Scientific American Supplement, No. 384, May 12, 1883(txt+pdf+epub+mobi电子书下载)


发布时间:2021-03-06 18:00:36

点击下载

作者:Various

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

Scientific American Supplement, No. 384, May 12, 1883

Scientific American Supplement, No. 384, May 12, 1883试读:

LOCOMOTIVE FOR ST. GOTHARD RAILWAY.

We give engravings of one of a type of eight-coupled locomotives constructed for service on the St. Gothard Railway by Herr T.A. Maffei, of Munich. As will be seen from our illustrations, the engine has outside cylinders, these being 20.48 in. in diameter, with 24 in. stroke, and as the diameter of the coupled wheels is 3 ft. 10 in., the tractive force which the engine is capable of exerting amounts to (20.48² x 24) / 46 = 218.4 lb. for each pound of effective pressure per square inch on the pistons. This is an enormous tractive force, as it would require but a mean effective pressure of 102½ lb. per square inch on the pistons to exert a pull of 10 tons. Inasmuch, however, as the engine weighs 44 tons empty and 51 tons in working order, and as all this weight is available for adhesion, this great cylinder power can be utilized. The cylinders are 6 ft. 10 in. apart from center to center, and they are well secured to the frames, as shown in Fig. 4. The frames are deep and heavy, being 1 3/8 in. thick, and they are stayed by a substantial box framing at the smokebox end, by a cast-iron footplate at the rear end, and by the intermediate plate stays shown. The axle box guides are all fitted with adjusting wedges. The axle bearings are all alike, all being 7.87 in. in diameter by 9.45 in. long. The axles are spaced at equal distances of 4 ft. 3.1 in. apart, the total wheel base being thus 12 ft. 9.3 in. In the case of the 1st, 2d, and 3d axles, the springs are arranged above the axle boxes in the ordinary way, those of the 2d and 3d axles being coupled by compensating beams. In the case of the trailing axle, however, a special arrangement is adopted. Thus, as will be seen on reference to the longitudinal section and plan (Figs. 1 and 2, first page), each trailing axle box receives its load through the horizontal arm of a strong bell-crank lever, the vertical arm of which extends downward and has its lower end coupled to the adjoining end of a strong transverse spring which is pivoted to a pair of transverse stays extending from frame to frame below the ash pan. This arrangement enables the spring for the trailing axle to be kept clear of the firebox, thus allowing the latter to extend the full width between the frames. The trailing wheels are fitted with a brake as shown.LOCOMOTIVES FOR ST. GOTHARD RAILWAY.

The valve motion is of the Gooch or stationary link type, the radius rods being cranked to clear the leading axle, while the eccentric rods are bent to clear the second axle. The piston rods are extended through the front cylinder covers and are enlarged where they enter the crossheads, the glands at the rear ends of cylinders being made in halves. The arrangement of the motion generally will be clearly understood on reference to Figs. 1 and 2 without further explanation.

The boiler, which is constructed for a working pressure of 147 lb. per square inch, is unusually large, the barrel being 60.4 in. in diameter inside the outside rings; it is composed of plates 0.65 in. thick. The firebox spreads considerably in width toward the top, as shown in the section, Fig. 5, and to enable it to be got in the back plate of the firebox casing is flanged outward, instead of inward as usual, so as to enable it to be riveted up after the firebox is in place. The inside firebox is of copper and its crown is stayed directly to the crown of the casing by vertical stays, as shown, strong transverse stays extending across the boiler just above the firebox crown to resist the spreading action caused by the arrangement of the crown stays. The firegrate is 6 ft. 11.6 in. long by 3 ft. 4 in. wide.ST. GOTHARD LOCOMOTIVES.

The barrel contains 225 tubes 1.97 in. in diameter outside and 13 ft. 9½ in. long between tube plates. On the top of the barrel is a large dome containing the regulator, as shown in Fig. 1, from which view the arrangement of the gusset stays for the back plate of firebox casing and for the smokebox tube plate will be seen. A grid is placed across the smokebox just above the tubes, and provision is made, as shown in Figs. 1 and 4, for closing the top of the exhaust nozzle, and opening a communication between the exhaust pipes and the external air when the engine is run reversed. The chimney is 15¾ in. in diameter at its lower end and 18.9 in. at the top. The chief proportions of the boiler are as follows:

