Ueber Riemann's Theorie der Algebraischen Functionen(txt+pdf+epub+mobi电子书下载)


发布时间:2021-04-08 02:15:09

点击下载

作者:Felix Klein

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

Ueber Riemann's Theorie der Algebraischen Functionen

Ueber Riemann's Theorie der Algebraischen Functionen试读:

ABSCHNITT I. - EINLEITENDE BETRACHTUNGEN.

§. 1. Stationäre Strömungen in der Ebene als Deutung der Functionen von x + iy.

Die physikalische Deutung der Functionen von [formula], mit welcher wir im Folgenden zu arbeiten haben, ist in ihren Grundlagen wohlbekannt(1), nur der Vollständigkeit halber müssen letztere kurz zur Sprache gebracht werden.

Sei [formula], [formula], [formula]. Dann hat man vor allen Dingen:

[formula]

und hieraus:

[formula]

sowie für v:

[formula]

Hier wird man nun u als Geschwindigkeitspotential deuten, so dass [formula] [formula] die Componenten der Geschwindigkeit sind, mit der eine Flüssigkeit parallel zur [formula]-Ebene strömt. Wir mögen uns diese Flüssigkeit zwischen zwei Ebenen eingeschlossen denken, die parallel zur [formula]-Ebene verlaufen, oder auch uns vorstellen, dass die Flüssigkeit als unendlich dünne, übrigens gleichförmige Membran über der [formula]-Ebene ausgebreitet sei. Dann sagt die Gleichung (2)—und dies ist der Kern unserer physikalischen Deutung—, dass unsere Strömung eine stationäre ist. Die Curven [formula] Const. heissen die Niveaucurven, während die Curven [formula] Const., die vermöge (1) den ersteren überall rechtwinkelig begegnen, die Strömungscurven abgeben.

Bei dieser Vorstellungsweise ist es zunächst natürlich völlig gleichgültig, wie beschaffen wir uns die strömende Flüssigkeit denken wollen. Inzwischen wird es in der Folge vielfach zweckmässig sein, dieselbe mit dem elektrischen Fluidum zu identificiren. Es wird dann nämlich u mit dem elektrostatischen Potential, welches die Strömung hervorruft, proportional, und die experimentelle Physik gibt uns mannigfache Mittel an die Hand, um zahlreiche Strömungszustände, die uns interessiren, thatsächlich zu realisiren.

Die Strömung selbst wird übrigens ungeändert bleiben, wenn wir u durchweg um eine Constante vermehren: es sind nur die Differentialquotienten [formula], welche unmittelbar in Evidenz treten. Das Analoge gilt von v; so dass die Function [formula], welche wir physikalisch deuten, durch diese Deutung nur bis auf eine additive Constante bestimmt ist, was im Folgenden wohl zu beachten ist.

Sodann bemerke man noch, dass die Gleichungen (1)-(3) ungeändert bestehen bleiben, wenn man u durch v, v durch [formula] ersetzt. Dementsprechend erhalten wir einen zweiten Strömungszustand, bei welchem v das Geschwindigkeitspotential abgibt und die Curven [formula] Const. die Strömungscurven sind. Derselbe repräsentirt in dem oben erläuterten Sinne die Function [formula]. Es ist häufig zweckmässig, diese neue Strömung neben der ursprünglichen zu betrachten, bei welcher u das Geschwindigkeitspotential war; wir wollen dann der Kürze halber von conjugirten Strömungen sprechen. Die Benennung ist zwar etwas ungenau, weil sich u zu v verhält, wie v zu [formula]; sie wird aber für später ausreichen.

Diese ganze Erläuterung bezieht sich, gleich den Differentialgleichungen (1)-(3), zuvörderst nur auf einen solchen (übrigens beliebigen) Theil der Ebene, in welchem [formula] eindeutig ist und weder [formula], noch einer seiner Differentialquotienten unendlich wird. Um den entsprechenden physikalischen Vorgang deutlich zu übersehen, hat man sich also vorab einen solchen Bereich abzugränzen und durch geeignete Vorrichtungen an der Gränze dafür zu sorgen, dass der im Inneren des Gebietes eingeleitete stationäre Bewegungszustand ungehindert fortdauern kann.

