科学透露了什么(txt+pdf+epub+mobi电子书下载)


发布时间:2021-02-24 23:12:57

点击下载

作者:李建学,衡孝芬

出版社:安徽人民出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

科学透露了什么

科学透露了什么试读:

前言

飞碟、恐龙、野人、怪兽、人类、自然……组成了宇宙大迷宫,编织了人类万花筒,真是奥妙无穷,神秘莫测,无奇不有,怪事迭起,许许多多的谜团现象简直不可思议,使我们对自己的生存环境简直捉摸不透。

虽然今天科学技术日新月异,达到了很高程度,但对于许多谜团还是难以圆满解答。人们都希望发现天机,破解人类谜团。古今中外许许多多的科学先驱不断奋斗,一个个谜团不断解开,推进了科学技术的大发展,但又发现了许多新的奇怪事物和谜团现象,又不得不向新的问题发起挑战。

这正如达尔文所说:“我们认识自然界的固有规律越多,这种奇妙对于我们就更加不可思议”。科学技术不断发展,人类探索永无止境,解决旧问题,探索新领域,这就是人类一步一步发展的足迹。

为了激励广大青少年认识和探索世界的谜团现象,普及科学知识,我们特别编辑了本套读物,主要内容包括科技、宇宙、飞碟、外星人、地球、海洋、自然、动物、植物、恐龙等存在谜团现象、未解之谜和科学探索诸内容,具有很强系统性、科学性、可读性和新奇性。

本套书全面而系统地介绍了各种各样的谜团现象及其科学探索,集知识性、趣味性、新奇性、疑问性与科学性于一体,深入浅出,生动可读,通俗易懂,图文并茂,目的是使广大青少年读者在兴味盎然地领略世界谜团现象的同时,能够加深思考,启迪智慧,开阔视野,增加知识,能够正确了解和认识这个世界,激发求知的欲望和探索的精神,激起热爱科学和追求科学的热情,掌握开启人类和自然的金钥匙,使我们真正成为人类和自然的主人,不断认识人类,不断改造自然,不断推进人类文明向前发展。

第一章 太空探索,人类智慧的结晶

1.天文台

天文台就是人们建设来进行专业的天象观测和天文学研究等科研工作的建筑物,天文台中的建筑和仪器设备,都是根据天文工作的需要建设和配置的,是天文探测工作进行的重要地点和场所。

按照科研用途的不同,天文台又分为光学天文台、射电天文台和空间天文台三种。光学天文台的主要设备是各种用于光学天文测验的仪器,如太阳镜、光学天文望远镜等,这种仪器主要用于方位天文学或天体物理学方面的研究;射电天文台主要是由各种巨型甚至超巨型的无线接受设备和基站等构成的,如装备射电望远镜,这些仪器主要是用于射电天文学等方面的研究;空间天文台主要是由先进的光学观测系统组成的,主要用于和空中的人造卫星共同合作,组成先进的空间观测平台。

早在公元前2600年,古埃及人就为了可以更好的观测天狼星,建立了迄今为止已知的世界上最早的天文观测台;同样的到公元前2000年,古巴比伦的人们为了相同的理由,也建立了天文台。中国在大约2500年前,也开始建造天文台,但是在当时这被称为清台、灵台、观象台等。在古代的许多国家,天文台不仅是观测天文的场所,同时也是进行占卜和祭祀的场所,因此天文台一般都是统治者最关注的场所之一。

随着时代的不断变化,天文台的建筑也在发生着不断地变化和改进,历史上比较有名的就是1576年丹麦的天文学家第谷在哥本哈根建立的天文台,它配备了当时最先进的天文仪器,中国最早的天文观测台就是始建于元代的,现位于登封县城东南13公里告成镇的观星台。元代著名的天文学郭守敬曾在此地对天体进行观察,推算出一个回归年为365日5小时49分20秒的天文结果,与现代测定一回归年时间相比仅差26秒。有他制定的《授时历》比现在通行的公历还早诞生300年,由此可见中国古代关于天文历法的科学研究水平已经相当高超。

天文台的主要用途就是更有利于天文工作者用天文望远镜观测天象。为了可以更好的让人们观测到天空中星体的形态和运作情况,天文台一般都建在远离城市的山上,并不是因为山上离星星近一点。星星离开地球都非常遥远。一般恒星都在几十万亿千米以外,离地球最近的天体月亮,距离地球也有38万千米。地球上的高山一般只有几千米,缩短这么一小短距离,显然是微不足道的。这是因为山体的地理位置相对比较的高,空气比较稀薄,烟雾、尘埃和水蒸气也比较的少,对人们进行观察天体的工作影响也比较的小,更有利于天文工作者科研工作的顺利进行。中国比较有名的天文台如紫金山天文台,它就设立在南京城外东北部,海拔267米的紫金山上。

一般天文台的屋顶都是设计成银白色的半球形,远远望去,银白色的圆形屋顶在阳光照耀下,闪闪发光。之所以设计成为这样的形式,并不是为了好看,银白色的圆顶房屋,实际上是天文台的观测室,在屋顶的半球上会开琢出一个巨大的天窗,这主要是更方便人们人们通过天文望远镜来观察太空,一般天文望远镜的体积都非常庞大,不能随便移动。而用天文望远镜观测就需要一个360度的观察空间,采用普通的屋顶很难满足使用天文望远镜的条件,而天文台采用半球形的屋顶设计,以极其开的360度天窗设计,完全满足天文望远镜360度旋转的需求,可以让人们直接使用专业的天文望远镜对天空进行探索和观察,在不用时,只要把圆顶上的天窗关起来,就可以保护天文望远镜不受风雨的侵袭,完全可以不受空间限制的影响。

2.望远镜

望远镜是一种利用凹透镜和凸透镜制作而成的光学仪器,主要用于观察远距离目标物体的特征和情况。望远镜是利用光线透过凹透镜形成的小孔成像原理制成的,它可以将距离很远的物体景象放大,然人们清楚的观察到它的具体形态,对物体更小的细节和阴影都观察的更加清楚和仔细,所以在古代人们也将其成为“千里眼”。1609年意大利的佛罗伦萨人伽利略·伽利雷在望远镜原有的基础上,发明出了功能增强40倍的双镜望远镜,并将其投用于天文科学研究,这是历史上第一部应用于科学研究的实用望远镜。由于这种望远镜功效的大大增加,使人们可以观测到天空中人体肉眼无法看清和分辨的事物体,所以这种望远镜慢慢地就演变成为天文观测工作中必不可少的工具。