                           Sq. ft  Heating surface: Tubes   1598.5                   Firebox  102.5                           ------                           1701.0  Firegrate area                                              23.3 [1]  Sectional area through tubes (disregarding ferrules)         3.5  Least sectional area of chimney.                             1.35  Ratio of firegrate area to heating surface.                  1:73  Ratio of flue area through tubes to firegrate area.          1:6.7  Ratio of least sectional area of chimney to firegrate area.  1:17.26

[Transcribers note 1: Best guess, 2nd digit illegible]

The proportion of chimney area to grate is much smaller than in ordinary locomotives, this proportion having no doubt been fixed upon to enable a strong draught to be obtained with the engine running at a slow speed. Of the general fittings of the engine we need give no description, as their arrangement will be readily understood from our engravings, and in conclusion we need only say that the locomotive under notice is altogether a very interesting example of an engine designed for specially heavy work.--Engineering.

THE MERSEY RAILWAY TUNNEL.

The work of connecting Liverpool with Birkenhead by means of a railway tunnel is now an almost certain success. It is probable that the entire cost of the tunnel works will amount to about half a million sterling. The first step was taken about three years ago, when shafts were sunk simultaneously on both sides of the Mersey. The engineers intrusted with the plans were Messrs. Brunlees & Fox, and they have now as their resident representative Mr. A.H. Irvine, C.E. The contractor for the entire work is Mr. John Waddell, and his lieutenant in charge at both sides of the river is Mr. James Prentice. The post of mechanical engineer at the works is filled by Mr. George Ginty. Under these chiefs, a small army of nearly 700 workmen are now employed night and day at both sides of the river in carrying out the tunnel to completion. On the Birkenhead side, the landward excavations have reached a point immediately under Hamilton Square, where Mr. John Laird's statue is placed, and here there will be an underground station, the last before crossing the river, the length of which will be about 400 feet, with up and down platforms. Riverward on the Cheshire side, the excavators have tunneled to a point considerably beyond the line of the Woodside Stage; while the Lancashire portion of the subterranean work now extends to St. George's Church, at the top of Lord street, on the one side, and Merseyward to upward of 90 feet beyond the quay wall, and nearly to the deepest part of the river.

When completed, the total length of the tunnel will be three miles one furlong, the distance from wall to wall at each side of the Mersey being about three-quarters of a mile. The underground terminus will be about Church street and Waterloo place, in the immediate neighborhood of the Central Station, and the tunnel will proceed from thence, in an almost direct line, under Lord street and James street; while on the south side of the river it will be constructed from a junction at Union street between the London and Northwestern and Great Western Railways, under Chamberlain street, Green lane, the Gas Works, Borough road, across the Haymarket and Hamilton street, and Hamilton square.

Drainage headings, not of the same size of bore as the part of the railway tunnel which will be in actual use, but indispensable as a means of enabling the railway to be worked, will act as reservoirs into which the water from the main tunnel will be drained and run off to both sides of the Mersey, where gigantic pumps of great power and draught will bring the accumulating water to the surface of the earth, from whence it will be run off into the river. The excavations of these drainage headings at the present time extend about one hundred yards beyond the main tunnel works at each side of the river. The drainage shafts are sunk to a depth of 180 feet, and are below the lowest point of the tunnel, which is drained into them. Each drainage shaft is supplied with two pumping sets, consisting of four pumps, viz., two of 20 in. diameter, and two of 30 in. diameter. These pumps are capable of discharging from the Liverpool shafts 6,100 gallons per minute, and from the Birkenhead 5,040 gallons per minute; and as these pumps will be required for the permanent draining of the tunnel, they are constructed in the most solid and substantial manner. They are worked by compound engines made by Hathorn, Davey & Co., of Leeds, and are supplied with six steel boilers by Daniel Adamson & Co., of Dukinfield, near Manchester.

In addition to the above, there is in course of construction still more powerful pumps of 40 in. diameter, which will provide against contingencies, and prevent delay in case of a breakdown such as occurred lately on the Liverpool side of the works. The nature of the rock is the new red sandstone, of a solid and compact character, favorable for tunneling, and yielding only a moderate quantity of water. The engineers have been enabled to arrange the levels to give a minimum thickness of 25 ft. and an average thickness of 30 ft. above the crown of the tunnel.

Barges are now employed in the river for the purpose of ascertaining the depth of the water, and the nature of the bottom of the river. It is satisfactory to find that the rock on the Liverpool side, as the heading is advanced under the river, contains less and less water, and this the engineers are inclined to attribute to the thick bed of stiff bowlder clay which overlies the rock on this side, which acts as a kind of "overcoat" to the "under garments." The depth of the water in one part of the river is found to be about 72 ft.; in the middle about 90 ft.; and as there is an intermediate depth of rock of about 27 ft., the distance is upward of 100 ft. from the surface of low water to the top of the tunnel.

