数控加工技术经验(txt+pdf+epub+mobi电子书下载)


发布时间:2021-08-05 03:42:01

点击下载

作者:贾师强 陈文婷 刘双进

出版社:中国铁道出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

数控加工技术经验

数控加工技术经验试读:

前言

数控加工技术是先进制造技术的基础和核心,它的普及将使现代制造技术产生巨大变革,它的产生也推动现代制造逐渐向自动化、柔性化、集成化发展。数控加工技术是提高制造业的产品质量和劳动生产率必不可少的手段,更是一个国家制造业现代化水平的重要标志,因此它的发展直接影响到国民经济各部门制造技术水平的提高。“经验是实践得来的知识或技能”。技术经验是运用技术理论的结晶,技术经验是实践运用技术理论进行总结的才华,技术经验是解决生产技术难题的捷径。一个人要想为国家和企业做出更大的贡献,实现人生最大价值和理想,除努力学习和实践外,还要学习、借鉴和运用他人的技术经验,来提高在生产实践中的应变能力,促进技术进步和生产发展。

此书是编者在机械加工方面的技术经验和收集社会技术经验而成。内容包括数控车削工艺、数控铣削工艺和数控磨削工艺,共三章24节。具体编写情况如下:贾师强编写第一章第三节、第一章第四节、第一章第七节;陈文婷编写第二章第三节、第二章第四节、第二章第六节;刘双进编写第二章第七节、第二章第九节、第二章第十节;柳洋、李军编写第一章第一节、第一章第二节;胡志强、邵磊编写第一章第五节、第二章第五节;路春泽、刘争编写第一章第六节、第二章第八节;落海伟、赵洪杰编写第二章第一节、第二章第二节;孙亮、陈金奇、王佐友编写第三章。

在编写的过程中,得到了郑文虎老师和宋重生老师的技术指导,也得到了曲振海、李红永、白彦津、李永健、赵珊珊、杨战捷、张金国、胡建新、刘涛、王维宣、胡学尧、刘萃伦、付文、何正洪、赵桂庆、张亮、杨洋、邵明堃、李佑杰、张嵩、李志新、张彦明、李磊、刘菲、靳立冬、解占平、李小霞、王立君、赵立国、陈建新、李迎春、袁鹰、王志坚、邵明堃、陈艳青、于亮、由文超等相关人员的大力支持,同时也参考了相关作者的资料,在此一并表示衷心地感谢!由于编者水平所限,书中难免有错误之处,恳请读者指正。

编者2015年5月第一章数控车削工艺第一节常用数控车削设备及特点

1.数控机床定义

数控机床是数字控制机床(Computer numerical control ma-chinetools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,用代码化的数字表示,通过信息载体输入数控装置。经运算处理由数控装置发出各种控制信号,控制机床的动作,按图纸要求的形状和尺寸,自动地将零件加工出来。数控机床较好地解决了复杂、精密、小批量、多品种的零件加工问题,是一种柔性的、高效能的自动化机床,代表了现代机床控制技术的发展方向,是一种典型的机电一体化产品。

它有如下特点:(1)对加工对象的适应性强,适应模具等产品单件生产的特点,为模具的制造提供了合适的加工方法;(2)加工精度高,具有稳定的加工质量;(3)可进行多坐标的联动,能加工形状复杂的零件;(4)加工零件改变时,一般只需要更改数控程序,可节省生产准备时间;(5)机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);(6)机床自动化程度高,可以减轻劳动强度;(7)有利于生产管理的现代化。数控机床使用数字信息与标准代码处理、传递信息,使用了计算机控制方法,为计算机辅助设计、制造及管理一体化奠定了基础;(8)对操作人员的素质要求较高,对维修人员的技术要求更高;(9)可靠性高。

数控机床与传统机床相比,具有以下一些特点:(1)具有高度柔性

在数控机床上加工零件,主要取决于加工程序,它与普通机床不同,不必制造、更换许多模具、夹具,不需要经常重新调整机床。因此,数控机床适用于所加工的零件频繁更换的场合,亦即适合单件、小批量产品的生产及新产品的开发,从而缩短了生产准备周期,节省了大量工艺装备的费用。(2)加工精度高

数控机床的加工精度一般可达0.05~0.1mm,数控机床是按数字信号形式控制的,数控装置每输出一脉冲信号,则机床移动部件移动一具脉冲当量(一般为0.001mm),而且机床进给传动链的反向间隙与丝杆螺距平均误差可由数控装置进行曲补偿,因此,数控机床定位精度比较高。(3)加工质量稳定、可靠

加工同一批零件,在同一机床,在相同加工条件下,使用相同刀具和加工程序,刀具的走刀轨迹完全相同,零件的一致性好,质量稳定。(4)生产率高

数控机床可有效地减少零件的加工时间和辅助时间,数控机床的主轴声速和进给量的范围大,允许机床进行大切削量的强力切削。数控机床正进入高速加工时代,数控机床移动部件的快速移动和定位及高速切削加工,极大地提高了生产率。另外,与加工中心的刀库配合使用,可实现在一台机床上进行多道工序的连续加工,减少了半成品的工序间周转时间,提高了生产率。(5)改善劳动条件

数控机床加工前是经调整好后,输入程序并启动,机床就能有自动连续地进行加工,直至加工结束。操作者要做的只是程序的输入、编辑、零件装卸、刀具准备、加工状态的观测、零件的检验等工作,劳动强度大大降低,机床操作者的劳动趋于智力型工作。(6)利用生产管理现代化

数控机床的加工,可预先精确估计加工时间,对所使用的刀具、夹具可进行规范化,现代化管理,易于实现加工信息的标准化,已与计算机辅助设计与制造(CAD/CAM)有机地结合起来,是现代化集成制造技术的基础。

2.数控加工设备的基本组成

数控加工设备的基本组成包括加工程序载体、数控装置、伺服驱动装置、机床主体和其他辅助装置。下面分别对各组成部分的基本工作原理进行概要说明。

加工程序载体:

数控机床工作时,不需要工人直接去操作机床,要对数控机床进行控制,必须编制加工程序。零件加工程序中,包括机床上刀具和工件的相对运动轨迹、工艺参数(进给量主轴转速等)和辅助运动等。将零件加工程序用一定的格式和代码,存储在一种程序载体上,如穿孔纸带、盒式磁带、软磁盘等,通过数控机床的输入装置,将程序信息输入到CNC单元。