随着时代的变迁,望远镜的功效和应用途径也发生了很大的变化,人们根据这些天文望远镜不同的使用功效,将其分为折射望远镜、反射望远镜和折反射望远镜。望远镜的用途也由单一变成多样的使用性,广泛应用于军事、高科技生物研究等方面。

3.折射望远镜

用透镜作物镜的望远镜被称为折射望远镜,在历史的演变中,用凹透镜作目镜制成的望远镜被称为伽利略望远镜;用凸透镜作目镜制成的望远镜则被称为开普勒望远镜。因为单透镜物的镜色差和球差都相当严重,所以现代的折射望远镜都是用两块或两块以上的透镜组作物镜制成的。其中以双透镜物制成的望远镜应用的最普遍和广泛,这种望远镜是由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜相叠在一起组成,这两种透物镜相结合后,可以完全消除透出的景物波长,对得出的景物位置色差也可以相对的减弱。

双透物镜的体积和视野范围都比较小。双透镜物镜的相对口径较小,一般都在1/15~1/20之间,很少大于1/7,可用视场也不大。人们将口径小于8厘米的双透镜物镜可将两块透镜胶合在一起的望远镜称为双胶合物镜;要增加相对口径和视场的使用,可以采用多透镜物镜组。

伽利略望远镜具有结构简单、光能损失少、镜筒短、携带轻便、视野成像比较正的良好特点,但是它的事物扩展倍数小,观察视野面小,一般都是充当观看近距离的观剧镜和玩具望远镜。在使用开普勒望远镜时,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的景物是正像。但是开普勒望远镜采用的是前宽后窄的双筒结构,这种结构可以组成双直角棱镜正像系统,这套系统可以在纠正原有望远镜结构中,形成的倒立成像系统;同时还可以将望远镜的体积和重量,在很大限度上减小。其缺点就是透镜正像系统需要采用一组复杂的透镜来将成像像倒转,这样做成本比较的高。但是由俄罗斯人发明的20×50三节伸缩古典型单筒望远镜就大大的避免了这项情况的出现,它是采用精良的透镜正像设计系统来进行事物成像的。

现代人们用的折射望远镜一般都是采用开普勒结构。由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式。

历史

1611年,德国天文学家开普勒首次用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,因此后人将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得更好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。此后,天文学家一直想研制出更长的望远镜,但最后几乎都以失败而告终。

1757年,杜隆经过对玻璃和水的折射与色散现象的研究,为消色差理论奠定了基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但由于当时科技发展的局限性,很难铸造出较大的火石玻璃。最初研究消色差望远镜时,人们能磨制成的最大的透镜只有10厘米。

19世纪末,由于制造技术有了很大的进步,随之出现的就是制造大口径的折射望远镜的科学热潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。

折射望远镜最适合用来做测量天体方面的工作,因为其焦距长,底片比例尺大,对镜筒弯曲不敏感。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜。同时,在重力作用下,大尺寸的透镜变形会很严重,因而丧失敏锐的焦点。

4.反射望远镜

用凹面反射镜作为物镜的望远镜就就是反射望远镜。可分为牛顿望远镜、卡塞格林望远镜等几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其他像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000~9000埃波段范围的反射率都大于80%,因而除光学波段外,红外和紫外等不可见光波段也可以用反射望远镜来研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5~1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,而且主镜只有一个表面需要加工,从而大大降低望远镜造价和制造的困难。一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。这样,一架望远镜便可获得几种不同的相对口径和视场。目前口径在1.34米之上的光学望远镜除了有反射望远镜外就再也找不到其他的了。发射望远镜的主要科研使命就是研究天体的物理特征。

历史

1668年诞生了世界上第一架反射式望远镜。牛顿曾经好几次磨制非球面透镜,但屡遭失败,因此他改用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。虽然球面镜会产生一定的象差,但反射镜代替折射镜却是科学上一个成功的转折。

1663年,詹姆斯·格雷戈里在提出一种方案:分别用凹面镜作为一面主镜和副镜,把副镜放在主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜。他提出的这个建议在理论上是正确的,但是,由于当时制造水平的局限性,它所提到的一些要求是无法实现的,因此,格雷戈里无法得到对他有用的镜子。

1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。

卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。

赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。

在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。

1918年末,海尔主持建造的胡克望远镜投入使用,它的口径是254厘米。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,值得骄傲的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。

20世纪,20~30年底,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米的望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:“海尔望远镜就像半个世纪以前的叶凯士望远镜一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了”。后来,1976年前苏联建造了一架600厘米的望远镜,而他所发挥的作用还不如海尔望远镜,再次使阿西摩夫的话得到了验证。

反射式望远镜有许多优点,例如它没有色差,能在广泛的可见光范围内记录天体情况的各种信息,与折射望远镜相比,更容易制作。但同时它本身也有很多不足之处,口径大的话,视场会比较小,得到的图像资料的清晰度和亮度不是很高,而且折射镜的物镜需要定期镀膜等。

第二次世界大战后,反射式望远镜在天文观测中得到很快的发展,1950年在帕洛玛山上安装了一台直径5.08米的海尔反射式望远镜。1969年在前苏联高加索北部的帕斯土霍夫山上安装了直径6米的反射镜。1990年,美国航空航天局(NASA)将哈勃太空望远镜送入轨道,然而,由于镜面故障,直到1993年宇航员完成太空修复并更换了透镜后,哈勃望远镜才开始全面发挥作用。哈勃望远镜拍摄图片时不受地球大气层的影响,因此它拍出来的图片要比地球上同类望远镜的清晰度高10倍。1993年,美国在夏威夷莫纳克亚山上建成了口径10米的“凯克望远镜”,其镜面由36块1.8米的反射镜拼合而成。2001设在智利的欧洲南方天文台研制完成了“超大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。现在,一批正在筹建中的望远镜又开始对莫纳克亚山上的白色巨人兄弟发起了冲击。这些新的竞争参与者包括30米口径的“加利福尼亚极大望远镜”(California·ExtremelyLarge·Telescope,简称CELT),20米口径的大麦哲伦望远镜(Giant·Magellan·Telescope,简称GMT)和100米口径的绝大望远镜(Overwhelming·Large·Telescope,简称OWL)。科学家们指出,研制的这批新的望远镜,不仅能拍出比哈勃太空图片像质更好的图片资料,还能收集更多的光。更加清晰可靠的太空图像资料能使人更了解100亿年前星系形成时初态恒星和宇宙气体的情况,并观测清楚遥远恒星周围的行星。