In einem so umgränzten Gebiete werden diejenigen Puncte [formula] unsere besondere Aufmerksamkeit auf sich ziehen, für welche der Differentialquotient [formula] verschwindet. Ich will der Allgemeinheit wegen gleich annehmen, dass auch [formula], [formula], [formula] bis hin zu [formula] gleich Null sein mögen. Um über den Verlauf der Niveaucurven, oder auch der Strömungscurven, in der Nähe eines solchen Punctes Aufschluss zu erhalten, entwickele man w in eine nach Potenzen von [formula] fortschreitende Reihe. Dieselbe bringt hinter dem constanten Gliede unmittelbar ein Glied mit [formula]. Durch Einführung von Polarcoordinaten schliesst man hieraus: dass sich im Puncte [formula] [formula] Curven [formula] Const. unter resp. gleichen Winkeln kreuzen, während ebensoviel Curven [formula] Const. als Halbirungslinien der genannten Winkel auftreten. Ich werde einen solchen Punct dementsprechend einen Kreuzungspunct nennen, und zwar einen Kreuzungspunct von der Multiplicität [formula].

Die folgende (selbstverständlich nur schematische) Figur mag dieses Vorkommniss für [formula] erläutern und namentlich verständlich machen, wie sich ein Kreuzungspunct in das Orthogonalsystem einfügt, welches übrigens von den Curven [formula] Const., [formula] Const. gebildet wird:

[Illustration: Figur 1.]

Figur 1.

Die Strömungscurven [formula] Const. erscheinen in der Figur ausgezogen und die Strömungsrichtungen auf ihnen durch beigesetzte Pfeilspitzen angegeben; die Niveaucurven sind durch Punctirung angedeutet. Man sieht, wie die Flüssigkeit von drei Seiten auf den Kreuzungspunct zuströmt, um ebenfalls nach drei Seiten von demselben abzuströmen. Diess wird nur dadurch möglich, dass die Geschwindigkeit der Strömung im Kreuzungspunkte gleich Null wird (dass sich die Flüssigkeit in demselben staut, wie man nach Analogie bekannter Vorkommnisse sagen könnte). In der That ist ja die Geschwindigkeit durch [formula] gegeben.

Es ist weiterhin vortheilhaft, den Kreuzungspunkt von der Multiplicität [formula] als Gränzfall von [formula] einfachen Kreuzungspuncten aufzufassen. Dass diess zulässig ist, zeigt die analytische Behandlung. Denn im [formula]-fachen Kreuzungspunkte hat die Gleichung [formula] eine [formula]-fache Wurzel, und eine solche entsteht, wie man weiss, durch Zusammenrücken von [formula] einfachen Wurzeln. Im Uebrigen mögen folgende Figuren diese Auffassung erläutern:

[Illustration: Figur 2.]

Figur 2.

[Illustration: Figur 3.]

Figur 3.

Ich habe in denselben der Einfachheit halber nur die Strömungscurven angegeben. Linker Hand erblickt man denselben Kreuzungspunct von der Multiplicität Zwei, auf den sich Figur 1 bezieht. Rechter Hand liegt eine Strömung vor, welche dicht bei einander zwei einfache Kreuzungspuncte aufweist. Man erkennt, wie der eine Strömungszustand aus dem anderen durch continuirliche Aenderung hervorgeht.