数控装置:

数控装置是数控机床的核心。现代数控装置均采用CNC(Computer Numerical Control)形式,这种CNC装置一般使用多个微处理器,以程序化的软件形式实现数控功能,因此又称软件数控(Software NC)。CNC系统是一种位置控制系统,它是根据输入数据插补出理想的运动轨迹,然后输出到执行部件加工出所需要的零件。因此,数控装置主要由输入、处理和输出三个基本部分构成。而所有这些工作都由计算机的系统程序进行合理地组织,使整个系统协调地进行工作。(1)输入装置:将数控指令输入给数控装置,根据程序载体的不同,相应有不同的输入装置。主要有键盘输入、磁盘输入、CAD/CAM系统直接通信方式输入和连接上级计算机的DNC(直接数控)输入,现仍有不少系统还保留有光电阅读机的纸带输入形式。

1)纸带输入方式。可用纸带光电阅读机读入零件程序,直接控制机床运动,也可以将纸带内容读入存储器,用存储器中储存的零件程序控制机床运动。

2)MDI手动数据输入方式。操作者可利用操作面板上的键盘输入加工程序的指令,它适用于比较短的程序。

在控制装置编辑状态(EDIT)下,用软件输入加工程序,并存入控制装置的存储器中,这种输入方法可重复使用程序。一般手工编程均采用这种方法。

在具有会话编程功能的数控装置上,可按照显示器上提示的问题,选择不同的菜单,用人机对话的方法,输入有关的尺寸数字,就可自动生成加工程序。

3)采用DNC直接数控输入方式。把零件程序保存在上级计算机中,CNC系统一边加工一边接收来自计算机的后续程序段。DNC方式多用于采用CAD/CAM软件设计的复杂工件并直接生成零件程序的情况。(2)信息处理:输入装置将加工信息传给CNC单元,编译成计算机能识别的信息,由信息处理部分按照控制程序的规定,逐步存储并进行处理后,通过输出单元发出位置和速度指令给伺服系统和主运动控制部分。CNC系统的输入数据包括:零件的轮廓信息(起点、终点、直线、圆弧等)、加工速度及其他辅助加工信息(如换刀、变速、冷却液开关等),数据处理的目的是完成插补运算前的准备工作。数据处理程序还包括刀具半径补偿、速度计算及辅助功能的处理等。(3)输出装置:输出装置与伺服机构相联。输出装置根据控制器的命令接受运算器的输出脉冲,并把它送到各坐标的伺服控制系统,经过功率放大,驱动伺服系统,从而控制机床按规定要求运动。

伺服与测量反馈系统:

伺服系统是数控机床的重要组成部分,用于实现数控机床的进给伺服控制和主轴伺服控制。伺服系统的作用是把接受来自数控装置的指令信息,经功率放大、整形处理后,转换成机床执行部件的直线位移或角位移运动。由于伺服系统是数控机床的最后环节,其性能将直接影响数控机床的精度和速度等技术指标,因此,对数控机床的伺服驱动装置,要求具有良好的快速反应性能,准确而灵敏地跟踪数控装置发出的数字指令信号,并能忠实地执行来自数控装置的指令,提高系统的动态跟随特性和静态跟踪精度。

伺服系统包括驱动装置和执行机构两大部分。驱动装置由主轴驱动单元、进给驱动单元和主轴伺服电动机、进给伺服电动机组成。步进电动机、直流伺服电动机和交流伺服电动机是常用的驱动装置。

测量元件将数控机床各坐标轴的实际位移值检测出来并经反馈系统输入到机床的数控装置中,数控装置对反馈回来的实际位移值与指令值进行比较,并向伺服系统输出达到设定值所需的位移量指令。

机床主体:

机床主机是数控机床的主体。它包括床身、底座、立柱、横梁、滑座、工作台、主轴箱、进给机构、刀架及自动换刀装置等机械部件。它是在数控机床上自动地完成各种切削加工的机械部分。与传统的机床相比,数控机床主体具有如下结构特点:(1)采用具有高刚度、高抗振性及较小热变形的机床新结构。通常用提高结构系统的静刚度、增加阻尼、调整结构件质量和固有频率等方法来提高机床主机的刚度和抗振性,使机床主体能适应数控机床连续自动地进行切削加工的需要。采取改善机床结构布局、减少发热、控制温升及采用热位移补偿等措施,可减少热变形对机床主机的影响。(2)广泛采用高性能的主轴伺服驱动和进给伺服驱动装置,使数控机床的传动链缩短,简化了机床机械传动系统的结构。(3)采用高传动效率、高精度、无间隙的传动装置和运动部件,如滚珠丝杠螺母副、塑料滑动导轨、直线滚动导轨、静压导轨等。

数控机床辅助装置:

辅助装置是保证充分发挥数控机床功能所必需的配套装置,常用的辅助装置包括:气动、液压装置,排屑装置,冷却、润滑装置,回转工作台和数控分度头,防护,照明等各种辅助装置。

数控加工设备主要包括数控车床和数控铣床,下面主要介绍数控车床和数控铣床。

3.数控车削设备结构类型

数控车床又称为CNC车床,即计算机数字控制车床,是目前国内使用量最大、覆盖面最广的一种数控机床,约占数控机床总数的25%。数控机床是集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品,是机械制造设备中具有高精度、高效率、高自动化和高柔性化等优点的工作母机。自从1952年美国麻省理工学院研制出世界上第一台数控机床以来,数控机床在制造工业,特别是在汽车、航空航天以及军事工业中被广泛地应用,数控技术无论在硬件和软件方面,都有飞速发展。

数控机床的技术水平高低及其在金属切削加工机床产量和总拥有量的百分比是衡量一个国家国民经济发展和工业制造整体水平的重要标志之一。数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置,几十年来一直受到世界各国的普遍重视并得到了迅速的发展。

数控车床、车削中心,是一种高精度、高效率的自动化机床。它具有广泛的加工性能,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹。具有直线插补、圆弧插补各种补偿功能,并在复杂零件的批量生产中发挥了良好的经济效果。

