同时在太阳引力作用下会发生潮汐。如果潮汐的振动周期与地球的固有振动周期相同,便会发生共振现象,使振幅越来越大,最终有可能引起局部破裂,使部分物体飞离地球,成为月球,而留下的凹坑遂发展成为太平洋。

由于月球的密度(3.341克/立方厘米)与地球浅部物质的密度(包括地幔顶部橄榄岩层在内的岩石图的平均密度为3.2~3.3克/立方厘米)近似,而且人们也确实观测到,地球的自转速度有愈早愈快的现象,这就使乔治·达尔文的“分出说”获得了许多人的支持。

然而,有些研究者却指出,要使地球上的物体飞出去,地球的自转速度应该非常快,亦即一昼夜的时间不得大于1小时25分。难道地球早期有过如此快的旋转速度吗?这显然很难令人相信。再者,如果月球确是从地球飞离出去的,那么月球的运行轨道应在地球的赤道面上,事实却不是如此。还有,月球岩石大多具有古老得多的年龄值(40~45.5亿年),而地球上已找到的最古老的岩石仅38亿年,这显然也与飞出说相矛盾。

20世纪50~60年代以来,由于天体地质研究的进展,人们发现,地球的近邻——月球、火星、金星、水星等——均广泛发现有陨石撞击坑,有的规模相当巨大。这不能不使人们想到,地球也有可能遭受到同样的撞击作用。1955年,法国人狄摩契尔最先提出,太平洋可能是由前阿尔卑斯的流星撞击而成的。他还认为这颗流星可能原是地球的卫星,直径几乎为月球的两倍。此后,还有一些人提出了类似的观点。可惜多属臆测,没能提出足够的证据。

近年,我国学者在研究了月球等类地天体的地质特征后,对比月球上凹陷的五海,进一步论证了太平洋系撞击形成的可能性。

月海,是月球早期小天体猛烈轰击形成的近似于圆形的洼地,其底部有稍后喷溢的暗色熔岩物质(月海玄武岩)所充填。这一点已被现代科学的考察所证实。月球上最大的月海——风暴洋面积达500万平方千米。中国学者认为太平洋与月海具有如下的共同特征:

月海在月球上的分布是不均匀的,集中在月球正面的北半球,太平洋也偏隅于地球一方,这反映了早期撞击作用的随机性。

月海具有圆形的外廓,并比月陆平均低2~3千米;太平洋也大致呈圆形,比大陆平均低3~4千米。

地球的大陆由年代较老、密度较小的硅铝质岩石构成,而海洋则由年代较近、密度较大的玄武质岩石组成;月球也是这样,月海也由年龄较小的玄武岩组成。

地球上的大陆地壳厚度较大,介于30~50千米之间,洋壳较薄,一般为5~15千米;月球也有类似情况,月陆壳一般厚40~60千米,月海壳则一般小于20千米。

重力测量证明,月海具有明显的正异常。太平洋的情况比较复杂,但比周围大陆也具有较高的重力值。

月海周围有山链环绕,而太平洋周围也有山链。

在太平洋底发现有边缘和中央海岭,而在一些较大的月海中也同样可见有堤形的隆起,分布于月海中央和边缘。

太平洋东部具有以岛弧、边缘海组成的,从洋壳过渡为陆壳的过渡区,在一些月海边缘也可见有所谓“类月海”的过渡区。

这种比较说明,太平洋是在地球早期形成时的巨大撞击盆地。一部分学者认为:

地球上的海洋形成于早期的地球大致上达到了现在的质量时。这时,地球具有强大的引力吸引周围的固体物质,致使周围的一些固态物质以极高的速度(11.2米/秒)撞向地球。如此剧烈的碰撞必然会产生极高的温度。这种温度估计可达10万摄氏度,因而足以使碰撞物体本身和地球表面碰撞区的物质完全汽化。碰撞以后,地球表面由此而形成的热点很快会冷却下来,留下一个坑陷区。过一段时间,接踵而来的碰撞又会造成另一些热点和坑陷。这其中最大的一个,就成了后来的古太平洋洋盆。

然而,这仍然只是一个推论。因为在漫长的地史时期中,太平洋盆地已经历了多次的剧变,原来的古洋盆面目不复存在,在这种情况下,要真正弄清古太平洋的来源,还有大量的验证工作要做。

太平洋真的会关闭吗

太平洋是世界上最大的海洋,占全球总面积的32%,全球海洋总面积的46%,它比世界全部陆地的面积还要大。包括边缘海和海湾在内,太平洋的面积约1.797亿平方千米,容积为7237亿立方千米,平均深度为4028米。按顺时针方向,太平洋与南极洲、澳大利亚、印度尼西亚群岛、马来半岛、中国、西伯利亚、北美洲和南美洲接界。

太平洋西南界的划分问题尚有争议。大多数学者认为,太平洋的西南界线,应从马六甲海峡开始,沿着新加坡的子午线向东,经过苏门答腊、爪哇、罗地岛、帝汶岛,与澳大利亚会合。这样就把帝汶海、阿拉弗拉海和卡奔塔里湾也算入太平洋内。有一些学者则不同意这种划法,他们认为,应该把这些水域的一部分或全部,划归印度洋。对沿澳大利亚东海岸到巴士海峡路边界线,也有两种划法。有些权威学者把界线划在巴上海峡的西面,另一种意见则主张把界线划在海峡的东面。

太平洋西部边界位于塔斯马尼亚岛的下方,东经14度线上。东部边界与西部边界相似,一般认为,在合思角和南极半岛之间的最短距离线上。但有些人主张把界线划在斯科舍岛周围,按照这种划法,斯科合海应包括在太平洋内,而不是大西洋内。

虽然有些人喜欢用横跨白令海峡西北端的东西线为界,但太平洋北部边界通常在白令海峡北极圈的纬度上。南面的边界是南极洲,除非把南大洋也划出是一个独立的大洋。如果是这种情况,边界线在南纬55度上,另一种人的意见是在南纬60度上。

太平洋是最古老的海洋,5亿年前,地球就是由以太平洋为中心的一片古海洋和以非洲、南美、澳大利亚、印度洋和南大西洋合成的一块古大陆组成的。今天欧亚大陆的大部分当时全是海洋。此后,太平洋逐渐收缩,伴随的是大西洋的不断扩张。自三叠纪(距今2.3~1.9亿年)以来,大西洋从无到有,不断扩大其领域;而太平洋却节节“败退”,地盘越来越小。目前,大地测量专家们测量到,北美洲板块和欧亚板块正以每年约1.9厘米的速度向北漂移。也就是说,大西洋仍在逐年变宽,而大西洋隔壁的太平洋仍在逐年变窄。由于澳大利亚向北移动,印度洋海盆也在扩大。不加夸张地说,由于这些大陆板块的蚕食,太平洋海盆正以每年9厘米的速度消失。正是由于周围压力的结果,太平洋海盆的边缘地带成为著名的“太平洋火环”,有比世界其他地区更多的火山和地震。海盆底还有大约1000座海山,比其他所有大洋海山的总和还多。这就不难理解,为什么早期的探险者们,如达尔文和费希尔等都会产生这样一个想法:月球是从太平洋海盆中分裂出去的,从而给地球表面留下一个巨大的田地——太平洋。