Bei dieser Erläuterung wurde stillschweigend vorausgesetzt, dass das Gebiet, in welchem wir den Strömungszustand betrachten, sich nicht in’s Unendliche erstrecke. Es hat allerdings keinerlei principielle Schwierigkeit, den Punct [formula] ebenso in Betracht zu ziehen, wie irgend einen anderen Punct [formula]. An Stelle der Reihenentwickelung nach Potenzen von [formula] hat dann in bekannter Weise eine solche nach Potenzen von [formula] zu treten. Man wird von einem [formula]-fachen Kreuzungspuncte bei [formula] sprechen, wenn diese Entwickelung hinter dem constanten Gliede sofort einen Term mit [formula] bringt. Aber es scheint überflüssig, die geometrischen Verhältnisse, welche diesen Vorkommnissen bei unserer Strömung entsprechen, ausführlicher zu schildern. Denn wir werden später Mittel und Wege kennen lernen, um die Sonderstellung des Werthes [formula], wie sie uns hier entgegentritt, ein für allemal zu beseitigen. Ebendesshalb wird der Punct [formula] in den nächstfolgenden Paragraphen (§. 2-4) bei Seite gelassen, trotzdem er auch dort, wenn man vollständig sein wollte, besonders in Betracht gezogen werden müsste.

§. 2. Berücksichtigung der Unendlichkeitspuncte von w = f(z).

Wir wollen nunmehr auch solche Puncte [formula] in unser Gebiet hereinnehmen, in denen [formula] unendlich gross wird. Dabei schränken wir indess die unbegränzte Reihe der Möglichkeiten, welche in dieser Richtung vorliegt, mit Rücksicht auf die specielle von uns allein zu studierende Functionsclasse bedeutend ein. Wir wollen verlangen, dass der Differentialquotient [formula] keine wesentlich singuläre Stelle besitzen soll, oder, was dasselbe ist, wir wollen festsetzen, _dass __w__ nur so unendlich werden darf, wie ein Ausdruck der folgenden Form_:

[formula]

unter [formula] eine bestimmte endliche Zahl verstanden.

Entsprechend den verschiedenen Formen, die dieser Ausdruck darbietet, sagen wir, dass sich bei [formula] verschiedene Unstetigkeiten überlagern: ein logarithmischer Unendlichkeitspunct, ein algebraischer Unendlichkeitspunct von der Multiplicität Eins, u. s. f. Wir werden der Einfachheit halber hier jedes dieser Vorkommnisse für sich betrachten, worauf es eine nützliche Uebung sein wird, sich in einzelnen Fällen das Resultat der Ueberlagerung deutlich zu machen.

Sei [formula] zuvörderst ein logarithmischer Unendlichkeitspunct. Wir haben dann:

[formula]

Hier ist A diejenige Grösse, welche man, mit [formula] multiplicirt, nach Cauchy als Residuum des logarithmischen Unendlichkeitspunctes bezeichnet, eine Benennung, die im Folgenden gelegentlich angewandt werden soll. Für die Strömung in der Nähe des Unstetigkeitspunctes ist es von primärer Wichtigkeit, ob A reell ist oder rein imaginär, oder endlich complex. Offenbar kann man den dritten Fall als eine Ueberlagerung der beiden ersten auffassen. Wir wollen daher auch ihn bei Seite lassen und haben uns somit nur mit zwei getrennten Möglichkeiten zu beschäftigen.

1) Wenn A reell ist, so werde [formula] gesetzt. Man hat dann in erster Annäherung für [formula], [formula]:

[formula]

Die Curven [formula] Const. umgeben also den Unendlichkeitspunct in Gestalt kleiner Kreise; die Curven [formula] Const. laufen, den wechselnden Werthen von [formula] entsprechend, in allen Richtungen auf den Unendlichkeitspunct zu. Wir haben eine Bewegung, bei welcher [formula] eine Quelle von einer gewissen positiven oder negativen Ergiebigkeit vorstellt. Um diese Ergiebigkeit zu berechnen, multipliciren wir das Bogenelement eines kleinen mit dem Radius r um den Unstetigkeitspunct beschriebenen Kreises mit der zugehörigen Geschwindigkeit und integriren den so gewonnenen Ausdruck längs der Kreisperipherie. Da [formula] in erster Annäherung mit [formula] und dieses mit [formula] zusammenfällt, so kommt:

[formula]

als Werth der Ergiebigkeit. _Die Ergiebigkeit ist also gleich dem Residuum, getheilt durch __i__; sie ist positiv oder negativ je nach dem Werthe von __A_.