数控车床分为立式数控车床和卧式数控车床两种类型。立式数控车床用于回转直径较大的盘类零件车削加工。卧式数控车床用于轴向尺寸较长或小型盘类零件的车削加工。卧式数控车床按功能可进一步分为经济型数控车床、普通数控车床和车削加工中心。(1)经济型数控车床:采用步进电动机和单片机对普通车床的车削进给系统进行改造后形成的简易型数控车床。成本较低,自动化程度和功能都比较差,车削加工精度也不高,适用于要求不高的回转类零件的车削加工。(2)普通数控车床:根据车削加工要求在结构上进行专门设计,配备通用数控系统而形成的数控车床。数控系统功能强,自动化程度和加工精度也比较高,适用于一般回转类零件的车削加工。这种数控车床可同时控制两个坐标轴,即X轴和Z轴。(3)车削加工中心:在普通数控车床的基础上,增加了C轴和动力头,更高级的机床还带有刀库,可控制X、Z和C三个坐标轴,联动控制轴可以是(X、Z)、(X、C)或(Z、C)。由于增加了C轴和铣削动力头,这种数控车床的加工功能大大增强,除可以进行一般车削外,还可以进行径向和轴向铣削、曲面铣削、中心线不在零件回转中心的孔和径向孔的钻削等加工。

下面具体介绍一下数控车床的主要组成部分,如主机、数控装置、驱动装置、辅助装置等。(1)主机

数控机床的主体,包括机床身、立柱、主轴、进给机构等机械部件。他是用于完成各种切削加工的机械部件。(2)数控装置

数控机床的核心,包括硬件(印刷电路板、CRT显示器、键盒、纸带阅读机等)以及相应的软件,用于输入数字化的零件程序,并完成输入信息的存储、数据的变换、插补运算以及实现各种控制功能。(3)驱动装置

数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。(4)辅助装置

指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等。(5)液压卡盘和液压尾架

液压卡盘是数控车削加工时夹紧工件的重要附件,对一般回转类零件可采用普通液压卡盘;对零件被夹持部位不是圆柱形的零件,则需要采用专用卡盘;用棒料直接加工零件时需要采用弹簧卡盘。

对轴向尺寸和径向尺寸的比值较大的零件,需要采用安装在液压尾架上的活顶尖对零件尾端进行支撑,才能保证对零件进行正确的加工。尾架有普通液压尾架和可编程液压尾架。(6)数控车床的刀架

数控车床可以配备两种刀架:

1)专用刀架由车床生产厂商自己开发,所使用的刀柄也是专用的。这种刀架的优点是制造成本低,但缺乏通用性。

2)通用刀架根据一定的通用标准(如VDI,德国工程师协会)而生产的刀架,数控车床生产厂商可以根据数控车床的功能要求进行选择配置。(7)铣削动力头

数控车床刀架上安装铣削动力头后可以大大扩展数控车床的加工能力。如:利用铣削动力头进行轴向钻孔和铣削轴向槽。(8)数控车床的刀具

在数控车床或车削加工中心上车削零件时,应根据车床的刀架结构和可以安装刀具的数量,合理、科学地安排刀具在刀架上的位置,并注意避免刀具在静止和工作时,刀具与机床、刀具与工件以及刀具相互之间的干涉现象。(9)编程及其他附属设备

可用来在机外进行零件的程序编制、存储等。

常见车床包括:卧式车床,立式车床,数控车床。

1)立式车床(图1-1)

立式车床的主轴立式布置,工件装夹在水平的回转工作台上,刀架在横梁或立柱上移动。分单柱和双柱两大类。通常用于加工较大、较重、难于在普通车床上安装的工件。国内主要生产厂家有齐齐哈尔第一机床厂、武汉重型机床厂。

图1-1 立式车床

1—底座;2—工件台;3—立柱;4—垂直刀架;5—横梁;6—垂直刀架进给箱;7—侧刀架;8—侧刀架进给箱;9—顶梁

主要用途:用于加工各种轴、套和盘类零件上的回转表面。此外还可以车削端面、沟槽、切断及车削各种回转的成形表面如螺纹等,适用于单件、小批生产和修配车间。

2)数控卧车(图1-2)

卧式车床主轴的旋转为主运动,刀架的直线或曲线移动为进给运动。

数控卧车具有实现自动控制的数控系统;适应性强,加工对象改变时只需改变输入的程序指令即可;可精确加工复杂的回转成形面,且质量高而稳定。与普通车床大体一样,主要用于加工各种回转表面,特别适宜加工特殊螺纹和复杂的回转成形面。目前在中小批生产中广泛应用。

图1-2 卧式数控车床

1—床头箱;2—回转刀架;3—排屑器;4—运屑小车;5—读带箱

带有刀库能实现自动换刀的数控卧车称为卧式车削中心,如图1-3所示。

图1-3 卧式车削中心

1—载料器;2—装卸机械手;3—自动换刀装置;4—刀架;5—刀库;6—主机

4.数控车削设备主要参数

数控车床加工的三要素:主切削速度、进给量、背吃刀量。选用原则:确定三要素的基本原则:根据切削要求先确定背吃刀量ap,再查表得到进给量,然后再经过查表通过公式计算出主切削速度v。

实践证明合理切削用量的选择与机床、刀具、工件及工艺等多种因素有关。合理选择加工用量的方法如下:

粗加工时,主要保证较高的生产效率,故应选择较大的背吃刀量ap,较大的进给量,切削速度v选择中低速度。精加工时,主要保证零件的尺寸和表面精度的要求,故选择较小的背吃刀量ap,较小的进给量,切削速度v选择较高速度。

粗加工时,一般要充分发挥机床潜力和刀具的切削能力。数控车床半精加工和精加工时,应重点考虑如何保证加工质量,并在此基础上尽量提高生产率。数控车床厂在选择切削用量时应保证刀具能加工完成一个零件或保证刀具的耐用度不低于一个工作班,最少也不低于半个工作班的工作时间。数控车床具体加工参数应根据机床说明书中的规定、刀具耐用度及实践经验选取。(1)背吃刀量的选择。背吃刀量的选择要根据机床、夹具、工装和工件的刚度以及机床的功率来确定。在工艺系统允许的情况下,尽可能选取较大的背吃刀量。除留给以后工序的余量外,其余的粗加工余量尽可能一次切除,以使走刀次数最少。