前些年,地质学家们普遍有一种看法,由于大西洋的面积不断增大,太平洋将来很可能会被迫关闭。当然,这种事态应该发生在1~2亿年之后。届时,美洲西岸会与亚洲东岸相对接,而后两个板块发生碰撞,在板块中间抬升起一条比喜马拉雅更加雄伟的山脉。不用说,那时的中国将会失去海洋,变成一个地地道道的内陆国家。

这事说起来似乎有些不可思议。不过,从地质历史发展过程看,也没有什么值得大惊小怪的。想当初,显赫一时的古地中海(特提斯海),不也是由于印度、阿拉伯、非洲与欧亚大陆的汇合而关闭大吉,并在板块的碰撞下升起了阿尔卑斯—喜马拉雅诸山脉吗?如果大西洋扩张的势头不减的话,大约1~2亿年后,太平洋恐怕真的要从地球上消失了。

美国芝加哥大学的一位地质学家利用电脑,对地球上各片大陆将来的漂移情况,进行了模拟推算。结果发现,太平洋目前的收缩只是暂时现象,将来会对大西洋进行全面“反攻”。电脑显示,在1.5亿年之后,大西洋将会被太平洋挤成“小西洋”,甚至有可能从地球上消失。

地质学家们还发现,在今天的大西洋诞生之前,地球上曾有过一个古大西洋。推算它存在的时间约在5亿年前的早古生代。当时这个古大西洋的宽度达数千千米。可是,到2.7亿年前的时候,这个古大西洋从地球上消失了。

太平洋是世界第一大洋,大西洋是世界第二大洋。它们似乎在为夺取或保住“世界第一”的桂冠而顽强较量,至于最终谁赢谁负,目前仍是众说纷纭,还没有一个可靠的观点。

红海真的能变成新大洋吗

红海是因局部海面内季节性繁殖很快的海藻,把表层海水染成棕红色而得名。这个地处亚非之间的狭长海域,是世界上最热、海水含盐度最高的海域,当然,也是充满神奇色彩的海域。说它神奇,是因为科学家们预言,红海将可能变成未来的大洋。

红海位于非洲的埃及、苏丹、埃塞俄比亚和亚洲的沙特阿拉伯之间。红海长约2253千米,宽度不超过354千米。它的北部,在西奈半岛之西,与苏伊士运河相接;在西奈半岛以东,与长274千米、宽40千米的苏伊士湾相连。它的南部,在曼德海峡的两侧,以胡森穆拉德与锡亚角的连线为界。出了曼德海峡,红海的水就与亚丁湾及印度洋的水相混合了。红海的面积为45万平方千米,容积为25万立方千米,平均水深为558米。

海洋地质学家普遍认为,红海是地球上一个相当新的水域。不少学者认为,红海可能是一个未发育成熟的大洋。现在的地质调查资料显示,大约在2000万年以前,阿拉伯半岛可能才从非洲分裂出来,印度洋的海水才有可能流入距地中海不到162.5千米的地方。在印度洋,大洋中脊穿过印度洋往北伸展,于查戈斯群岛附近转向西面,并以索科特拉断裂的形式拐入亚丁湾,而另一断谷则直达红海中部。这个断裂带以直角向东延伸,并延伸到约旦河谷向上直到死海。人们推断,这是以坦噶尼喀湖为终点的非洲断裂谷的延伸部分。这条断裂谷在进入红海中部时,最大深度可达到2300米。

加拿大著名地质学家根据上述迹象预言,在若干万年之后,一个新大洋有可能在红海地区出现,这可能是世界第五大洋,新大洋有可能把完整的非洲大陆分裂为东西两部分。

19世纪末英国地质学家格雷戈里也曾有过类似的预言,并且形象地描述了非洲大陆东部巨大裂谷的情景。这也就是著名的东非大断裂。东非大断裂位于东经30~40度之间,北部是一条狭长的海域——红海和一条河——尼罗河;沿尼罗河向南,其源头是基奥加湖、维多利亚湖、坦噶厄喀湖、尼亚萨湖和卢多尔夫湖等成串的大小湖泊。这些湖、河、海组成一条地球上巨大的裂谷、南北长约5000千米,东西宽约50千米。在沿断裂带上,有广泛的火山和岩浆活动,来自地壳深处的玄武岩和碱性——超基性岩岩浆,通过这条通道不断上涌,把断裂两侧的大陆块推向外侧,使裂谷不断扩大。

北部狭长的断裂带已经形成为红海。在红海的底部,有一条长3000米的凹地,凹地中有两个火山口,周围覆盖着凝固了的火山熔岩。这足以证明,红海的海底仍在扩大之中。大断裂的南部是一些伴有火山岩的湖泊。现代研究结果证明,大洋的形成是中央海岭裂谷活动的结果,而东非大裂谷的红海、亚丁湾为全球大洋中的巨型裂谷——中央海岭的一个分支,因而将来完全有可能扩展为新的海洋。

不过,许多人对此还持怀疑态度。大的裂谷在某种动力的作用下,有可能扩展成为海洋,但是,未必都如此。目前,世界上已发现许多大裂谷,例如,德国的莱茵裂谷,俄罗斯西伯利亚中部的贝加尔裂谷,美国中西部的里奥格兰德裂谷,横切日本的中央裂谷,纵贯菲律宾的菲律宾大裂谷,还有我国东部的郯庐大断裂等,其中有不少与东非裂谷的规模不相上下,有些与大洋的中央海岭也有联系,有的以湖泊形式出现,有的为断裂山谷,有的一部分为边缘海。如果认为这些大裂谷地区都会扩展为海洋,显然是不可能的,所以红海地区未必扩展为新的大洋。

再一个问题是,红海或者东非大裂谷不断扩宽的内应力是什么呢?对于这一点,学者们的看法完全不同。一些学者认为,炽热软流圈物质的上涌是大陆分裂的基本动力。从空中遥望,东非裂谷宛如被利斧劈开的地球上的巨大伤痕。人们有理由认为,这是大陆被张裂开的地方,不过这里的大陆还没有完全断开,洋盆尚未形成,所以,地质学家们把东非裂谷视为正在孕育中的洋盆胚胎期。如果大陆岩石图进一步拉薄,最终完全拉开,并且进一步扩展,来自软流圈的玄武质岩浆就会上浸到裂口处,冷凝成玄武岩质的大洋型地壳,形成今天的红海。这是人们用软流圈上涌理论得出的一种解释。