2) Sei zweitens A rein imaginär, gleich [formula]. Dann kommt unter Beibehaltung der übrigen Bezeichnungen in erster Annäherung:

[formula]

Die Rollen der Curven [formula] Const., [formula] Const. sind also geradezu vertauscht. Die Niveaucurven verlaufen jetzt nach allen Richtungen von [formula] aus, während die Strömungscurven den Unendlichkeitspunct in kleinen Kreisen umgeben. Die Flüssigkeit wirbelt auf letzteren Curven um den Punct [formula] herum. Ich will den Punct dementsprechend als einen Wirbelpunct bezeichnen. Sinn und Intensität des Wirbels werden durch [formula] gemessen. Da die Geschwindigkeit

[formula]

in erster Annäherung gleich [formula] wird, so findet die Wirbelbewegung bei positivem [formula] im Sinne des Uhrzeigers, bei negativem [formula] in entgegengesetztem Sinne statt. Wir mögen die Intensität des Wirbels gleich [formula] setzen, sie ist dann dem Residuum des betreffenden Unendlichkeitspunctes negativ gleich.

Uebrigens können wir sagen, indem wir uns der Definition conjugirter Strömungen, wie sie im vorigen Paragraphen gegeben wurde, mit der ihr anhaftenden Unbestimmtheit erinnern: Hat eine von zwei conjugirten Strömungen bei [formula] eine Quelle von einer gewissen Ergiebigkeit, so hat die andere dort einen Wirbelpunct von gleicher oder entgegengesetzt gleicher Intensität.

Wir betrachten ferner die algebraischen Unstetigkeitspuncte. Bei ihnen ist der Verlauf der Strömung seinem allgemeinen Charakter nach davon unabhängig, ob das erste Glied der Reihenentwickelung einen reellen, imaginären oder complexen Coefficienten hat. Sei zuvörderst:

[formula]

so wird in erster Annäherung für [formula], [formula]:

[formula]

Betrachten wir zuvörderst den reellen Theil rechter Hand. Wenn r sehr klein ist, so kann [formula] durch geschickte Wahl von [formula] doch noch jeden beliebigen vorgegebenen Werth vorstellen. _Die Function __u__ nimmt also in unmittelbarer Nähe der Unstetigkeitsstelle noch jeden Werth an_. Zur näheren Orientirung denken wir uns einen Augenblick r und [formula] als unbegränzte Veränderliche, setzen also

[formula]

Wir erhalten dann ein Büschel von Kreisen, welche alle die feste Richtung [formula] berühren. Die Kreise sind um so kleiner, je grösser der absolute Betrag von Const. genommen wird. In ähnlicher Weise verlaufen daher die Curven [formula] Const. in der Nähe der Unstetigkeitsstelle. Insbesondere haben sie für sehr grosse positive oder negative Werthe von Const. die Gestalt kleiner, geschlossener, kreisähnlicher Ovale.—Für den imaginären Theil des Ausdrucks rechter Hand und also die Curven [formula] Const. gilt eine ähnliche Discussion. Der Unterschied ist nur der, dass jetzt die Richtung [formula] von allen Curven berührt wird. Hiernach wird die folgende Figur, in welcher die Niveaucurven wieder punctirt, die Strömungscurven ausgezogen sind, verständlich sein:

[Illustration: Figur 4.]

Figur 4.

Die analoge Discussion liefert vom [formula]-fachen algebraischen Unstetigkeitspuncte die erforderliche Anschauung. Ich will hier nur das Resultat anführen: Jede Curve [formula] Const. läuft [formula]-mal durch den Unstetigkeitspunct hindurch, indem sie der Reihe nach [formula] feste, gleich stark gegen einander geneigte Tangenten berührt. Analog die Curven [formula]_ Const. Für sehr grosse (positive oder negative) Werthe der Constante sind beiderlei Curven in__ unmittelbarer Nähre der Unstetigkeitsstelle geschlossen_. Ich gebe zur Veranschaulichung eine Figur für [formula]:

[Illustration: Figur 5.]