It is expected that the work will shortly be pushed forward at a much greater speed than has hitherto been the case, for in place of the miner's pick and shovel, which advanced at the rate of about ten yards per week, a machine known as the Beaumont boring machine will be brought into requisition in the course of a day or two, and it is expected to carry on the work at the rate of fifty yards per week, so that this year it may be possible to walk through the drainage heading from Liverpool to Birkenhead. The main tunnel works now in progress will probably be completed and trains running in the course of 18 months or two years.

The workmen are taken down the shaft by which the debris is hoisted, ten feet in diameter, and when the visitor arrives at the bottom he finds himself in quite a bright light, thanks to the Hammond electric light, worked by the Brush machine, which is now in use in the tunnel on both sides of the river. The depth of the pumping shaft is 170 feet, and the shaft communicates directly with the drainage heading. This circular heading now has been advanced about 737 yards. The heading is 7 feet in diameter, and the amount of it under the river is upward of 200 yards on each side. The main tunnel, which is 26 feet wide and 21 feet high, has also made considerable progress at both the Liverpool and Birkenhead ends. From the Liverpool side the tunnel now extends over 430 yards, and from the opposite shore about 590 yards. This includes the underground stations, each of which is 400 feet long, 51 feet wide, and 32 feet high. Although the main tunnel has not made quite the same progress between the shafts as the drainage heading, it is only about 100 yards behind it. When completed, the tunnel will be about a mile in length from shaft to shaft. In the course of the excavations which have been so far carried out, about 70 cubic yards of rock have been turned out for every yard forward.

Ten horses are employed on the Birkenhead side for drawing wagons loaded with debris to the shaft, which, on being hoisted, is tipped into the carts and taken for deposit to various places, some of which are about three miles distant. The tunnel is lined throughout with very solid brickwork, some of which is, 18 inches thick (composed of two layers of blue and two of red brick), and toward the river this brickwork is increased to a thickness of six rings of bricks--three blue and three red. A layer of Portland cement of considerable thickness also gives increased stability to the brick lining and other portions of the tunnel, and the whole of the flooring will be bricked. There are about 22 yards of brickwork in every yard forward. The work of excavation up to the present time has been done by blasting (tonite being employed for this purpose), and by the use of the pick and shovel. At every 45 ft. on alternate sides niches of 18 in. depth are placed for the safety of platelayers. The form of the tunnel is semicircular, the arch having a 13 ft. radius, the side walls a 25 ft. radius, and the base a 40 ft. radius.

Fortunately not a single life has up to the present time been lost in carrying out the exceedingly elaborate and gigantic work, and this immunity from accident is largely owing to the care and skill which are manifested by the heads of the various departments. The Mersey Tunnel scheme may now be looked upon as an accomplished work, and there is little doubt its value as a commercial medium will be speedily and fully appreciated upon completion.

DAM ACROSS THE OTTAWA RIVER AND NEW CANAL AT CARILLON QUE

By ANDREW BELL Resident Engineer

The natural navigation of the Ottawa River from the head of the Island of Montreal to Ottawa City--a distance of nearly a hundred miles--is interrupted between the villages of Carillon and Grenville which are thirteen miles apart by three rapids, known as the Carillon, Chûte à Blondeau, and Longue Sault Rapids, which are in that order from east to west. The Carillon Rapid is two miles long and has, or had, a fall of 10 feet the Chûte à Blondeau a quarter of a mile with a fall of 4 feet and the Longue Sault six miles and a fall of 46 feet. Between the Carillon and Chûte à Blondeau there is or was a slack water reach of three and a half miles, and between the latter and the foot of the Longue Sault a similar reach of one and a quarter miles.

Small canals limited in capacity to the smaller locks on them which were only 109 feet long 19 feet wide, and 5 to 6 feet of water on the sills, were built by the Imperial Government as a military work around each of the rapids. They were begun in 1819 and completed about 1832. They were transferred to the Canadian Government in 1856. They are built on the north shore of the river, and each canal is about the length of the rapid it surmounts.

THE GREAT DAM ACROSS THE OTTAWA RIVER, AT CARILLON.