5.折反射望远镜

折反射望远镜中的球面反射镜用来成像,而折射镜则能用来校正像差,同时,可以避免困难的大型非球面加工,又能获得良好的像质量。用的比较广泛的有施密特望远镜。它在球面反射镜的球心位置处放置一施密特校正板。它的一个面是平面而另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差。

还有一种马克苏托夫望远镜,在球面反射镜前面加一个弯月形透镜,选择合适的弯月透镜的参数和位置,可以同时校正球差和彗差。及这两种望远镜的衍生型,如超施密特望远镜,贝克-努恩照相机等。折反射望远镜的特点是相对口径很大,甚至能大于1,光力强,视场广阔,像质优良。适于巡天摄影和观测星云、彗星、流星等天体,折反射望远镜的反射镜有副镜的保护,不易被灰尘等污染物侵袭。

历史

世界上第一台折反射式望远镜的出现于1814年。

1931年,德国光学家施密特用一块类似于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,对暗弱星云的拍照效果非常突出。如今施密特望远镜是天文观测的重要工具。

1940年马克苏托夫又制作出了一种新型的折发射望远镜。马克苏托夫用一个弯月形状透镜作为改正透镜,使它的两个表面变成两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,清晰度和亮度比较小,但放大的倍数比较大,同时对玻璃的要求也高一些。

折发射式望远镜分别吸收了折射和反射望远镜的优点,因此很适合业余天文观测,也是广大天文爱好者最佳的选择。

6.火箭

火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地球引力,进入宇宙空间的运载工具。火箭的速度是由火箭发动机工作获得的。早在1903年齐奥尔科夫斯基就推导出单级火箭的理想速度公式:V=ωLnMo/Mk,被称为齐奥尔科夫斯基公式。ω为发动机的喷气速度,Mo和Mk,分别是火箭的初始质量和发动机熄火(推进剂用完)时的质量。Mo/Mk被称为火箭的质量比。

由这齐奥尔科夫斯基公式可知,火箭的速度和发动机的喷气速度成正比,并且随火箭的质量比的增大而增大,即发动机的质量减少时,火箭的速度会越来越大。即使使用性能最好液氢液氧推进剂,发动机的喷气速度也只能达到4.3~4.4公里/秒。因此,单级火箭无法将物体送到太空轨道,必须用多级火箭才能完成太空发射任务,即用接力式原理的火箭将航天器送往太空轨道。

用来发射航天器的火箭称为运载火箭,用于运载军用炸弹叫火箭武器(无控制)或导弹(有控制)。航天运载火箭一般由动力系统、控制系统和结构系统组成,有的还加遥测、安全自毁和其他附加系统。

多级火箭各级之间的联接方式,有串联、并联和串并联几种。串联就是把几枚单级火箭串联在一条直线上;并联就是把一枚较大的单级火箭放在中间,叫芯级,在它的周围捆绑多枚较小的火箭,一般叫助推火箭或助推器,即助推级;串并联式多级火箭的芯级也是一枚多级火箭。

各级火箭之间、火箭和有效载荷及整流罩之间,通过连接分离机构实现连接和分离。分离机构由爆炸螺栓和弹射装置组成。平时,它们由爆炸螺栓或爆炸索连成一个整体;分离时,爆炸螺栓或爆炸索爆炸,使连接解锁,然后由弹射装置或小火箭将两部分分开,也有借助前面一级火箭发动机启动后的强大射流分开的。

火箭技术是一项十分复杂的综合性技术,主要包括火箭推进技术、总体设计技术、火箭结构技术、控制和制导技术、计划管理技术、可靠性和质量控制技术、试验技术,对导弹来说还有弹头制导和控制、突防、再入防热、核加固和小型化等弹头技术。

火箭的故乡在中国

中国是最早使用火箭的国家,在清朝以前,中国曾经是火箭技术最发达的国家。在明朝的时候一度是世界上唯一掌握火箭武器技术和大规模应用火箭技术的国家。大约在南宋时期,人们用球状火药包装在箭头杆附近,点着引线之后,用弓箭射出去杀伤敌人,这就是后来的“万人敌”。之后,人们将火药装填在竹筒里,火药背后装着细小的“定向棒”点燃引火管上的火硝,引起筒里火药迅速燃烧,产生向前的推力,使之飞向敌阵爆炸,这就是世界上第一种火药火箭。在明朝旧火箭技术达到高峰并广泛应用于实战,从明朝初年的靖难之役,到万历时期的援朝抗日战争,再到后来对英国人的战斗中都有大规模使用的记载,《武备志》一书中更是记载了当时琳琅满目的火箭类武器,从单发的简单火箭,到多管连发的一窝蜂等火箭炮,在到多级火箭出水火龙,基本已经形成了现代火箭的所有门类,根据《明史》记载在当时明朝同蛮族的战争中,一场战斗动用几万支火箭是司空见惯的。更有一位叫万户(可能是官名)的人将47支大型火箭绑在椅子上,同时点燃,想利用反推原理飞上太空,但可惜最后以失败告终。这是世界上可考的第一次载人火箭的发射。在当时的科技背景下,可想而知,先人的科学探索精神是多么勇敢。而当时在华的窦玛丽等人也都部分记载了相关史料,参见《窦玛丽杂记》,对中国的火箭技术也有一定得记载。

后来,在满清后期的残暴统治下,中国采用闭关锁国的思想。统治者为了防止汉族和民间武装力量发展,从而抑制火箭技术的发展,中国的火箭技术从此日益倒退并停滞不前。直到1958年才制造出第一支现代火箭,不但晚于当时的两大强国,还晚于日本等国,这都是中国科学史上的损失和教训。