资料显示,红海新洋壳的形成约有几百万年的历史,亚丁湾的形成历史更早,其两侧非洲与阿拉伯的分离已有1000万年之久。东非裂谷周缘的东非高原,有非洲屋脊之称,它的巨大高度也能证明岩石圈在炽热的上涌软流圈作用下抬升的结果。由于温度升高,又使大陆岩石圈的强度降低,最后大陆会沿长长的断层发生张裂和陷落。这大概就是红海和亚丁湾这个年轻的海盆扩展发育的地质历史过程。这是软流圈上涌理论的极好例证。

但是,另一些学者提出了完全相反的看法。他们认为,大陆的分裂是岩石圈板块相互作用所产生的应力造成某一板块破裂所致。软流圈上涌是岩石圈相互作用的结果,不是起因。支持这一看法的例证也不少。例如,印度板块撞击亚洲大陆主体导致后者破裂,这就是贝加尔裂谷的起因;在沿阿尔卑斯山脉板块碰撞力的作用下,导致欧洲莱茵裂谷的形成。这两条裂谷均形成于新生代早期,确与相应的大陆碰撞同时发生。

一旦大陆开始张裂,被岩石圈禁锢的软流圈物质便会沿着裂谷地带“被动”地上涌。这就是说,是岩石圈破裂引起软流圈上涌。这与前面提到的软流圈上涌导致大陆岩石圈破裂的观点正好相反。这里就有一个令人迷惑不解的问题,究竟是哪一种作用在先?或者说,是两种作用相辅相成呢?

今天,我们在研究红海、亚丁湾有可能成为未来新洋盆的时候,应当对其大陆分裂的主要动力作出具体分析。即使我们赞成软流圈上涌是大陆分裂的重要动力,那么,人们也要提出,为什么软流圈会在红海、亚丁湾而不在地球别的地方上涌?在东非大裂谷这个地方,究竟是什么力量推动软流圈物质上涌?或者说,东非大裂谷的形成和某个岩石图板块相互作用真的无关吗?假如有关系,又是哪块岩石圈在起主要作用?所以,红海、亚丁湾,或者说东非大裂谷能否真正成为未来的大洋,还有待于科学家们作进一步的研究。

海水的咸味之谜

大家都知道,海水是咸的。其原因是海水中含有各种盐分。根据科学测定,平均每1000克海水中含35克盐。地球上,海洋中蕴含大量的盐类物质。有人估计,如果把海水中所有的盐分都提取出来,铺在陆地上,可得到厚153米的盐层;如果铺在我国的国土上,可使我国平均高出海面2400米左右。

海洋刚形成时,海水和江河湖水一样,是淡的。后来,雨水不断地冲刷岩石和土壤,并把岩石和土壤中的盐类物质冲入江河,而江河的水流到大海,使海洋中的盐分不断增加。与此同时,海中水分不断蒸发(盐几乎不会蒸发),这就使盐的浓度越来越大。当然,这个过程是很漫长的。

那么,海洋是不是会越变越咸?含盐量高达25%的死海似乎肯定了这种推测。

其实不然。因为海洋也有“释放”盐分、把盐分“归还”陆地的“绝招”。具体来说,主要有以下几种方法。

当海洋中的可溶性物质(含盐类物质)浓度达到一定程度时,可溶性物质会互相结合成不溶性化合物,沉入海洋的底部。

海洋中的生物体内吸收了一定的盐类物质,当海洋生物死去后,它的尸体沉到海底。

台风暴发时,狂风巨浪会把海水卷到陆地上,海水中的盐类物质也被带到陆地。

此外,从漫长的陆地变迁历史看,有些海洋的海湾地带,由于地壳的升高而与海洋隔断。这些地带就像与大海母亲失散的“游子”,而在太阳光的“肆虐”下,变成陆地,留下大量盐分。

海水不能变咸,是不是会越变越淡呢?

这也不大可能。总的来说,海水的咸度会保持相对的平衡状态。当然,这不排除在某一个海域某一段时间,海水会变咸或变淡。

海水会不会越来越咸

海水为什么是咸的?它会不会随着时间的推移变得越来越咸?多少年来,人们一直没有一个共同的观点。

海水之所以咸,是因为海水中有3.5%左右的盐,其中大部分是氯化钠,还有少量的氯化镁、硫酸钾、碳酸钙等。正是这些盐类使海水变得又苦又涩,难以入口。那么这些盐类究竟从哪里来呢?有的科学家认为,地球在漫长的地质时期,刚开始形成的地表水(包括海水)都是淡水。后来由于水流侵蚀了地表岩石,使岩石的盐分不断地溶于水中。这些水流再汇成大河流入海中,随着水分的不断蒸发,盐分逐渐沉积,时间长了,盐类就越积越多,于是海水就变成咸的了。如果按照这种推理,那么随着时间的流逝,海水将会越来越咸。

有的科学家则另有看法。他们认为海水一开始就是咸的,是先天就形成的。根据他们测试研究发现,海水并没有越来越咸,海水中的盐分并没有增加,只是在地球各个地质的历史时期,海水中含盐分的比例不同。

还有一些科学家认为,海水所以是咸的,不仅有先天的原因,也有后来的因素。海水中的盐分不仅有大陆上的盐类不断流入到海洋中去,而且在大洋底部随着海底火山喷发,海底岩浆溢出,也会使海水盐分不断增加,这种说法得到了大多数学者的赞同。

还有一些科学家以死海为例指出,尽管海洋中的盐类会越来越多,但随着海水中可溶性盐类的不断增加,它们之间会发生化学反应而生成不可溶的化合物沉入海底,久而久之,被海底吸收,海洋中的盐度就有可能保持平衡。

总之,海水为什么是咸的,它会不会越来越咸?这还需要科学家们的不断探索和研究。

威力巨大的海洋台风

人们有时会在热带洋面上发现一种状如蘑菇的强烈气旋,其直径通常在几百千米以上,云层高度在9千米以上,这就是台风。它带来的涌浪、暴雨和风暴潮,对海上航船和海岸设施破坏极大。