Figur 5.

Man wird vermuthen, dass diese höheren Vorkommnisse aus den niederen durch Gränzübergang entstehen mögen. Ich verschiebe die betreffende Erläuterung bis zum folgenden Paragraphen, wo uns eine bestimmte Functionsclasse die erforderlichen Anschauungen mit Leichtigkeit vermitteln wird.

§. 3. Rationale Functionen und ihre Integrale. Entstehung höherer Unendlichkeitspuncte aus niederen.

Die entwickelten Sätze genügen, um den Gesammtverlauf solcher Functionen zu veranschaulichen, die, übrigens in der ganzen Ebene eindeutig, keine anderen Unendlichkeitspuncte aufweisen, als die eben betrachteten. Es sind diess, wie man weiss, die rationalen Functionen und ihre Integrale. Ohne ausgeführte Zeichnungen zu geben, stelle ich hier die Sätze, welche man bei ihnen betreffs der Kreuzungspuncte und Unendlichkeitspuncte findet, in knapper Form zusammen. Ich beschränke mich dabei, aus dem oben angegebenen Grunde, auf solche Fälle, in denen [formula] keinerlei ausgezeichnete Rolle spielt. Die hierin liegende Beschränkung wird hinterher, wie bereits angedeutet, von selbst in Wegfall kommen.

1) Die rationale Function, welche wir zu betrachten haben, stellt sich in der Form dar:

[formula]

wo [formula] und [formula] ganze Functionen desselben Grades sind, die ohne gemeinsamen Theiler angenommen werden können. Ist dieser Grad der [formula] und zählt man jeden algebraischen Unendlichkeitspunct so oft, als seine Multiplicität anzeigt, so erhält man, den Wurzeln von [formula] entsprechend, n algebraische Unstetigkeitspuncte. Die Kreuzungspuncte sind durch [formula], eine Gleichung [formula] Grades, gegeben. Die Gesammtmultiplicität der Kreuzungspuncte ist also [formula], wobei man aber beachten muss, dass jede [formula]-fache Wurzel von [formula] eine [formula]-fache Wurzel von [formula] ist und also jeder [formula]-fache Unendlichkeitspunct der Function für [formula] Kreuzungspuncte mitzählt.

2) Soll das Integral einer rationalen Function

[formula]

für [formula] endlich bleiben, so muss der Grad von [formula] um zwei Einheiten kleiner sein als der Grad von [formula]. [formula] und [formula] sollen dabei ohne gemeinsamen Theiler angenommen werden. Dann liefert [formula] die freien Kreuzungspuncte, d. h. diejenigen Kreuzungspuncte, welche nicht mit Unendlichkeitspuncten zusammenfallen. Die Wurzeln von [formula] geben die Unendlichkeitspuncte des Integrals. Und zwar entspricht der einfachen Wurzel von [formula] ein logarithmischer Unendlichkeitspunct, der Doppelwurzel ein Unendlichkeitspunct, der im Allgemeinen die Ueberlagerung eines logarithmischen Unstetigkeitspunctes mit einem einfachen algebraischen sein wird, etc. Wenn man dementsprechend jeden Unendlichkeitspunct so oft zählt, als die Multiplicität des entsprechenden Factors in [formula] beträgt, so ist die Gesammtmultiplicität der Kreuzungspuncte um zwei Einheiten geringer als die der Unendlichkeitspuncte. Uebrigens sei noch an den bekannten Satz erinnert, dass die Summe der logarithmischen Residua sämmtlicher Unstetigkeitspuncte gleich Null ist.—