美国航空航天博物馆的照壁上第一句话就是:最早的飞行器是中国的风筝和火箭。

7.火箭的历史由来

根据古籍记载,“火箭”一词最早出现在公元3世纪的三国时代,至今已有1700多年的历史了。当时在敌我双方的交战中,人们把一种头部带有易燃物、点燃后射向敌方、飞行时带火的箭叫做火箭。这是一种用来火攻的武器,实质上只不过是一种带“火”的箭,在含义上与我们现在所称的火箭相差甚远。唐代发明火药之后,到了宋代,人们把装有火药的筒绑在箭杆上,或在箭杆内装上火药,点燃引火线后射出去,箭在飞行中借助火药燃烧向后喷火所产生的反作用力使箭飞得更远,人们又把这种喷火的箭叫做火箭。宋代的火箭向后喷火利用反作用力助推火箭升空就是现代火箭的雏形,被人们称之为最原始的固体火箭。

火箭一般包括,导弹、航天器、甚至烟花焰火等,是一种利用向后喷出的高速热气流的反作用而向前推进的装置。最常见的火箭燃烧的是固体或液体的化学推进剂。推进剂燃烧产生热气,通过喷口向火箭后部喷出气流。火箭自带燃料和氧化剂,而其他各种喷气发动机仅须携带燃料,燃料燃烧所需的氧取自空气中。因此,火箭与其他喷气发动机的区别就是,火箭可以在地球大气层之外使用,而普通喷气发动机是离不开空气的。火箭发射后速度会越来越大,因为火箭被高速发射出去之后,随着燃料的燃烧,其重量会越来越轻,重力影响就会随之下降,速度也会越来越大。“土星”5号火箭启程登月时,5台发动机每秒钟消耗近3吨煤油,它们产生的推力相当于32架波音747的起飞推力。

火箭发明的确切时间还没有定论。大部分专家认为中国人早在13世纪就研制出了实用的军用火箭。火箭技术在19世纪出现了几项重大进步:燃料容器的纸壳改为金属壳,延长了燃烧的持续时间;火药推进剂的配方标准化;制造出发射台;发现了自旋导向原理等等。19世纪末,火箭开始用于非军事目的,如用火箭携带救生索飞向海上遇难船只。19世纪末20世纪初美国科学家戈达德和其他几位专家研制发射了世界上第一枚液体燃料火箭,奠定了现代火箭技术的基础。

20世纪70年代,美国研制出第一架航天飞机,它是全新的火箭动力航天运载工具。它主要分3个部分:机身后部装有3台主发动机的轨道飞行器;装有液氢和液氧推进剂的外挂燃料箱(5分钟后脱落),保证主发动机工作;装有2台可分离的固体燃料火箭发动机(2分钟后脱落),它们与轨道飞行器主发动机同时启动,提供初始升空阶段的推力。1981年4月12日,人类第一架航天飞机“哥伦比亚”号发射升空。

中国古代的火箭技术传播到欧洲后,经过改进,逐渐被运用到军事装备中。早期的火箭射程近、落点散布大,以后被火炮代替。第一次世界大战后,随着科学技术的不断进步,火箭武器得到迅速发展,并在第二次世界大战中发挥了威力。

19世纪80年代,瑞典工程师拉瓦尔发明了拉瓦尔喷管,使火箭发动机的设计逐渐完善。19世纪末20世纪初,液体火箭技术开始兴起。1903年,俄国的К·E·齐奥尔科夫斯基提出了制造大型液体火箭的设想和设计原理。1926年,3月16日美国的火箭专家、物理学家R·H·戈达德试飞了第一枚无控液体火箭。1944年,德国首次将有控的、用液体火箭发动机推进的V-2导弹用于战争。1931年5月,德国科学家赫尔曼·奥伯特领导的宇宙航行协会试验成功了欧洲的第一枚液体火箭。到了1932年,德国军方在参观该协会研制的液体火箭发射试验之后,意识到火箭武器在未来战争中具有的巨大潜力,便开始组织一批科学家和工程技术人员,集中力量秘密研制火箭武器。到40年代初,德国在第二次世界大战中期,先后研制成功了能用于实战的V-1、V-2两种导弹。其中V-1是一种飞航式有翼导弹,采用空气喷气发动机作动力装置;V-2是一种弹道式导弹,采用火箭发动机作动力装置第二次世界大战以后,苏联和美国等相继研制出包括洲际弹道导弹在内的各种火箭武器。

中国于20世纪50年代开始研制新型火箭。1970年4月24日,用“长征”1号三级运载火箭成功地发射了第一颗人造地球卫星。1975年11月26日,用更大推力的“长征”2号运载火箭发射了可回收的重型卫星。1980年5月18日,向南太平洋海域成功地发射了新型火箭。1982年10月,潜艇水下发射火箭又获成功。1984年4月8日,用第三级装液氢液氧火箭发动机的“长征”3号运载火箭成功地发射了地球同步试验通信卫星。1988年9月7日,用“长征”4号运载火箭将气象卫星成功地送入太阳同步轨道。1992年8月14日,新研制的“长征”2号E捆绑式大推力运载火箭又将澳大利亚的奥赛特B1卫星送入预定轨道。这些都表明火箭发源地的中国,在现代火箭技术领域已跨入世界先进行列,并已稳步地进入国际发射服务市场。

在发展现代火箭技术方面,中国的钱学森、德国的冯·布劳恩和苏联的S.P.科罗廖夫、齐奥尔科夫斯基等都做出了杰出的贡献。

8.火箭的分类组成与发展现状

分类与组成

火箭的分类有几种不同的方法。按照火箭能源的不同,可以分为化学火箭、核火箭、电火箭以及光子火箭等。化学火箭又分为液体推进剂火箭、固体推进剂火箭和固液混合推进剂火箭。按火箭的用途不同分为卫星运载火箭、布雷火箭、气象火箭、防雹火箭以及各类军用火箭等。按有无控制分为有控火箭和无控火箭。按级数分为单级火箭和多级火箭。按射程分为近程火箭、中程火箭和远程火箭等。虽然火箭的分类方法复杂多样,但其大致结构和工作原理都是很相近的。

如今科研上常用的火箭类型有固态火箭与液态火箭两种。此外,还有混合火箭——就是用固体的燃料而用液体的氧化剂。随着科学的发展,现在的运载火箭大多包含了液态部分和固态部分,即在同一个火箭上,可能第一节是固态的,而第二节则是液态的。