台风可分为台风眼区、台风涡旋区和台风外围区。台风眼区是台风的中心部分,这是一个相对稳静、具有少云或无云天气的空心管状区,直径在10~60千米,气压极低,且稳定少变,四周被高高的云墙所环绕。这里的海面状况十分恶劣,对船舶危害极大的金字塔浪,往往出现在这里。台风涡旋区是绕台风眼周围的最大风速环形区,这里高大宽厚的云墙宽达几十千米,它的半径约100千米,在该区40米/秒~60米/秒的大风是常见的事,曾出现过100米/秒以上的强风。台风外围区是台风的边缘大风区,这个区域内的天气乱云翻滚,雨量时大时小,时降时停,风力向台风中心逐渐增大,气压降低。

1935年9月26日,日本海军第4舰队在三陆冲海面行进时突遇台风,但他们迎着狂风恶浪仍按原计划前进、当时台风中心最大风速达40米/秒,最大浪高在14米以上。舰队横穿台风,进入台风眼。结果38艘军舰遭到狂风巨浪的袭击,“初雪”号和“夕雾”号驱舰被拦腰切断,“望月”号舰桥断裂,进入危险半圆的水雷舰全部覆没,14艘5000吨以上的大型舰艇也都遭到不同程度的破坏,人员大量伤亡,损失极为惨重。

日本的中部和关东地区在1958年9月26日遭到了台风袭击。台风带来的暴雨使伊豆狩野河大堤决口,伊豆北部平原成为一片汪洋,5000人随即命丧黄泉。名古屋市和四日市等地的海岸线上洪水滔滔,5000人再次被洪水卷走。这股来自伊豆湾的台风,使人们不仅知道了台风的可怕,也尝到了海啸的滋味。

1954年的9月26日也曾刮过一场台风,那次台风从日本本土横贯而过后,又折回来袭击北海道,巨大的风浪把8000吨级的青函联运船“洞爷丸”号掀了个底朝天,1300多人葬身海底。“洞爷丸”并不是一艘普通船,而是令全体船员自豪的优质船,并且船的操纵设施也十分先进。当时,在函馆海面不仅有“洞爷丸”,还有许多青函货物联运船,这些船也在顷刻之间颠覆沉没。

1970年11月发生在孟加拉国的台风是近代最严重的台风灾害。这个在孟加拉湾强烈发展的台风,中心气压低至940百帕,最大风速达120节(62米/秒)。它于11月12日夜间到13日凌晨,在吉大港附近的哈提亚登陆,猛烈袭击了孟加拉沿海。狂风、暴雨、大海潮,吞没了无数岛屿、渔村和农庄。由于那两天正好是阴历十月十四和十五,赶上了天文大潮,加上风暴潮水,潮位最高超过6米,滔天巨浪把许多还在酣睡的人席卷吞噬。在短短的时间里,就有30多万人丧生,几千万人流离失所。整个人口稠密的恒河三角洲瞬间变成一个惨不忍睹的人间地狱。其遭受经济损失之巨大,是难以估量的。

恐怖狰狞的海冰

海水和大气相互作用形成海冰,其形成大致经历5个阶段。一是海面气温下降,表面海水温度降至冰点以下时,海水里又有利于形成冰的雪粒等凝结核,海水表面层就开始结成纵横交错的冰针或小冰片。二是海面温度继续降低,大量的冰针或冰片聚集起来,形成覆盖海面的薄冰,薄冰破裂成一个个大小相当均匀的圆盘状冰饼。三是海面温度进一步下降,圆盘状冰饼互相冻接起来,形成有一定厚度的、面积相当大的冰盖层。四是海面温度再下降,冰层膨胀龟裂,大片冰层就形成破碎的冰块。五是海水的运动,促使冰块叠加,各个冰块之间又冻接起来,形成面积更广阔的大冰原。冰原再互相撞碰,重叠,就形成山峦般起伏不平的大冰群。这时,冰厚可达15~20米。

在极地附近,冰川的一部分滑行至海洋中,断裂成一个个巨大的冰山。冰山形状奇特,千姿百态,有的宛如平台,有的陡峻尖削,有的波浪般起伏……冰山大小不一,小的面积不足1平方千米,大的面积却有几百甚至5000平方千米,海冰高出海面100多米,犹如海岛一般,但露出水面的通常只是冰山高度的1/5或1/4。在北极海域,曾有一座台状冰山,长55千米,宽30千米,露出水面的部分高达30米。在南极海域,曾有过一座巨大的冰山,长350千米,宽40千米。南极海域的冰山约有22万座,约为北极冰山数的4倍。冰山寿命很长,一般是4~11年,有些长达13年之久。在移居海洋的数年中,冰山漂移流浪,远离它的故乡。格陵兰岛附近的冰山,经加拿大东部海域向南移动。可越过北纬48度。南极冰山向北移动,可到达大西洋南纬35度、印度洋南纬45度、太平洋南纬50度。冰山漂移到温暖的水域,水线腰部日益细瘦,及至有一天支撑不住上截而翻倒下来。翻倒激起的巨浪会给过往附近海域的舰船造成巨大的威胁。

海水的破坏力是非常巨大的。首先是冰的膨胀力。淡水随温度降低而密度增大,4℃以下,随着温度下降,水的体积却要加大,这就是水的反常膨胀。小瓶中的水结冰,往往把小瓶胀裂就是这个缘故。海水也有这个反常特性,只是海水呈现最大密度的温度不是4℃,而是随海水盐度的高低而变化,一般要在-2℃以下。以这个温度为分界,气温再下降就会引起海冰的体积膨胀。此外,海冰膨胀还有一个因素,那就是海冰中的“盐泡”。在海冰形成过程中,海水中的盐大都析出来,进入未结冰的海水中,但也有少部分盐被冰包围起来,形成一个个“盐泡”。随着气温的降低,海冰中大量的“盐泡”也冻结成冰,致使冰的体积更加胀大。冰的膨胀力十分惊人,能把船体挤压得变形,使船舱破裂进水,甚至破坏港口、码头和海中的军事设施。

其次是海冰在风和海流作用下产生的推力。这是海冰破坏力的主要形式。有些海中建筑物在冻冰时倒于海中,就是海冰的巨大推力造成的。

还有就是移动的冰撞击物体时产生的冲击力。冰的质量越大,漂移的速度越快,撞击物体时产生的冲击力也越大。例如,一个厚30厘米、面积为1000平方米的冰块,若漂移速度为0.5米/秒,则撞击物体时可产生100吨的冲击力。当行驶的舰船和漂移的冰块或冰山相撞时,两者共同的撞击力就会更大,造成更严重的损失。

现代的舰船一般都装有导航和水下探测设备。但这也不能绝对保证其在冰块、冰山活动区航行的安全。

1912年4月10日,英国白星航运公司的海上“豪华宫殿”——大西洋邮轮“泰坦尼克”号,从英国南部城市南安普敦港起航,开始了横渡大西洋、直驶纽约的处女航。这是一艘排水量6.6万多吨的巨型轮船,船内设施在当时世界上是无与伦比的,英国人把它称为“永不沉没的海上皇后”,将它视为自己的骄傲。当然,第一批乘客也自感无上光荣。