通常在中等功率机床上,粗加工的背吃刀量为8~10mm(单边)。数控车床半精加工背吃刀量为0.5~5mm;精加工时背吃刀量为0.2~1.5mm。(2)进给量的确定。确定进给速度的原则是:当工件的质量要求能够保证时,为提高生产率,可选择较高的进给速度。数控车床厂切断、车削深孔或精车时,宜选择较低的进给速度。进给速度应与主轴转速和背吃刀量相适应。粗加工时,进给量的选择受最大切削力的限制。

根据设备参数和使用需求,合理选用安装数控车床,应遵循如下原则:(1)前期准备

确定典型零件的工艺要求、加工工件的批量,拟定数控车床应具有的功能,合理选用数控车床的前提条件是满足典型零件的工艺要求。

典型零件的工艺要求主要是零件的结构尺寸、加工范围和精度要求。根据精度要求,即工件的尺寸精度、定位精度和表面粗糙度的要求来选择数控车床的控制精度。根据可靠性来选择,可靠性是提高产品质量和生产效率的保证。数控机床的可靠性是指机床在规定条件下执行其功能时,长时间稳定运行而不出故障,即平均无故障时间长,即使出了故障,短时间内能恢复,重新投入使用。选择结构合理、制造精良,并已批量生产的机床。一般,用户越多,数控系统的可靠性越高。(2)机床附件及刀具选购

机床随机附件、备件及其供应能力、刀具,对已投产数控车床、车削中心来说是十分重要的。选择机床,需仔细考虑刀具和附件的配套性。

1)注重控制系统的同一性

生产厂家一般选择同一厂商的产品,至少应选购同一厂商的控制系统,这给维修工作带来极大的便利。教学单位,由于需要学生见多识广,选用不同的系统,配备各种仿真软件是明智的选择。

2)根据性能价格比来选择

做到功能、精度不闲置、不浪费,不要选择和自己需要无关的功能。

3)机床的防护

需要时,机床可配备全封闭或半封闭的防护装置、自动排屑装置。(3)机床位置环境要求

机床的位置应远离振源、应避免阳光直接照射和热辐射的影响,避免潮湿和气流的影响。如机床附近有振源,则机床四周应设置防振沟。否则将直接影响机床的加工精度及稳定性,将使电子元件接触不良,发生故障,影响机床的可靠性。数控车床的环境温度低于30℃,相对温度小于80%。一般来说,数控电控箱内部设有排风扇或冷风机,以保持电子元件,特别是中央处理器工作温度恒定或温度差变化很小。过高的温度和湿度将导致控制系统元件寿命降低,并导致故障增多。温度和湿度的增高,灰尘的增多会在集成电路板产生黏结,并导致短路。(4)电源要求

一般数控车床安装在机加工车间,不仅环境温度变化大,使用条件差,而且各种机电设备多,致使电网波动大。因此,安装数控车床的位置,需要电源电压有严格控制。电源电压波动必须在允许范围内,并且保持相对稳定。否则会影响数控系统的正常工作。

用户在使用机床时,不允许随意改变控制系统内制造厂设定的参数。这些参数的设定直接关系到机床各部件动态特征。只有间隙补偿参数数值可根据实际情况予以调整。用户不能随意更换机床附件,如使用超出说明书规定的液压卡盘。制造厂在设置附件时,应充分考虑各项环节参数的匹配。盲目更换会造成各项环节参数的不匹配,甚至造成估计不到的事故。使用液压卡盘、液压刀架、液压尾座、液压油缸的压力,都应在许用应力范围内,不允许任意提高。

5.数控车削设备适合加工的零件类型

在五金加工中凡是能在普通车床上装夹的回转体零件都能在数控车床上加工。然而数控车床具有加工精度高、能做直线和圆弧插补以及在五金加工过程中能自动变速的特点,其工艺范围较普通机床宽得多。

数控车床刚性好,制造和对刀精度高,能方便和精确地进入人工补偿和自动补偿,所以,能加工尺寸精度要求较高的零件。此外数控车削的刀具运动是通过高精度插补运动和伺服驱动来实现的,再加上机床的刚性好和制造精度高,所以,它能加工对母线直线度、圆度、圆柱度等形状精度要求高的零件。对于圆弧以及其他曲线轮廓,加工出的形状和图纸上所要求的几何形状的接近程度比用仿形车床要高得多。

数控车床有恒线速切削功能,所以可以选用最佳线速度来切削锥面和端面,使车削后的表面粗糙度值既小又一致,加工出表面粗糙度值小而均匀的零件。数控车床不但能车削任何等导程的直、锥和端面螺纹,而且能车变导程与变导程之间平滑过渡的螺纹。数控车床车削螺纹时主轴转向不必像普通车床那样交替变换,它可以一刀又一刀不停顿地循环,直到完成,所以数控车床螺纹的效率很高。第二节常用数控车削系统及特点

数控系统是数字控制系统的简称,英文名称为(Numerical Control System),根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置的专用计算机系统。通过利用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制,它所控制的通常是位置、角度、速度等机械量和开关量。

数字控制系统(CNC系统)根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置,用于控制自动化加工设备的专用计算机系统。

CNC系统由数控程序存储装置(从早期的纸带到磁环,到磁带、磁盘,到计算机通用的硬盘)、计算机控制主机(从专用计算机进化到PC体系结构的计算机)、可编程逻辑控制器(PLC)、主轴驱动装置和进给(伺服)驱动装置(包括检测装置)等组成。

由于逐步使用通用计算机,数控系统日趋具有软件为主的色彩,又用PLC代替了传统的机床电器逻辑控制装置,使系统更小巧,其灵活性、通用性、可靠性更好,易于实现复杂的数控功能,使用、维护也方便,并具有与网络连接及进行远程通信的功能。