火箭的基本组成部分有推进系统、箭体和有效载荷。有控火箭还装有制导系统。

火箭赖以飞行的动力装置是火箭的推动系统。其中火箭发动机按其工作性质,可分为化学火箭发动机、核火箭发动机、电火箭发动机和光子火箭发动机等。其中使用比较广泛的是化学火箭发动机,它是依靠推进剂在燃烧室内进行化学反应释放出来的能量转化为推力的。推力与推进剂每秒消耗量之比称为比冲,它是发动机性能的主要指标,其高低与发动机设计、制造水平有关,但主要取决于所选用的推进剂的性能。火箭发动机的推力,是根据其特点和用途选定的,其大小相差很大,火箭发动机的推力只有几微牛;而美国的航天飞机的固体火箭助推器的推力则能大到十几兆牛。

箭体用来安装和连接火箭各个系统,并容纳推进剂。箭体除要求具有良好的空气动力外形外,还要求在既定功能不变的前提下,质量越轻越好,体积越小越好。当火箭的起飞质量一定时,若结构质量越轻,则火箭的飞行速度或射程会比较大。

火箭的有效载荷是指火箭能把多少重量的物体成功送到空中。一般运载火箭的有效载荷有人造卫星、飞船或空间探测器等航天器。而火箭武器的有效载荷就是战斗部——弹头。

地面发射装置是成功发射火箭最基础的设施。而地面发射设备有大有小,小的可手提肩扛,如便携式防空火箭和反坦克火箭的发射筒;大的如卫星运载火箭,则需有固定的发射场和庞大的发射设施,以及飞行跟踪测控台站等。

现状与发展

20世纪50年代以来,随着火箭技术的迅速发展,它的应用也越来越广泛。其中尤以各类可控火箭武器(导弹)和空间运载火箭发展最为迅速。从火箭弹到反坦克导弹、反飞机导弹和反舰导弹以及攻击地面固定目标的各类战术导弹和战略导弹,均已发展到相当完善的程度,已成为现代军队不可缺少的武器装备。

各类火箭武器的发展方向基本上集中在,提高命中精确度、抗干扰能力、突防能力和生存能力等方面。此外,反导弹、反卫星等火箭武器也正在研制和发展之中,在地地弹道导弹基础上发展起来的运载火箭,已广泛用于发射卫星、载人飞船和其他航天器等。20世纪80年代初,苏、美两国已经分别研制出六、七个系列的运载火箭。其中,美国载人登月的“土星”5号火箭,直径10米,长111米,起飞质量约2930吨,近地轨道运载能力为127吨。苏联的“能源”号火箭,起飞质量约2000吨,近地轨道运载能力约为100吨。中国的“长征”2号E火箭,采用了并联助推技术,不仅提高了运载能力,还为进一步发展更大运载能力的火箭奠定基础。运载火箭正向着高可靠性、低成本、多用途和多次使用的方向发展,其具体体现就包括可多次往返于太空和地球之间的航天飞机的问世。火箭技术的飞速发展,不仅可提供更加完善的各类导弹和推动相关科学的发展,还将使开发空间资源、建立空间产业、空间基地及星际航行等成为可能。

9.人造卫星

宇宙中又很多的卫星,那么什么是卫星呢?卫星,是指在宇宙中所有围绕行星轨道上运行的天体。环绕哪一颗行星运转,就把它叫做哪一颗行星的卫星。打个比方,月亮围绕地球转动,那么它就是地球的一颗卫星。“人造卫星”则是人类“人工制造的卫星”。科学家用火箭把它发射到预定的轨道,使它环绕着地球或其他行星运转,以便进行探测或科学研究。围绕哪一颗行星运转的人造卫星,我们就叫它哪一颗行星的人造卫星,比如最常用于观测、通讯等方面的人造地球卫星。

地球上的物体由于受地球引力的作用,当被抛到空中时一般会重新落回地面。而抛出时的速度决定着物体飞出去的距离,速度越大距离越远。牛顿在思考万有引力定律时就曾设想过,从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也就一次比一次离山脚远。当发射人造卫星的速度达到一定速度时,它本身就永远不会落回地面,而是围绕地球运转,这个速度的界限被称为第一宇宙速度;当然还有第二宇宙速度和第三宇宙速度,以这两个速度抛出的物体会分别摆脱地球和太阳的引力。不过人类的技术发展到现在虽然能使火箭的速度突破第三宇宙速度,但还没有能力使人造卫星或其他航天器达到第三宇宙速度,因此人类在宇宙中只能对太阳系之内的天体进行比较深的研究。

在众多的航天器中,人造卫星是发展最快,用途和数量都最多的。1957年10月4日苏联发射了世界上第一颗人造卫星。之后,美国、法国、日本也相继发射了人造卫星。1970年4月24日中国第一次成功发射了东方红1号人造卫星,截止到2005年底,已经成功发射了近百颗国产人造卫星、6艘飞船和27颗国外人造卫星。

人造卫星的结构组成一般有专用系统和保障系统。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统。主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。

人造卫星的任务要求决定着其运行轨道,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中轨道,高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。

当卫星飞行的轨道高度大于35786千米,并沿地球赤道上空与地球自转同一方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保持不变,即地球同步卫星。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星,简称静止卫星,这种卫星可实现卫星与地面站之间的不间断的信息交换,并大大简化地面站的设备。静止通讯卫星的用处非常广泛,大部分的卫星电视信号就是通过这种卫星在地球上传播和转发的。

人造卫星的分类

人造卫星按用途区分为科学卫星、应用卫星和技术试验卫星。人造卫星可用于天文观测、空间物理探测、全球通信、电视广播、军事侦察、气象观测、资源普查、环境监测、大地测量、搜索营救等方面。

①科学卫星的主要用途是进行科学探测和研究。主要包括空间物理探测卫星和天文卫星,用来研究高层大气,地球辐射带,地球磁层,宇宙线,太阳辐射等,并可以观测其他星体。

②技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星。技术试验卫星主要包括把很多新原理,新材料,新仪器送上天,检测它们能否使用;将新卫星发射到天上,观测其性能如何;在把人送上天之前先把动物发射到太空进行试验等等。