4月14日午夜钟声响过不久,在纽芬兰岛东南380海里处,“泰坦尼克”号与漂浮的冰山相撞。这座冰山露出水面的部分约十七八米高,低于“泰坦尼克”号的甲板高度,但水面以下部分暗藏的冰山“底盘”却很大。坚硬的冰山,擦撞了船头水下右舷的底舱部分,虽然没有撞击破洞,但是使撞擦处的几块钢板中凹,板端铆钉崩脱而向外张开,形成了长达几百米的一道口子,占船全长的1/3,划穿了右舷前部的6个舱,前5舱都有水密舱,而第六舱偏偏没有水密舱,大量海水乘虚而入,汹涌地灌进舱内,灌满一舱又一舱。从深夜11点40分擦撞,到凌晨2点18分全船沉没,“泰坦尼克”号只在海面上支持了两个多小时。当时船上有2201人,只有711人生还。“泰坦尼克”号撞到巨大冰山沉入大西洋底之后,其原因一直是个谜。1985年,美国深水研究专家罗伯特·巴拉尔特,在距纽芬兰东南方680千米的水下3795米处,发现了该船的残骸,他借助遥控水下摄影仪拍摄了数张照片。

1993年夏天,一个由英、美两国专家组成的探险小组对“泰坦尼克”号残骸进行了5次探测。他们采用深水机器人和小型载人潜艇,多次靠近该船残骸,打捞上许多钱币、器皿、怀表乃至船体碎块。1993年9月中旬,在纽约举行的一次美国船舶制造和机器制造专家研讨会上,有关专家学者提出了事故分析结果报告。他们的结论是:如果当时设计这艘最大、最豪华游轮的人员在制造过程中不偷工减料的话,“泰坦尼克”号的沉没或许可以避免,即使出事也不至于造成如此惨重的伤亡。专家们在会上强调指出,英国贝尔法斯特市沃尔弗造船厂的设计人员,完全按照当时造船的技术标准来铆接船体,可是“泰坦尼克”号船壳却采用了质量较差的钢材,它在低温下容易发脆和开裂。优质钢材受到撞击时只是弯曲或变形,而“泰坦尼克”号的钢质船壳在大西洋冰海中撞上冰山时,竟像玻璃那样裂开。因此,美国造船工程师弗·卡尔茨盖在研讨会上的最新研究结果的总结中说,这场惨剧可以说是难以避免的。

时隔47年,1959年1月30日,丹麦“汉斯·贺托福特”号轮船,在格陵兰岛法韦尔角东面120海里处,再次上演了一出与冰山相撞的悲剧,造成90多人丧生。轮船在与冰山相撞不久即沉没。

魔海形成之谜

为了解开马尾藻海的形成之谜,1925年美国生物学家威廉·比勃博士率领探险船“阿克乔尔”开始了对马尾藻海的科学调查。尽管“阿克乔尔”号是一艘不足500吨的木制小船,但它却可以为在马尾藻海进行探险考察提供各种服务。首先,该船设计得很独特,它的船体装着带刃的金属物,足以切开密密麻麻的果囊马尾藻。其次,船的推进器也经过了一番特殊处理,能有效地防止海草的纠缠。再次,船底还安装了锋利的玻璃片。为了能看清海中的生物,船上还安装了强光灯。

正是依靠这些独特的装置,“阿克乔尔”号才能在马尾藻海安全航行了6个月之久,进行了多学科的海洋考察,发现了许多稀有海洋生物。

以前,人们普遍认为,马尾藻海中的海草,只不过是生长在西印度群岛一带的海草,被暴风雨所席卷、漂流后滞积在马尾藻海的。比勃博士的考察表明,马尾藻海的海草是当地土生土长的独特的海洋生物。例如,一种小鱼,它的体色、模样均和果羹马尾藻相似。正是依靠这种出色的保护方法,这种鱼才达到了生存的目的。

比勃博士后来又乘坐深海潜水球“巴切斯菲”号潜入海底考察。这两次的“魔鬼海”探险,使他的名字传遍全球。

在第二次世界大战中,英国奥兹明少校曾亲自驾船体验了“魔鬼海”的恐怖。

当他进入马尾藻海后,只见一片绿野发出令人作呕的奇臭,海藻的表面有极大的黏性,吸住人的手后,会拉出一道血痕。

到了晚上,这些海草像蛇一样爬上船的甲板,似乎要将船裹住不放。为了航行,奥兹明只好把这些海草扫掉。但是,扫掉前面的,后面又跟着不断伸来,结果,越来越多。一会儿海草就爬满了甲板。经过一番艰难困苦的搏斗,奥兹明筋疲力尽地逃出了魔藻海。

海鸣是怎么回事

神秘莫测的大海经常会发出各种各样的声音,这些声音统称为“海鸣”。但海鸣的声源在哪里呢?有些海鸣的声源是众所周知的,比如波浪翻腾和惊涛拍岸发出鸣响,大气降水、地震和火山活动引起鸣声,鱼类和其他海洋生物发出的声音等等。但有些海鸣的声源至今还是个谜。在我国广东省湛江硇洲岛的东南海面,每当风云突变,天气异常,风暴即将到来时,海面上就会发出一阵阵有节奏的呜呜呜声地响。这声音好似闷雷滚动,一高一低,错落有致。据当地老人说,在很久以前建造硇洲岛国际灯塔的时候,法国人把一个大水鼓沉放在水中,水鼓相当于海况探测报警器,专门作海上天气预报用的,它能随时向人们发出风浪异变的信息,这呜呜呜的声音就是它发出来的。可是,谁也没看见过那沉放在水中的石鼓,更不知道它被放置在什么地方,有关部门曾专门派出船只到硇洲岛东南一带的海域巡视搜索,结果什么也没发现。

1969年,有人曾在这片海域发现过一群海猪正在游动,于是,当地人就认为海鸣有可能是海猪的嚎叫声,但在没有海猪活动的地方也有海鸣的产生,很显然这种说法是错误的。

1976年,硇洲岛东南海上的海鸣声比以往减弱了,于是,持“水鼓说”的人认为,这是由于水鼓年代太久,从而导致其功能日益减退。持“海猪说”的人则认为,这是由于近年来人们在这一带海域的活动明显增加,影响了海猪的正常活动和生活,使海猪迁移的结果。