1.数控车削系统种类

世界上的数控系统种类繁多,形式各异,组成结构上都有各自的特点。这些结构特点来源于系统初始设计的基本要求和硬件、软件的工程设计思路。对于不同的生产厂家来说,基于历史发展因素以及各自因地而异的复杂因素的影响,在设计思想上也可能各有千秋。例如,在20世纪90年代,美国Dynapath系统采用小板结构,热变形小,便于板子更换和灵活结合,而日本FANUC系统则趋向大板结构,减少板间插接件,使之有利于系统工作的可靠性。然而无论哪种系统,它们的基本原理和构成是十分相似的。一般整个数控系统由三大部分组成,即控制系统、伺服系统和位置测量系统。控制系统硬件是一个具有输入输出功能的专用计算机系统,按加工工件程序进行插补运算,发出控制指令到伺服驱动系统;测量系统检测机械的直线和回转运动位置、速度,并反馈到控制系统和伺服驱动系统,来修正控制指令;伺服驱动系统将来自控制系统的控制指令和测量系统的反馈信息进行比较和控制调节,控制PWM电流驱动伺服电机,由伺服电机驱动机械按要求运动。这三部分有机结合,组成完整的闭环控制的数控系统。

控制系统硬件是具有人际交互功能,具有包括现场总线接口输入输出能力的专用计算机。伺服驱动系统主要包括伺服驱动装置和电机。位置测量系统主要是采用长光栅或圆光栅的增量式位移编码器。

从硬件结构上的角度,数控系统到目前为止可分为两个阶段共六代,第一阶段为数值逻辑控制阶段,其特征是不具有CPU,依靠数值逻辑实现数控所需的数值计算和逻辑控制,包括第一代是电子管数控系统,第二代是晶体管数控系统,第三代是集成电路数控系统;第二个阶段为计算机控制阶段,其特征是直接引入计算机控制,依靠软件计算完成数控的主要功能,包括第四代是小型计算机数控系统,第五代是微型计算机数控系统,第六代是PC数控系统。

由于20世纪90年代开始,PC结构的计算机应用的普及推广,PC构架下计算机CPU及外围存储、显示、通信技术的高速进步,制造成本的大幅降低,导致PC构架数控系统日趋成为主流的数控系统结构体系。PC数控系统的发展,形成了“NC+PC”过渡型结构,既保留传统NC硬件结构,仅将PC作为HMI。代表性的产品包括FANUC的160i,180i,310i,840D等。还有一类即将数控功能集中以运动控制卡的形式实现,通过增扩NC控制板卡(如基于DSP的运动控制卡等)来发展PC数控系统。典型代表有美国DELTATAU公司用PMAC多轴运动控制卡构造的PMAC-NC系统。另一种更加革命性的结构是全部采用PC平台的软硬件资源,仅增加与伺服驱动及I/O设备通信所必需的现场总线接口,从而实现非常简洁硬件体系结构。(1)按运动轨迹分,数控系统包括:

1)点位控制数控系统

控制工具相对工件从某一加工点移到另一个加工点之间的精确坐标位置,而对于点与点之间移动的轨迹不进行控制,且移动过程中不作任何加工。这一类系统的设备有数控钻床、数控坐标镗床和数控冲床等。

2)直线控制数控系统

不仅要控制点与点的精确位置,还要控制两点之间的工具移动轨迹是一条直线,且在移动中工具能以给定的进给速度进行加工,其辅助功能要求也比点位控制数控系统多,如它可能被要求具有主轴转数控制、进给速度控制和刀具自动交换等功能。此类控制方式的设备主要有简易数控车床、数控镗铣床等。

3)轮廓控制数控系统

这类系统能够对两个或两个以上坐标方向进行严格控制,即不仅控制每个坐标的行程位置,同时还控制每个坐标的运动速度。各坐标的运动按规定的比例关系相互配合,精确地协调起来连续进行加工,以形成所需要的直线、斜线或曲线、曲面。采用此类控制方式的设备有数控车床、铣床、加工中心、电加工机床和特种加工机床等。(2)按加工工艺分,数控系统包括:

1)车削、铣削类数控系统

针对数控车床控制的数控系统和针对加工中心控制数控系统。这一类数控系统属于最常见的数控系统。FANUC用T、M来区别这两大类型号。西门子则是在统一的数控内核上配置不同的编程工具:Shopmill、shopturn来区别。两者最大的区别在于:车削系统要求能够随时反映刀尖点相对于车床轴线的距离,以表达当前加工工件的半径,或乘以2表达为直径;车削系统有各种车削螺纹的固定循环;车削系统支持主轴与C轴的切换,支持端面直角坐标系或回转体圆柱面坐标系编程,而数控系统要变换为极坐标进行控制;而对于铣削数控系统更多地要求复杂曲线、曲面的编程加工能力,包括五轴和斜面的加工等。随着车铣复合化工艺的日益普及,要求数控系统兼具车削、铣削功能,例如大连光洋公司的GNC60/61系列数控系统。

2)磨削数控系统

针对磨床控制的专用数控系统,FANUC用G代号区别,西门子须配置功能。与其他数控系统的区别主要在于要支持工件在线量仪的接入,量仪主要监测尺寸是否到位,并通知数控系统退出磨削循环。磨削数控系统还要支持砂轮修整,并将修正后的砂轮数据作为刀具数据计入数控系统。此外,磨削数控系统的PLC还要具有较强的温度监测和控制回路,还要求具有与振动监测、超声砂轮切入监测仪器接入,协同工作的能力。对于非圆磨削,数控系统及伺服驱动在进给轴上需要更高的动态性能。有些非圆加工(例如凸轮)由于被加工表面的高精度和高光洁度要求,数控系统对曲线平滑技术方面也要有特殊处理。

3)面向特种加工数控系统

这类系统为了适应特种加工往往需要有特殊的运动控制处理和加工作动器控制。例如,并联机床控制需要在常规数控运动控制算法加入相应并联结构解耦算法;线切割加工中需要支持沿路径回退;冲裁切割类机床控制需要C轴保持冲裁头处于运动轨迹切线姿态;齿轮加工则要求数控系统能够实现符合齿轮范成规律的电子齿轮速比关系或表达式关系;激光加工则要保证激光头与板材距离恒定;电加工则要数控系统控制放电电源;激光加工则需要数控系统控制激光能量。(3)按伺服系统分,数控系统包括:

1)开环控制数控系统

这类数控系统不带检测装置,也无反馈电路,以步进电动机为驱动元件。CNC装置输出的进给指令(多为脉冲接口)经驱动电路进行功率放大,转换为控制步进电动机各定子绕组依此通电/断电的电流脉冲信号,驱动步进电动机转动,再经机床传动机构(齿轮箱,丝杠等)带动工作台移动。这种方式控制简单,价格比较低廉,从20世纪70年代开始,被广泛应用于经济型数控机床中。