③应用卫星是直接为人类服务的卫星,它的种类最多,数量最大,其中包括:通信卫星,气象卫星,侦察卫星,导航卫星,测地卫星,地球资源卫星,截击卫星等等。

10.世界各国首颗卫星发射

苏联在1957年10月4号发射人类第一颗人造地球卫星斯普特尼克1号,揭开了人类向太空进军的序幕,掀起了世界各国研制和发射卫星的热潮。

美国于1958年1月31日成功地发射了第一颗“探险者”1号人造卫星。该星重8.22公斤,锥顶圆柱形,高203.2厘米,直径15.2厘米,沿近地点360.4公里、远地点2531公里的椭圆轨道绕地球运行,轨道倾角33°34″,运行周期114.8分钟。发射“探险者”1号的运载火箭是“丘辟特”四级运载火箭。

法国于1965年11月26日成功地发射了第一颗“试验卫星”1(A-l)号人造卫星。该星重约42公斤,运行周期108.61分钟,沿近地点526.24公里、远地点1808.85公里的椭圆轨道运行,轨道倾角34°24″。发射A1卫星的运载火箭为“钻石,tA号三级火箭,其全长18.7米,直径1.4米,起飞重量约18吨。

日本于1970年2月11日成功地发射了第一颗人造卫星“大隅”号。该星重约9.4公斤,轨道倾角31°07″,近地点339公里,远地点5138公里,运行周期144.2分钟。发射“大隅”号卫星的运载火箭为“兰达”-45四级固体火箭,火箭全长16.5米,直径0.74米,起飞重量9.4吨。第一级由主发动机和两个助推器组成,推力分别为37吨和26吨;第二级推力为11.8吨;第三、四级推力分别为6.5吨和1吨。

中国于1970年4月24日成功地发射了第一颗人造卫星“东方红”1号。该星直径约1米,重173千克,沿近地点439公里、远地点2384公里的椭圆轨道绕地球运行,轨道倾角68°5″,运行周期114分钟。发射“东方红”1号卫星的远载火箭为“长征”1号三级运载火箭,火箭全长29.45米,直径2.25米,起飞重量81.6吨,发射推力112吨。

英国于1971年10月28日成功地发射了第一颗人造卫星“普罗斯帕罗”号,发射地点位于澳大利亚的武默拉火箭发射场,运载火箭为英国的黑箭运载火箭.近地点537公里,远地点1593公里。该星重66公斤,主要任务是对各种新技术和新发明进行试验,例如试验一种新的遥测系统和太阳能电池组。它还携带微流星探测器,用来测量地球上层大气中各种宇宙尘高速粒子的密度。

除上述国家外加拿大、意大利、澳大利亚、德国、荷兰、西班牙、印度和印度尼西亚等也在准备自行发射或已经委托别国发射了人造卫星。

第一颗人造地球卫星

1957年10月4日,苏联发射了第一颗人造地球卫星。这一事件具有划时代的意义,它宣告人类已经进入空间时代。卫星呈球形,直径58厘米,重83.6千克。它沿着椭圆轨道飞行,环绕地球一圈的时间是96分钟。人造地球卫星内带着一台无线电发报机,不停地向地球发出“滴滴滴”的信号。一些人围着收音机。侧耳倾听着初次来自太空的声音。另一些人则仰望天空,试图用肉眼在夜晚搜索人造地球卫星明亮的轨迹。但是,当时很少有人了解人造地球卫星是载人宇宙飞船的前导,科学家正在加紧准备载人空间飞行。一个月后,即1957年11月3日,苏联又发射了第二颗人造地球卫星,它的重量比第一颗增加了5倍多,达到508千克。这颗卫星呈锥形,为了在卫星上节省出位置增设一个密封生物舱,不得不把许多测量仪器移到最末一节火箭上去。在圆柱形的舱内安然静卧着一只名叫“莱卡依”的小狗。小狗身上连接着测量脉搏、呼吸、血压的医学仪器,通过无线电随时把这些数据报告给地面。为了使舱内空气保持新鲜清洁,还安装了空气再生装置和处理粪便的排泄装置。舱内保持一定的温度和湿度,使小狗感到舒适。另外还有一套自供食装置,一天三次定时点亮信号灯,通知莱依卡用餐。但惟一的遗憾是,受当时科学技术的限制,这颗卫星无法返回地球,试验狗在卫星的生物仓内生存了一周的时间后,完成了试验使命,最后只好让它服毒自杀,它也因此成为宇宙飞行中的第一个牺牲者。

11.伟大的宇航员

宇航员是指以太空飞行为职业或进行太空行走或飞行的人。在美国,以旅行高度超过海拔80公里的人被称为宇航员。国际航空联合会(FAI)定义的宇宙飞行则需超过100公里。到2004年4月18日为止,按照美国的定义共计440人,在太空里度过了一共27,082个全体乘员天(crew-day,美国的定义),在太空中散步共享了98个全体乘员天。根据国际航空联合会制定的标准,只有434人符合宇航员的资格,目前世界上至少已经有32个国家的宇航员进入利润太空,香港及东南亚也把宇航员称作太空人。

太空里程碑

世界上第一名宇航员是前苏联的尤里·加加林,他在1961年4月乘坐东方1号进入太空。第一位女性宇航员是瓦伦蒂娜·特雷斯科娃,她在1963年6月乘坐东方6号(Vostok 6)进入太空。在1961年5月上太空的艾伦·谢泼德则成为美国首位宇航员。2003年10月15日,杨利伟乘坐神舟五号成为中国首名宇航员,之后还有费俊龙、聂海胜、崔志刚、刘伯明、景海鹏,其他曾经进入过太空的华裔人士包括卢杰、王赣骏、焦立中、张福林,所有人都来自美国。

戈尔曼·季托夫是进入太空最年轻的宇航员,当他乘坐东方2号上太空时只有26岁。最老的则是约翰·格伦,他乘坐STS-95上太空时已经77岁了。在太空中逗留最长纪录是瓦里李·保利耶可夫的438天。到2003年,个人上太空的最多次数是七次,纪录由杰里·L·罗斯和富兰克林·张·迪亚斯两人所保持。宇航员离地球最远的距离是401,056公里(在阿波罗13号紧急事件时产生)。