两种说法看上去似乎都有一定的道理,硇洲岛东南海上海鸣的声源究竟在哪里,至今仍是一个谜。

海雾之谜

海雾大致有两大类,它们均是在海洋直接影响下形成的。其一是受海面因素影响而形成的雾,如平流雾、蒸汽雾、混合雾、辐射雾等;其二是在天气系统影响下产生的雾,如雨雾等。

当暖空气从温暖的水面流向冰水面时,暖空气就会冷却降温,凝结出水汽,继而以液体水滴的形式悬浮在空中。这种大大小小的水滴越聚越多,便形成了雾,直接影响了空气的透明度。由于这种雾主要是靠暖空气在冷海面上的平流运动形成的,所以叫做平流雾。在海洋上的雾,绝大多数都是平流雾。这种雾随风飘移,分布范围广、持续时间长、浓度大,常常给行船造成灾难。

当冷空气到达暖水面时,由于海水温度高于气温,海面上的水汽压力大于空气水汽压力,造成水面强烈蒸发,水汽进入冷空气中。当冷空气中的水汽达到饱和状态时,水汽就凝结出小水滴,越来越多的小水滴聚集漂浮在低空,便形成了蒸汽雾,使能见度降低。

海洋上空的降雨,降至低空时,因低层温度增高而使雨滴蒸发,提高了低层空气的温度。同时,又有冷空气流入,与低层暖湿空气混合,使暖湿空气饱和,从而形成了混合雾。混合雾与蒸汽雾不同,它的水汽主要来源于降雨。如果没有降雨,两种温差较大而又比较潮湿的空气相互混合,有时也能形成混合雾。

当海洋水面被一层悬浮的物质或冰层覆盖时,这层覆盖面在夜间辐射冷却很快,使贴近海面较暖的空气凝结出水滴,就会产生辐射雾。

雨雾是随同降雨而来的雾。这种雾与混合雾一样,水汽都来源于雨滴。但雨雾形成过程中不需要借助于外来冷空气的混合,仅靠雨滴的蒸发即可形成。

海水温度之谜

盛夏的骄阳是那样炎热,它毫不吝惜地用自己的热量把大地上的一切都烤得烫烫的。就连拂面而过的夏风,也仿佛炉前的热气,不会使你产生舒服的感觉。

这时,那碧蓝碧蓝的大海更加显露出迷人的魅力,你会身不由己地要投入到它的怀抱。甚至你还会想,要是一个夏天都能生活在舒适的海水里那该多好啊。

不过还要提醒你一下,可不能在大海里泡得时间太长,不能游得太远,否则你会牙齿打颤,嘴唇发乌,浑身冻得发抖,弄得不好抽起筋来就更麻烦了。

亲爱的朋友,当你在大海里泡得浑身发抖,不得不上岸趴在烫人的沙滩上、让火热的太阳再给你一些温暖时,你有没有想过同样处在炎炎的烈日之下,为什么沙滩就炙热烫人,而大海却令人感觉寒冷呢?

人们研究过太阳辐射的情况,他们发现,到达地球表面的太阳辐射能大部分都被地球吸收了,只有一小部分反射回到空中。说来也很有趣,原来海面和陆地比较起来,海面就像饿极了的孩子似的,贪婪地吸收着太阳送来的热量,不愿把好不容易得到的太阳能量放弃掉。

陆地就和海面不一样。它的胃口小,不能一下子吸收很多太阳辐射来的能量,剩下的就反射回空中去了。陆地的反射率要比海面的大一倍,可见陆地的吸热能力要比海洋差些。而且,陆地存不住热量,那晒得烫烫的沙滩就是一个例子。

既然海水吸热多,为什么海水没有沙滩热?

科学家经过研究,发现陆地是一种不能很好传热的固体,既不透明又不流动。太阳即使再厉害些,也晒不透它。因为不能很好地传热,晒了一整天,它所吸收的热量还只是集中在不到一毫米厚的表层内。

而海上的情况就不同了。

海水是半透明的,太阳光可以透射到水下一定的深度,也就是说,太阳的辐射能可以达到海水的一定深度之内。经过长期的观测计算,人们发现到达水面的太阳辐射能,大约有60%可以透射到1米的深度,有18%可以达到海面以下10米的深度,人们甚至在海面100米深度的地方仍然发现有少量的太阳辐射能量。而这些,在陆地上是不可能的。

海水吸热,不仅胃口大,它还要把已经吸收的热量送到透射不到阳光的深层海水中贮存起来呢。这也是海洋与陆地所不同的一个最重要的性质。

海洋依靠海水的流动来输送热量。比如说,海流就可以把赤道附近的热海水送到两极方向去,而两极方向的冷海水也通过海流向温暖的地方流动;风浪则可以形成海水温度的上下交换。你可不要小看这种风浪的作用,科学家说,它所造成的海水温度的上下交换,要比热传导作用大上千倍万倍呢。在夏季和白天,海面上接受的热量较多,它就可以把热量送到深层贮存起来;而在冬季和夜晚,海表面接受的热量少,它又会把贮存在深层的热量输送到表层。

当然,除了风浪,海水还有一种对流作用。这种对流作用是由于冷热海水的重量不同而形成的。就像冷空气重热空气轻一样,海水也是冷的重热的轻,于是冷而重的海水就会自动下沉,暖而轻的海水会自动上升。有了这种对流作用,冬天的大海也不会很冷了,随着表层较冷的海水不断下沉,下层较暖的海水会自动升上来补充的。

同在一个太阳下,陆地与海洋的物质不同,温度就不同。陆地是表皮烫,海洋则是整个温,海洋把热情大方的太阳送来的热量都贮存下来了,只是体积太大,温度不可能升得太高,所以夏季的大海会使你舒服得最后要打寒战。

难怪有人说海洋是个贮存热量的仓库,这话还是有它一定道理的。

海水涨落之谜

在海滨的沙滩上,经常能看到一些人弯着腰,甚至蹲在那里,捡拾各种漂亮的贝壳,有时还能捡到海藻或海蜇、海星、海胆……可是过了一段时间,海浪吐着白色的泡沫,翻腾着向岸边扑来,海水把沙滩淹没了,人们被迫后退。过了一些时间,海浪失去了势头,又悄悄地退去,那条宽展平坦的沙滩又露出了水面,沙滩上面留下一簇簇刚刚被海浪推上来的大大小小的贝壳。海水都按照差不多相同的时刻涌上来,退下去。

人们把这种海水定时涨落叫作涨潮和落潮。白天的海水涨落叫潮,夜晚的海水涨落叫汐,总起来,人们就把海水水位有规律的涨落叫作潮汐现象。

海水为什么能遵守时间地涨落呢?