Das Vorstehende gibt uns eine zweifache Möglichkeit, um höhere Unstetigkeitspuncte aus niederen entstehen zu lassen. Wir können einmal—und diess ist für uns das Wichtigste—vom Integral der rationalen Function ausgehen. Bei ihm entsteht ein [formula]-facher algebraischer Unstetigkeitspunct, wenn [formula] Factoren von [formula] einander gleich werden, wenn also [formula] logarithmische Unstetigkeitspuncte in geeigneter Weise zusammenrücken. Dabei ist deutlich, dass die Residuensumme der letzteren gleich Null sein muss, wenn der entstehende Unendlichkeitspunct ein rein algebraischer sein soll. Die folgenden beiden Figuren, in denen nur die Strömungscurven angegeben sind, erläutern den betreffenden Gränzübergang für den einfachen algebraischen Unstetigkeitspunct der Figur (4):

[Illustration: Fig. 6.]

Fig. 6.

[Illustration: Fig. 7.]

Fig. 7.

Ich habe dabei die Anordnung in doppelter Weise getroffen, so dass linker Hand zwei Quellenpuncte, rechter Hand zwei Wirbelpuncte einander nahe gerückt scheinen und Figur 4 als übereinstimmendes Resultat des Gränzüberganges in beiden Fällen erscheint. In derselben Beziehung stehen die folgenden beiden Zeichnungen zu Figur 5:

[Illustration: Fig. 8.]

Fig. 8.

[Illustration: Fig. 9.]

Fig. 9.

Die zweite Möglichkeit für das Entstehen höherer Unendlichkeitsstellen aus niederen bietet die Betrachtung der rationalen Function [formula] selbst. Logarithmische Unendlichkeitsstellen bleiben dabei ausgeschlossen. Der [formula]-fache algebraische Unstetigkeitspunct entsteht jetzt aus [formula] einfachen algebraischen Unstetigkeitspuncten, indem nämlich [formula] einfache lineare Factoren von [formula] zu einem [formula]-fachen zusammenrücken müssen. Aber zugleich vereinigt sich mit ihnen eine Anzahl von Kreuzungspuncten, deren Gesammtmultiplicität [formula] beträgt. Denn [formula] erhält, wie schon bemerkt, in demselben Augenblicke, wo [formula] den [formula]-fachen Factor bekommt, einen [formula]-fachen Factor. Die folgende Figur erläutert in diesem Sinne das Entstehen des in Figur 5 abgeleiteten zweifachen algebraischen Unendlichkeitspunctes:

[Illustration: Fig. 10.]

Fig. 10.

Es ist natürlich leicht, diese beiden Arten des Gränzüberganges unter eine allgemeinere gemeinsam zu subsumiren. Wenn man [formula] logarithmische Unendlichkeitspuncte und [formula] Kreuzungspuncte successive oder gleichzeitig zusammenfallen lässt, so wird allemal ein [formula]-facher algebraischer Unstetigkeitspunct entstehen. Doch ist hier nicht der Ort, um diese Gedanken weiter auszuführen.

§. 4. Realisation der betrachteten Strömungen auf experimentellem Wege.

Wir wollen unserer Betrachtung nunmehr eine andere Wendung geben, indem wir uns fragen, wie diejenigen Bewegungsformen, die wir jetzt von den rationalen Functionen und ihren Integralen kennen, physikalisch realisirt werden mögen. Dabei sei es gestattet, von dem Princip der Ueberlagerung ausgiebigen Gebrauch zu machen, so dass es sich nur um Herstellung der allereinfachsten Bewegungsformen handelt. Aus der Theorie der Partialbrüche folgt, dass man jede der in Betracht kommenden Functionen aus einzelnen Bestandtheilen additiv zusammensetzen kann, welche sich unter einen der folgenden beiden Typen subsumiren:

[formula]

Da [formula] bei [formula] einen Unstetigkeitspunct hat, was eine unnöthige Besonderheit ist, so wollen wir den ersten Typus durch den allgemeineren ersetzen:

[formula]

und diesen selbst wieder, entsprechend den Erläuterungen des §.

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载