是迈克·梅尔维尔是世界上第一个自制太空飞船而飞到太空的宇航员,他乘坐的是太空船一号。这应该与各式各样百万富翁太空游客形成对比,那些太空游客只是作为公开提供资金的飞行乘客或少数人员(通常由俄罗斯提供飞到电离层(ISS)的服务)。在美国,被定为宇航员候选人的容人能得到美国空军的银质宇航员之翅,进入太空的远航员会获得金质宇航员之翅。飞行高度超过80千米的人也能得到美国空军授予的宇航员之翅。

宇航员所须具备的条件

宇航员的选拔条件是相当严格的,要成为宇航员,必须有强健的体魄,良好的教育水平,以及分析和解决问题的能力。早期的宇航员都是从空军的飞行员或试验飞行员中挑选出来的。随着飞船的设计逐步改进对宇航员体格的要求亦相应地降低。现时,宇航员可分为驾驶员、任务专家和载荷专家;驾驶员的任务是驾驶飞船,而任务专家和载荷专家则负责相关的科学研究和试验。

宇航员的基础训练

宇航员进行基础训练的首要目的是,让宇航员的候选人掌握完成载人航天所必需的科学知识和技巧。其次是要进一步提高其体能和改善其心理品质。宇航员所必须接受的体能和心理训练:例如置身重力达4.54千克地球重力的离心机和长期处于绝音室的训练,其艰苦程度实在令人难以想象。

在我国对宇航员的要求要有本科学习经历,需要接受科学、医药、工程学等领域知识的培养;其次,必须具备操作经验,尤其是担任试飞员的经验;第三,真正优秀的宇航员还要善于帮助别人。

一旦宇航员竟如航天器飞到太空,就完全与地球上的人群脱离了,除了与地面的联系之外,几乎与世隔绝,这种长期的寂寞生活对人的生理和心理都会有一定的影响。为了让宇航员能够适应这种特殊的生活,隔离室训练便应运而生。隔离室几乎不受任何声响刺激,如同与外界隔绝一样。性格是否合得来是不是选定机组人员时要考虑的因素?宇航心理学家给出的答案是否定的,也许你的心理会很疑惑,在那么小的空间里生活和工作的宇航员,如果伙伴是一个与自己性格不合的人很可能会影响心情,说不定还会影响到工作。但是,宇航员都是职业素养很高的人,他们不会让个人的心情影响到任务的执行。再说,一次航天时间都相对比较短,一般是一个星期,最多也不过两个星期。对大多数宇航员来说,在这样短暂的期间里,哪怕是与魔鬼同眠都不是问题。但是,如果是去空间站或去火星,一去就是几个月甚至几年,那可就完全是另一回事了。性格不合的人在生活和工作中长期相处难免会产生矛盾和摩擦,影响大家的合作,因此选拔宇航员时心理素质也是一个很重要的条件。

12.中国“太空人”训练揭秘

宇航员的训练也是很复杂的,有很繁多的花样。

1.入选条件

在中国,入选宇航员的经验要求需超过1000小时的飞行时间,而且身体素质和心理素质要很好。此外,还要通过一些航天城特有设施的“技术考验”。其中包括:每分钟转速24圈的转椅,以检查其对震动及眩晕的耐受能力;前后甩动幅度15米的电动秋千,以测试飞船进入轨道时可能使人体产生的空间运动病等。“转椅+秋千”=极度眩晕

在专门训练宇航员的航天城里有一张转椅,这张转椅不但可以做180度顺时针和逆时针的快速运转,而且可以同时上下前后摆动。转椅的主要作用是检查宇航候选者的前庭神经功能,以了解他对震动及眩晕的耐受能力。

从才外还有一个电动秋千室,在高达数十米钢架的护卫下,一台貌似汽车的厢式秋千被四条钢臂凌空提起。荡起电动秋千时,前后能甩出15米,它主要是用于适应空间运动和开展对空间运动病的研究。

2.体验“蹦极”

航天城里还有一个“冲击塔室”,内有一座约4层楼高的绿色铁塔。它的作用是模拟飞船返回地球的冲击环境,从而加强人的抗冲击耐力,研究各种方式的防护措施。

3.比玩“飞碟”难受多了

离心机室的高度相当于3层楼那么高,里面装备着亚洲规模最大的国产载人离心机。人体离心机是一种巨大的旋转装置,既可以上下伸缩,也可以左右转动。顶上有一条长达16米的旋转手臂,它用结实的钢架紧紧托住了位于手臂前方的一只椭圆形不锈钢封闭吊舱,这只吊舱也可以呈一定的角度转动,因此可以建立同方向作用于宇航员的超重条件。当整个离心机开起来时,有些像游乐场中的“飞碟”,无论是“房子”、“手臂”还是吊舱,都在不停地加剧转动摇摆,但其转动的速度和摇摆角度则是“飞碟”无论如何都无法比拟的。

4.忍受狭小和孤寂

宇航员的安全和健康的研究是空间技术发展的一个重点,宇航员训练中心里有各种各样为使宇航员适应太空生活而设置的模拟舱。

低压舱是一座淡绿色的T形舱,内有工作舱、休息舱和卫生舱3部分。当宇航员穿上特制的航天服走进低压舱之后,舱内的空气就被抽掉,宇航员此时就开始进入“太空”。学会适应极度安静寂寞的环境,是进入太空之前必须克服的心理课题,因航天器狭小的舱内没有任何声音,除了科学信息外,不准与外界有任何的联系,几乎是与社会完全隔绝的。

5.认识回家的路

天象仪室是宇航员进行模拟训练的最后一道关,宇航员升空执行任务之前必须在这里熟悉星空图,找出自己将要走过的路线,一旦载人飞船的自动导航系统出现故障,宇航员就可以自己操控,找到安全着陆的路线。

13.宇航员的太空经历

太空对于人来说充满了神奇,太空生活更是让人从满好奇,总之有人们说不透说不完的话题。

太空环境与地球环境大不相同,那里没有空气,没有重力,充满危险的太空辐射。当然在封闭的空间站或航天飞机舱内,有足够的空气供你呼吸,而且质量优质的航天材料也能屏蔽外太空的辐射,在舱内生活惟一克服不了的就是重力问题,往往给宇航员的工作和生活带来很多麻烦。

由于航天器舱内的环境的特殊,宇航员在里面必须用特殊的方式来工作和生活i,否则会闹出很多笑话。比如吃饭,你端着一碗米饭,那饭会一粒粒飘满你的座舱,你张着嘴可能一粒也吃不着;而你闭上嘴时,饭粒却可能飘进你的鼻孔呛你个半死。想躺下来睡个舒服觉也很难,因为在完全失重的情况下,根本找不到上下的界限,也就是说躺着与站着是没有任何区别的。

那么宇航员们是如何在太空中吃饭与睡眠的呢?