2)半闭环控制数控系统

位置检测元件被安装在电动机轴端或丝杠轴端,通过角位移的测量间接计算出机床工作台的实际运行位置(直线位移),由于闭环的环路内不包括丝杠、螺母副及机床工作台这些大惯性环节,由这些环节造成的误差不能由环路所矫正,其控制精度不如全闭环控制数控系统,但其调试方便,成本适中,可以获得比较稳定的控制特性,因此在实际应用中,这种方式被广泛采用。

3)全闭环控制数控系统

位置检测装置安装在机床工作台上,用以检测机床工作台的实际运行位置(直线位移),并将其与CNC装置计算出的指令位置(或位移)相比较,用差值进行调节控制。这类控制方式的位置控制精度很高,但由于它将丝杠、螺母副及机床工作台这些连接环节放在闭环内,导致整个系统连接刚度变差,因此调试时,其系统较难达到高增益,即容易产生振荡。(4)按功能水平分,数控系统包括:

1)经济型数控系统

又称简易数控系统,通常采用步进电机或脉冲串接口的伺服驱动,不具有位置反馈或位置反馈不参与位置控制;仅能满足一般精度要求的加工,能加工形状较简单的直线、斜线、圆弧及带螺纹类的零件,采用的微机系统为单板机或单片机系统;通常不具有用户可编程的PLC功能。通常装备的机床定位精度在0.02mm以上。

2)普及型数控系统

介于简式型数控系统和高性能型数控系统之间的数控系统,其特点是联动轴数4轴以下(含4轴),闭环控制(伺服电机反馈信息参与控制),具有螺距误差补偿和刀具管理功能,支持用户开发PLC功能。

3)高档型数控系统

一般是指具有多通道(两个及以上)数控设备控制能力,具有双驱控制、5轴及以上的插补联动功能、斜面加工、样条插补、双向螺距误差补偿、直线度和垂直度误差补偿、刀具管理及刀具长度和半径补偿功能、高静态精度(分辨率0.001μm即最小分辨率为1nm)和高动态精度(随动误差0.01mm以内)、高速度及完备的PLC控制功能数控系统。

2.数控车削系统的特点

这里以FANUC系统为例,介绍此类数控系统的特点及典型指令。(1)刚性攻丝

主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴(Z轴)进给完全同步,从而实现高速高精度攻丝。(2)复合加工循环

复合加工循环可用简单指令生成一系列的切削路径。比如定义了工件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编程。(3)圆柱插补

适用于切削圆柱上的槽,能够按照圆柱表面的展开图进行编程。(4)直接尺寸编程

可直接指定诸如直线的倾角、倒角值、转角半径值等尺寸,这些尺寸在零件图上指定,这样能简化部件加工程序的编程。(5)记忆型螺距误差补偿可对丝杠螺距误差等机械系统中的误差进行补偿,补偿数据以参数的形式存储在CNC的存储器中。(6)CNC内装PMC编程功能。

PMC对机床和外部设备进行程序控制。(7)随机存储模块

MTB(机床厂)可在CNC上直接改变PMC程序和宏执行器程序。由于使用的是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。

3.数控车削系统的典型指令

典型指令:

G00 定位(快速移动)

G01 直线切削

G02 顺时针切圆弧(CW,顺时钟)

G03 逆时针切圆弧(CCW,逆时钟)

G04 暂停(Dwell)

G09 停于精确的位置

G20 英制输入

G21 公制输入

G22 内部行程限位有效

G23 内部行程限位无效

G27 检查参考点返回

G28 参考点返回

G29 从参考点返回

G30 回到第二参考点

G32 切螺纹

G40 取消刀尖半径偏置

G41 刀尖半径偏置(左侧)

G42 刀尖半径偏置(右侧)

G50 修改工件坐标;设置主轴最大的RPM

G52 设置局部坐标系

G53 选择机床坐标系

G70 精加工循环

G71 内外径粗切循环

G72 台阶粗切循环

G73 成形重复循环

G74Z 向步进钻削

G75X 向切槽

G76 切螺纹循环

G80 取消固定循环

G83 钻孔循环

G84 攻丝循环

G85 正面镗孔循环

G87 侧面钻孔循环

G88 侧面攻丝循环

G89 侧面镗孔循环

G90 (内外直径)切削循环

G92 切螺纹循环

G94 (台阶)切削循环

G9612 恒线速度控制

G97 恒线速度控制取消

G98 每分钟进给率

G99 每转进给率第三节常用难车削材料特点及方法

1.常见的难车削材料种类及特点(1)按材料种类分,如高强度钢和超高强度钢,高锰钢,淬硬钢,冷硬和合金耐磨铸铁,不锈钢,高温合金,钛合金,喷涂材料,稀有难熔金属,纯金属,工程塑料,工程陶瓷,复合材料和其他金属材料。(2)按材料的物理、力学性能分:

高硬度、脆性大的材料,如淬硬钢、冷硬钢、合金耐磨铸铁工程陶瓷、复合材料、工业搪瓷、石材等材料。

高塑性材料(伸长率>50%),如纯铁、纯镍、纯铝、纯铜等材料。

高强度材料,如高强度、超高强度钢。

加工硬化严重的材料,如不锈钢、高锰钢、高温合金、钛合金。

化学活性大的材料,如钛合金,镍合金,锆合金等。

导热性差的合金不锈钢、高温合金、钛合金。

高熔点材料,如钨,钼等。

难加工材料的切削特点为:刀具耐用度低,切削力大,切削温度高,加工表面粗糙,切屑难以处理。

2.淬火钢的切削特点及方法

过去加工淬火钢都是采用磨削方法,这一方法加工淬火钢,生产效率低,加工费用高,并因为磨削力大,致使表面往往被烧伤或产生微裂纹。随着硬质合金工业的发展,传统落后的磨削工艺被先进的车削所代替,从而产生效率成十几倍乃至几十倍的提高。(1)淬火钢的切削特点