原来,这是月亮和太阳对海水的吸引造成的。万有引力定律是这现象的根本原因。宇宙中一切物体之间都是相互吸引的,引力的大小同这两个物体质量的乘积成正比,同他们之间距离的平方成反比。

月亮和太阳对地球的引力,在陆地和海洋两部分的任何一点上都是一样的。但是,由于陆地地面是固体的,引力带来的表面变化不容易看出来,而海水是流动的液体,在引力的作用下,它会向吸引它的方向涌流,所以形成明显的涨落变化。

太阳虽然比月亮大得多,可是它和地球之间的距离毕竟太远了,所以月亮对海水的吸引力要比太阳大得多。海水涨落的主要动力是月亮的引力。

地球上,面对月亮的这一面接受月亮的引力,引力的方向是指向月亮中心的。而背着一面,则产生了相应的变化,使得面对月亮或背着月亮的地球两侧的海洋水位升高,出现涨潮。与此同时,位于两个高潮之间部位的海水,由于向涨潮的地方涌去,会出现落潮。

地球在不停地自转,对某一个地方来说,每天都要面向月亮一次和背向月亮一次,所以一般来说,要出现两次涨潮和两次落潮。

太阳对海水的引力虽然小,可是也有一定的影响。主要由于月亮的引力而引起的潮汐现象,因为太阳引力的参与,太阳引力和月亮引力共同发挥作用,就使得海水的涨落过程变得复杂了。

农历每月初一或十五的时候,地球和月亮、太阳几乎在同一条直线上,日、月引力之和使海水涨落的幅度较大,叫大潮;而当农历初八和二十三的时候,地球、月亮、太阳三者之间的相对位置差不多成了直角形,月亮的引力要被太阳的引力抵消一部分,所以海水涨落的幅度比较小,叫小潮。

涨潮落潮的次数,潮的大小,还要受海岸地形、气候等各种因素的影响。所以有的地方一天有两次涨潮,两次落潮;有的地方只有一次涨潮,一次落潮;前者叫半日潮;后者叫全日潮。还有的地方潮水涨落情况要更复杂一些。如果两个相邻的高潮之间和相邻的低潮之间,时间不均等,这叫做混合潮。

浙江省杭州湾的钱塘江潮就是由于受海岸地形的影响而形成的一种特殊类型的涌潮。钱塘江口宽100千米,而江道河面仅宽四五千米,呈喇叭口状。涨潮时,海水沿河而上。受两岸渐狭的江岸束缚,形成涌潮。河口底部因泥沙沉积而隆起形成的“沙堤”,更激起潮水上涌,形成雄踞江面的一道水墙,怒浪排空,如万马奔腾,场面十分壮观。

人们认识了海水按一定时间涨落的规律,就可以利用潮汐的能量,修建电站,提供无污染的能源。世界上规模最大的潮汐电站修建在法国朗斯河上。这个潮汐电站于1961年开始建设,1967年竣工,发电能力24万千瓦。我国在山东省乳山县也成功地修建了实验性的潮汐电站。

无风三尺浪之谜

“无风三尺浪”是人们对海洋的描绘。这不是同“无风不起浪”有矛盾了吗?不,在广阔的海洋上,即使在无风的日子里,大海也还在那里波动着。

这是什么道理呢?原来,风虽然停了,大海的波浪还不会马上消失。何况,别处海域的风浪也会传播开来,波及到无风的海面,“风停浪不停,无风浪也行”。这种波浪叫涌浪,又叫长浪。

比起风浪来,涌浪一起一落的时间长,波峰间的距离大,波形又圆又长,较有规则,波速很大,能日行千里,远渡重洋。西印度群岛小安得列斯群岛的居民常常会发现高达6米多的激浪拍打岸边,时间长达连续两天或更长的时间。奇怪的是,这时加勒比海并没有什么风暴,这真是个无法解开的谜。后来,科学家经过长期观察和研究,发现这是来自大西洋中纬地区传来的风暴涌浪。

飓风和台风会掀起涌浪。狂风会造成海水涌积,同时风暴的低气压区海域海面受了压力影响,海水也会暂时上升。当台风风速同潮水波浪的推进速度接近时,会产生共振作用,推波助澜,把涌浪越堆越高。当大涌浪传到近海岸时,由于岸边水浅,波浪底部受海底的摩擦,波峰比波谷传播得快些,波峰向前弯曲、倒卷,水位猛烈上升,甚至冲上海岸席卷岸边的建筑物和船只,造成灾难。

海上风暴所引起的巨浪,传到风力平静或风向多变的海域时,因受空气的阻力影响,波高减低,波长变长,这种波浪的传播速度比风暴中心的移动速度快得多。如果说风浪可以追赶军舰的话,那么,涌浪就可以同快艇赛跑了。因此,涌浪总是跑在风暴前头,人们看到涌浪,就知道风暴快来啦。“无风来长浪,不久狂风降”,“静海浪头起,渔船速回避”,这是我国沿海渔民的谚语,也是观天测海经验的概括。

海底火山爆发和地震引起的涌浪,传播的速度更快了。1960年5月23日,日本群岛东岸一片平静安谧的景象,当时已得到智利地震的有关资料,不少人淡然置之。谁知20个小时后,排山倒海般的涌浪,远涉重洋到达夏威夷群岛、菲律宾群岛和新西兰。日本群岛海岸在涌浪袭击下,有1000多户房屋被卷走,2亿公顷土地被淹没,甚至渔船被掀到了岸上。远离智利16000千米的勘察加半岛以东海面,也掀起了汹涌的浪涛。

原来,这是智利地震引起的海啸涌浪。它以时速800千米横渡太平洋,来到这些地方。1960年5到6月间,智利沿海海底发生了200多次大大小小的地震,5月22日下午6时许(格林威治标准时间),爆发了新的强烈地震,波及15万平方千米的地区,一些岛屿和城市消失了,全国2万多的人口受到影响,地震又引起海啸,智利沿岸500多千米范围内,涌浪高10米,最高达25米,使南部320千米长的海岸沉浸于海洋之中。

为了同风浪和涌浪作斗争,人们设计了水翼船、气垫船、双体船、竖立船等,以减少海浪对船体的影响。人们还利用浮标、飞机、卫星等来观测海浪,作出预报,供船只在海上选择适当的航线和航速。

海流之谜

1856年,一艘在大西洋上航行的双桅帆船遇到了一场特大风暴,帆船被巨浪打坏,在汹涌的海面上挣扎了一番以后,被漂到比斯开湾的平静岸边,抛锚停泊。水手们利用停航的空隙上岸打猎游玩。回船时,海上又刮起了一阵大风,海面重新动荡起来。为了帆船的安全,水手们在海滩上铲运海沙压舱。铲运了一阵,突然一名水手发现沙层中有一颗黑色的圆球,水手们十分惊奇。大家围拢过来,一看,圆球外表涂满了沥青,再剥开来,原来是一颗椰子壳。好奇怪呀!这里是一片荒滩,没有任何树木,更看不到椰子树。那么是谁带来的呢?大家疑惑着。还是一位年长的水手有主意:“劈开看看。”于是,另一位水手飞快地从船上拿来斧头,劈开一看,“哇!有一卷书。”水手们齐声喊起来。“书?!”水手们又惊奇了。“是的,一卷书!”