1.住:挂着睡,能洗澡

宇航员可以在飞船上洗澡,这点很多人也许都想不到!其实,尽管飞船内空间不足6立方米,但仍然可以解决宇航员的洗澡问题——因为飞船内有一个单独的用来洗澡的袋子,还可以淋浴。

由于处于失重状态,宇航员在飞船内睡觉也跟在地球上不一样。地面上有重力,而太空中没有重力,宇航员一躺就飘起来了。飞船内有专门的睡袋,就挂在墙壁上,睡觉的时候钻进去就可以了,睡时就挂在那儿!

2.吃:压缩砖,牙膏管

据有关人士介绍。宇航员的饮食很丰富,至少有20中菜谱可供选择,而且并不像大家所想的那样难以下咽。不过,太空食品并非一般的蔬菜水果,而是特别加工过的“压缩砖”或“牙膏管”,对上一定比例的水后,能够恢复原形,味道也不错,里面包含了所有人体需要的营养成分。由于在失重的条件下,菜无法像在地面上一样老实待在盘子里,而是摆在桌子上就飘起来了。因此,专家们把宇航员的食物被设计成了牙膏式的,他们吃饭的时候挤到嘴里就行了。

这些食品的营养价值也比较高,蔬菜、蛋白、脂肪丰富。据陈教授透露,航天集团专门有一个机构负责研究太空食品。宇航员的一天中的每一餐都有合理的搭配,设计的非常科学。

3.衣:120公斤,值千万

东华大学,即原中国纺织大学,是制造宇航服的基地,据他们透露航天服由服装、头盔、手套和航天靴等组成。其中结构最复杂的服装由14层组成:最里层是液冷通风服的衬里;衬里外是液冷通风服,这种服装是由尼龙弹性纤维和穿在上面的许多输送冷却液的塑料细管制成;液冷通风服外是两层加压气密层,然后是限制层,用来限制加压气密层向外膨胀;限制层的外面是防热防微陨尘服,由8层组成,起防热和防微陨尘作用;最外一层是外套。虽然宇航服的结构比较复杂,但穿戴起来并不会很困难,传一套宇航服用的时间一般在15分钟左右。

由于航天服是一种特制的衣服,通常由通风层、气密层、保暖层等多层组成,是一个小的密封系统,具有防护作用和出舱两个功能。这种舱内航天服的造价非常昂贵,光是各种制作材料就高达数千万,再加上设计费用,完成一套宇航服大概要上亿元。整个宇航服重量大约为120千克,除了手套与头盔之外,航天服的其他部位用的是一种特殊的高强度涤纶。

4.宇航员怎样睡觉(1)糊涂觉与奇异睡姿

在太空中,宇航员的睡眠确实很“糊涂”,原因之一就是在太空舱内环境没有白天黑夜之分,再就是睡姿与地球上的比起来很奇异。黑白不分,是说宇航员在天上绕地球航行,太空日出日落由航天器绕地球一圈的时间而定。有时24小时内日出日落交替许多次,宇航员无法遵循地球上“日出而作,日落而息”的生活习惯,只好机械地按钟点安排工作和睡觉。

睡姿之所以奇异,是因为,宇航员在失重的太空环境中找不到躺下的感觉。在地球重力环境,人们习惯于把地心引力的方向定为“下”,把“天”的方向定为“上”,也就是人们常说的“脚踩大地,头顶蓝天”。可是到了失重的环境里,人们失去了“上”“下”的参照坐标,脚踩不到地,四周全是天,你根本分不清上、下,因此,睡觉也就没有了“平躺”一说。在太空舱内,无论是站着、趴着还是躺着,宇航员都能睡着,他们可以挂在墙上,绑在床上,也可以掉在梁上,这些都在地球上都是很不可思议的。

不过大多数宇航员不习惯飘荡着睡。一旦从飘浮睡眠中醒来,他们会产生一种掉进万丈深渊的感觉。为了获得安全感,宇航员一般睡在固定的床上或固定在墙壁上的睡袋里,睡觉时,把睡袋拉紧密封,会给人施加一定的压力,从而消除他们那种“飘飘欲仙”的恐惧感。(2)千万别把手脚伸出被外

在地面上,睡觉时把手或脚伸到外面是很平常的事情,也不会有什么危险,但在太空舱里就没这么简单了。在失重的环境里,把手或脚伸出来是很危险的,因为失重时,人的四肢就不再受自身支配了。一名前苏联宇航员有一次把手臂放在睡袋外睡觉,醒来后突然发现有两只大手向他脸上飘来,吓了他一大跳。原来这飘动的两只大手正是他自己的手。吓一跳还是小事,如果宇航员睡着后,失控的——“自由”之手、“自由”之脚——万一无意中碰到了什么开关、什么仪器,那太空舱的安全、宇航员的生命岂不成了大问题?因此,为了安全起见,在太空睡觉时,要注意把四肢全部放进睡袋里。

5.宇航员怎样进食(1)100多种太空食品

最初宇航员的食物种类只有10多种,但发展到现在已经增加到了上百种。宇航员一天要吃四顿饭,一周内的食谱也不会有重复的。有人以为宇航员的食品都是做成牙膏状的挤着吃,肯定很乏味,其实这是早期宇航员的状况,现在早已今非昔比了。宇航员可以在太空中吃到香肠馅饼、辣味烤鱼、土豆烧牛肉、奶油面包、豆豉肉汤、金枪鱼沙拉、饼干、巧克力、酸奶、果脯、果汁等各种各样的佳肴,美国宇航员甚至可以喝到他们爱喝的可口可乐。但是,宇航员并不可以随心所欲想吃什么就吃什么,所有饮食必须经过地面营养师的严格把

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载