硬度高,导热性差:淬火钢的组织为回火马氏体。硬度可达HRC60以上,强度可达260kg/mm 2 。并且它的导热性能差,有的淬火钢的导热系数可小到0.017Cal/(cm·s·℃)(未淬火的45#钢λ=0.162Cal/(cm·s·℃),所以,切削淬火钢时,单位切削力大,可达450kg/mm 2 ,切削温度高,且切削热集中在刀尖处。按照被加工材料切削加工性分级表规定,淬火钢的硬度、强度均属9a,属于最难切削加工材料的范畴。切削力大,而且径向切削力接近主切削力,甚至更大。这是为了增加刀尖强度,加大散热面积,选择较小的主偏角所引起的。在机床-夹具-工件系统刚性差时,则会由于切削力大,易引起振动,造成打刀现象。刀屑接触长度短,这就意味着切削和由于切削力大而引起的大量切削热集中于刀刃附近,如果刀具材料强度不高,易使切削刃造成崩碎和破损。(2)刀具材料的选择

在淬火钢的低速和断续切削时,一般用加TaC、NbC和适量TiC的M类合金,因为这种合金具有较好的综合性能,切削条件为变速的端面切削和间断切削时,也宜采用这类合金。因为用TiC含量过多的合金,即使其硬度好,但由于韧性和强度不够,易使刀具产生崩刃和崩脱磨损。所以就选择强度高、韧性好、耐热和耐磨性能好的超细颗粒合金,经过实用证明,效果较好的是YS8。如用YS8,采用V=14.3m/min,f=0.3mm/r,a =2mm切削HRC=60的T11工具钢,效p果很好,用普通硬质合金在同样条件下,效果相当差,甚至无法切削。用YS2切削W18Cr4V白钢刀方条,其硬度HRC=63~65,切削用量为:V=10m/min,f=0.25mm/r,a =1.2mm,使用效果相当好,在同样的p条件下,我们用其他牌号合金试验,效果都不佳。

在较高速度下连续切削淬火钢时,宜采用碳化钛含量较高,高温硬度优良的P类合金。因为P类合金发生黏结磨损,而M、K类合金在600℃时就开始发生黏结磨损,900℃就开始发生扩散磨损。尤其是合金中加入适量的TaC和NbC后,其高温性能明显提高。切削速度在50m/min以下时,建议选用:TY05,YC12。

如采用YT05切削速度再进一步提高,或者是大工件,高精度产品加工,陶瓷刀片和立方氮化硼就显示出其独特的优越性。如华山机械厂采用陶瓷刀片AT6切削HRC=60的T8碳素工具钢,在f=0.15mm/r,ap=0.15mm的条件下,切削速度可达100m/min,并且刀具寿命高,工件质量好。特别是立方氮化硼,由于其硬度,热稳定性好,在加工淬硬钢时,其耐用度和切削效率都比陶瓷刀片高,并且加工出来的工件尺寸精度高,表面光洁度好。(3)刀具几何角度的选择

在金属切削加工中,刀具几何角度非常重要,在难加工材料中,这一点就显得特别突出,淬火钢在切削加工中,切削力很大,因此常易出现打刀崩刃现象,这在很大程度上取决于刀具角度的选择合理与否,选得不适当,高强度刀具材料也会出现打刀现象,刀具角度合理,脆性大的刀具材料也能进行断续切削。如陶瓷合金,是一种极脆的刀具材料,但试验证明,只要角度合理,它可以断续切削淬硬钢。

在实践中,我们认为几何角度的选择原则是:因为淬火钢硬度、强度高,在切削过程中表现出极大的切削力,因此我们在选择几何角度时,重点从保护刀尖出发,选用0度前角或负前角,小后角。但考虑淬火钢绝大多数是精加工,余量小,切屑薄,因此后角的选择原则是在保证刀尖强度的情况下,后角可稍大一些。刃倾角一般取负值。(4)切削用量的选择

切削用量一般包括切削速度,吃刀深度和进给量。在切削加工中它和刀具几何角度一样重要,也是影响切削加工的一个重要因素。

切削速度:在生产实践中,切削速度直接影响工作效率,因此都希望采用高速切削,但随着切削速度的提高,切削温度成直线上升。而切削温度较高,必然会影响刀具的耐用度,这样,适当的切削速度必须根据刀具材料的热稳定温度而定。

吃刀深度:吃刀深度对切削力的影响很大,一般的来说,吃刀深度要根据被加工材料的硬度和刀具材料的强度而定,但对淬火件的切削来说,一般切削余量小,应尽量做到一次车出,这样可减少刀具磨损,提高工作效率。

走刀量:淬火件的切削加工多属精加工,因此,选择走刀量的基本原则是保证工件的尺寸精度和表面光洁度,所以,其走刀量趋向于选得小。通过实践摸索,推荐以下数据。

V=10~50m/min;a =0.05~1mm;f=0.05~0.25mm/r。p

陶瓷刀片切削用量:

V=80~150m/min;a =0.1~0.5mm;f=0.05~0.3mm/r。p

3.不锈钢的切削特点及方法

不锈钢作为一种耐腐耐蚀材料,目前广泛地用于许多工业部门和日常生活中,并随着工业的发展其用量会越来越大,因此了解其性能,掌握它的切削加工方法也越来越重要。

不锈钢的种类多样,性能各异,但根据金相组织特点,可将其分为以下几类:马氏体不锈钢、铁素体不锈钢:它的合金成分主要是Cr,其含量为8%~12%。常见的有1Cr13、2Cr13、3Cr13、4Cr13、9Cr18、30Cr13Mo等,这类不锈钢经淬火回火后,具有适当的硬度、强度以及良好的抗氧化性能。在切削加工时,切屑容易擦伤和磨损刀具。但碳含量增大到0.4%~0.5%时,马氏体不锈钢的切削加工性变好。铁素体不锈钢的主要合金成分也是Cr,其含量与马氏体不锈钢相近,在切削加工中,其性能与马氏体都相近,只不过是其硬度较低,韧性增大而已。总之这两种不锈钢在切削过程中只要选择刀具材料得当,配合合适的几何角度,切削加工难度还是不大。