再仔细一看,原来是一卷羊皮纸,上面写满古体字。经过一番翻译,才知道这是1498年意大利航海家哥伦布在第二次西航途中给西班牙国王和王后的一封信。信中报告了与他同行的一艘帆船沉了,另一艘帆船的船员不服从他的命令,反叛了。这份重要报告没有能够送到国王手里,倒是漂到这个荒凉的海滩上,沉睡了358年!

是哪一位“绿衣使者”把这封信送到这海滩上来的呢?

是跳跃不停的海浪,还是涨落的潮流?都不是。它是海洋中的“河流”——海流带来的。

长期与海洋打交道的海员和渔民都知道海洋中有海流存在,它们像陆地上的河流,日复一日沿着比较固定的路线流动着。只是河流两岸是陆地,河岸就像是固定的目标可做比照,一望就知道河流是在流动着,海流两边仍然是海水,肉眼很难把它分辨出来,因而在很长一段时间里,海流没有被人们发现。只是在远洋航海开展以后,人们才得到点滴的资料和对海流的某些粗浅而片面的认识,其中还夹杂了不少神话般的传说。

人们为了认识海流,从18世纪末期起,便开始利用一种叫漂流瓶的进行对海流的观测。在这种漂流瓶里装有一封信,信上写了该瓶的投放者、投放的时间和地点等,并要求拾到者向投放者报告拾到的时间和地点。1899年,人们在阿拉斯外海投放的漂流瓶,经过6年的漂流,流到与它相距4000多千米的冰岛沿岸。它告诉人们,海水平均每天流过2.8千米。1962年6月,人们又在澳大利亚的佩思附近的海域投放了一批漂流瓶,5年后,其中一些漂流瓶漂到了美国佛罗里达州的迈阿密。科学家估计,这些瓶子是从佩思经印度洋过好望角,沿非洲北上,横渡了大西洋。行程约14000千米,平均每小时流过0.37千米。100多年来,人们总共投放了约15万个漂流瓶,进行着海流的观测研究,从而知道了整个海洋中约有32条海流,其中最大的海流,宽数百千米,长上万千米,规模非常巨大。它们把热带高温的海水带向寒带水域,又把寒带海域的冷水带向热带。就在它们运动中,不断影响着沿途的气候。船员们也就利用这种海流流动的本领进行送信件、递情报,渔民们还利用它测报鱼群的动向,配合渔船捕鱼呢。

海岛形成之谜

在茫茫的大洋上,碧波里涌出一片陆地,船舶可以在此停泊、补给,飞机可以着陆,人员可以登岸休整,多么叫人喜欢。地球上巧妙地撒布了这些“明珠”,给人类以莫大方便,赛似千里沙漠上的点点绿洲。

是什么力量造就了这些岛屿?尽管海岛面貌千姿百态,人们仍然能够找到其中的规律性。它们万变不离其宗,或是从大陆分离出来,或是由海底火山爆发和珊瑚虫构造而成。前者姓“陆”,地质构造与附近大陆相似;后者姓“海”,地质构造与大陆没有直接联系。据此,海岛分成大陆岛、火山岛、珊瑚岛、冲积岛四大类型。

第一种类型大陆岛。它是大陆向海洋延伸露出水面的岛屿。世界上比较大的岛基本上都是大陆岛。它的形成有三种原因:一是地壳运动,中间接合部陷落为海峡,原与大陆相连的陆地被海水隔开,成了岛屿。世界上最大的格陵兰以及伊里安、加里曼丹、马达加斯加等岛,世界最著名的日本列岛、大不列颠群岛、马来群岛等群岛,我国的台湾岛、海南岛,都是这样形成的;二是冰碛物形成的小岛。远古冰川活动时期,冰川夹带大量碎屑在下游堆积下来,后来气候回暖,冰川消融,海面上升,冰碛堆未被淹没,成了岛屿。挪威沿岸、波罗的海沿岸、美国和加拿大东部交界处沿岸的小岛,就是这样形成的;三是海蚀岛。它非常靠近大陆,两者高度一致,仅仅中间隔着一道狭窄的海峡;那海峡是海浪经年累月冲蚀的结果。这类岛屿为数不多,面积也很小。

第二种类型火山岛。它是海底火山露出水面的部分。岛貌峻拔,与大陆岛、珊瑚岛有明显的不同。当初,火山隐没水下,经过不断喷发,岩浆逐渐堆积,终于高出水面。世界海底山脉最高峰的冒纳开亚火山,就是火山岛夏威夷岛的主峰,其海拔高度4205米,水下部分还有5998米,总高10203米,比珠穆朗玛峰还高1355米!世界第十八大岛、面积为10.3万平方千米的冰岛是上千个海底火山喷发形成的。夏威夷群岛成直线排列,是一列海底火山喷发形成的。阿留申群岛成弧形排列,是成列环状海底火山喷发而成的。

第三种类型珊瑚岛。它只存在于热带、亚热带海域。在海底丘地或海底山脉山脊上,有大量珊瑚虫营巢生活,同其他壳体动物构成庞大的石灰质巢体。旧的死亡,新的又在残骸上继续生长,不断向海面推进。在最适宜的条件下,一千年才能长高36米,长到海水高潮线就停止生长了。大海几经沧桑,或地壳上升,或海水下降,珊瑚礁露出水面便成了岛屿。全球珊瑚礁的面积达2700万平方千米,相当于欧洲、南美洲面积的总和,但其绝大部分没于水下,出露为岛的面积并不多。太平洋的加罗林群岛、马绍尔群岛,印度洋的马尔代夫,我国的南海诸岛,都是典型的珊瑚岛。

第四种类型冲积岛。它位于大河的出口处或平原海岸的外侧,是河流泥沙或海流作用堆积而成的新陆地。世界最大的冲积岛马拉若岛,是世界第一大河亚马逊河的河口岛,面积40万平方千米,列为世界第三十大岛。我国长江口的崇明岛、长兴岛,黄河口的孤岛,都是冲积岛。加拿大东岸的塞布尔岛,美国东海岸的特拉斯角,我国的苏北沙洲,都是海流加上风力堆积而成的沙滩,其位置不固定,成为航行的危险区。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书

若在网站上没有找合适的书籍,可联系网站客服获取,各类电子版图书资料皆有。

客服微信:xzh432

登入/注册
卧槽~你还有脸回来
没有账号? 忘记密码?