The Grenville Canal (around the Longue Sault) with seven locks, and the Chûte à Blondeau with one lock, are fed directly from Ottawa. But with the Carillon that method was not followed as the nature of the banks there would have in doing so, entailed an immense amount of rock excavation--a serious matter in those days. The difficulty was overcome by locking up at the upper or western end 13 feet and down 23 at lower end, supplying the summit by a 'feeder from a small stream called the North River, which empties into the Ottawa three or four miles below Carillon, but is close to the main river opposite the canal.

In 1870-71 the Government of Canada determined to enlarge these canals to admit of the passage of boats requiring locks 200 feet long, 45 feet wide, and not less than 9 feet of water on the sills at the lowest water. In the case of the Grenville Canal this was and is being done by widening and deepening the old channel and building new locks along side of the old ones. But to do that with the Carillon was found to be inexpedient. The rapidly increasing traffic required more water than the North River could supply in any case, and the clearing up of the country to the north had materially reduced its waters in summer and fall, when most needed. To deepen the old canal so as to enable it to take its supply from the Ottawa would have caused the excavation of at least 1,250,000 cubic yards of rock, besides necessitating the enlargement of the Chûte à Blondeau also.

It was therefore decided to adopt a modification of the plan proposed by Mr. T.C. Clarke, of the present firm of Clarke Reeves & Co, several years before when he made the preliminary surveys for the then proposed "Ottawa Ship Canal," namely to build a dam across the river in the Carillon Rapid but of a sufficient height to drown out the Chûte à Blondeau, and also to give the required depth of water there.

During the summer and fall of 1872 the writer made the necessary surveys of the river with that end in view. By gauging the river carefully in high and low water, and making use of the records which had been kept by the lock masters for twenty years back, it was found that the flow of the river was in extreme low water 26,000 cubic feet per second, and in highest water 190,000 cubic feet per second, in average years about 30,000 and 150,000 cubic feet respectively. The average flow in each year would be nearly a mean between those quantities, namely, about 90,000 cubic feet per second. It was decided to locate the dam where it is now built, namely, about the center of Carillon Rapid, and a mile above the village of that name and to make it of a height sufficient to raise the reach between the head of Carillon and Chûte à Blondeau about six feet, and that above the latter two feet in ordinary water. At the site chosen the river is 1,800 feet wide, the bed is solid limestone, and more level or flat than is generally found in such places--the banks high enough and also composed of limestone. It was also determined to build a slide for the passage of timber near the south shore (see map), and to locate the new canal on the north side.

Contracts for the whole works were given out in the spring of 1873, but as the water remained high all the summer of that year very little could be done in it at the dam. In 1874 a large portion of the foundation, especially in the shallow water, was put in. 1875 and 1876 proved unfavorable and not much could be done, when the works were stopped. They were resumed in 1879, and the dam as also the slide successfully completed, with the exception of graveling of the dam in the fall of 1881. The water was lower that summer than it had been for thirty five years before. The canal was completed and opened for navigation the following spring.THE DAM

In building such a dam as this the difficulties to be contended against were unusually great. It was required to make it as near perfectly tight as possible and be, of course, always submerged. Allowing for water used by canal and slide and the leakage there should be a depth on the crest of the dam in low water of 2.50 feet and in high of about 10 feet. These depths turned out ultimately to be correct. The river reaches its highest about the middle of May, and its lowest in September. It generally begins to rise again in November. Nothing could be done except during the short low water season, and some years nothing at all. Even at the most favorable time the amount of water to be controlled was large. Then the depth at the site varied in depth from 2 to 14 feet, and at one place was as much as 23 feet. The current was at the rate of from 10 to 12 miles an hour. Therefore, failures, losses, etc., could not be avoided, and a great deal had to be learned as the work progressed. I am not aware that a dam of the kind was ever built, or attempted to be built across a river having such a large flow as the Ottawa.

The method of construction was as follows. Temporary structures of various kinds suited to position, time, etc., were first placed immediately above the site of the dam to break the current. This was done in sections and the permanent dam proceeded with under that protection.

In shallow water timber sills 36 feet long and 12 inches by 12 inches were bolted to the lock up and down stream, having their tops a uniform height, namely, 9.30 feet below the top of dam when finished. These sills were, where the rock was high enough, scribed immediately to it, but if not, they were 'made up' by other timbers scribed to the rock, as shown by Figs 4 and 5. They were generally placed in pairs about 6 feet apart, and each alternate space left open for the passage of water, to be closed by gates as hereafter described. Each sill was fastened by five 1½ in. bolts driven into pine plugs forced into holes drilled from 18 inches to 24 inches into the rock. The temporary rock was then removed as far as possible, to allow a free flow of the water.

In the channels of which there are three, having an aggregate

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载