奥氏体不锈钢和奥氏体加铁素体不锈钢:这两种不锈钢的成份不但含有铬,而且还含有相当高的镍(一般为7%~20%),由于这类钢含有较多的镍或锰,故其组织结构稳定,热处理难以使它强化。这类钢材在切削加工中切屑连绵不断,折断困难,同时易产生加工硬化。奥氏体—铁素体不锈钢仅在组织中含有一定量的铁素体,还存在一定量硬度很高的金属间化合物,其余的性能都与奥氏体钢相似,因此在切削加工中,这两种材料的加工难度较大。奥氏体不锈钢的牌号有1Cr18N9Ti、00Cr18Ni10、O0Cr18Ni14M02Cu2、0Cr18Ni12M02Ti、2Cr13Mn9Ni4等。常见的奥氏体加铁素体不锈钢有0Cr21N95Ti、1Cr18Mn10Ni5、1Cr18Ni11Si4A1Ti等。

不锈钢的加工难度从易到难顺序是铁素→马氏体型→奥氏体型→奥氏体加铁素体型→沉淀硬化型。现将不锈钢的切削加工特点叙述如下:

加工硬化趋势严重。不锈钢的加工都存在加工硬化倾向,尤其是奥氏体型和奥氏体加铁素体型不锈钢表现得尤为突出。硬化层的硬度可达HV560,比原材料硬度提高两倍以上,硬化层的深度可达切削深度的1/3或更大。造成硬化的原因是不锈钢的塑性好(§>35%),如0Cr18Ni9、1Cr18Ni9Ti、2Cr18Ni19、Cr18Mn10Ni5M03延伸率均大于40%,是40Cr的210%~240%,是45 # 钢的150%以上,因此在塑性变形时晶格畸变严重,强化系数大。

导热系数小。不锈钢的导热系数小,即热的传导能力差,如奥氏体不锈钢仅是一般钢材的28%左右,因此在切削过程中的切削不能及时通过工件,切屑传导出去,而造成大量的切削热集中在刀刃附近,使切削温度大大的升高,如18-8型不锈钢的切削温度高达1000℃~1100℃。45号钢的切削温度只有700℃~750℃。

切削力大。不锈钢的高温强度、硬度高,如以奥氏体不锈钢为例,其温度高达700℃时,它的综合机械性能仍高于一般结构钢,再加之它的塑性、韧性好,所以在切削加工中消耗的能量多,使切削力增加,如车削1Cr18Ni19Ti的单位切削力比45号钢的单位切削力高25%。

切屑不易折断,易产生积屑瘤。由于不锈钢的韧性、塑性均大,故在车削加工时,切屑连绵不断,这样不仅影响操作的顺利进行,造成安全事故,而且还会挤伤已加工表面。不锈钢含有Cr、Ni、Ti、Mo等元素,这些元素与其他金属的新和性强,易产生黏附现象,并形成积屑瘤。

在不锈钢的切削过程中,切削温度高,切削力大,再加之合金元素Cr、Ni、Ti等元素与其他金属的新和性好,致使刀具极易产生黏结,扩散磨损,因此容易在前刀面形成月牙洼。造成刃部强度降低,并产生微小的剥落和缺口;再由于不锈钢中的碳化物硬质点使刀具产生剧烈的磨料磨损,所以在不锈钢的切削过程中,刀具磨损特别严重。(1)刀具材料的选择

不锈钢是经过高熔点、高激活能元素强化的合金,尤其是其组元复杂,合金元素含量高。这样导致材料塑性大、韧性好,导热系数低。切削加工时,被切层变形阻力大,加工表面的硬化深度和硬化程度均增加,与此同时,其变形温度升高,切屑黏附倾向增大。根据这些特点,在选择硬质合金刀具材料时,主要考虑其高温强度、高温硬度并重点保证足够的韧性。因此在不锈钢切削加工中,原则上选用K类合金,或者说,尽可能采用不含碳化钛或含碳化钛较少,添加碳化钽(铌)及其他难熔合金元素的硬质合金。其主要原因是K类合金具有较高的抗弯强度,能保证刀具采用较大前角和锋利的刃口。其次是K类合金导热性能好,可以避免切削热集中在切削刃,使切削温度降低。

根据这一观点,在一般不锈钢的切削中我们推荐如下几种合金:YG6A、YG8N、YW1、YW2。最近几年,材料的性能和工件的精度都提高较快,因此对刀具材料的要求也相应提高,为了获得更好的效果,我们建议采用:YW4、YS2T、YD15等新牌号合金。

对于不锈钢切削用硬质合金的选择,其观点也不完全一致,如有人提出切削不锈钢宜采用P类合金,并作了不少试验,证明P类合金好。根据这种理论,我们用YS25作为不锈钢的铣削试验,证明确实有上佳的表现。经过认真分析,这两种观点都有一定道理,但都不全面。我们认为,在低速断续切削时,可采用K类合金,而高速切削时,一定要采用P合金。(2)刀具几何角度的选择

前角:不锈钢的硬度、强度虽不很高,但其塑性好,韧性大,热强性高,切削时切屑不易被切离,其主要原则是在保证不崩刃的前提下,尽量采用较大的前角。这样做的主要原因是:在25°以下范围增加前角,能使单位切削力减少,节省能耗;减少切屑与刀具的黏结,改善前刀面摩擦;降低切削温度,减少刀片的扩散磨损。因此,在车削不锈钢时,前角的大致范围是15°~30°。粗加工时取较小的值,精加工时取较大值;未经调质处理,或已经调质处理,但硬度较低的不锈钢,可取较大值;工件直径较小或薄壁件,也宜取较大值。精加工奥氏体不锈钢时,前角可选20°~25°,粗加工时,可取较大前角加-30°倒棱角和(0.5~1)进给量的倒棱宽度,这样做既加强了刀尖强度,又不增加很多切削力。

后角:在金属切削加工中,后角也是一个很重要的角度,它的选择合理与否,对切削加工有明显影响。一般说来,后角的选择主要取决于两个方面:一方面是切削层厚度,其值越小,后角应越大;另一方面是根据刀具材料的强度而定,强度高,后角较大,反之,后角较小。在不锈钢的切削加工中,硬质合金刀具后角值大多采用: 粗加工为4°~6°,精加工时略大于6°。(3)切削用量的选择

切削不锈钢时,其切削用量一般是:进给量不得小于0.1mm/r,避免微量进给,以免在加工硬化区进行切削;切削深度选择原则是避开冷硬层,但有时还要根据工件的加工余量而定。切削速度的选择一般根据刀具材料而定,热稳定性好的刀具材料,其切削速度可高一些。但还应注意是,在选择切削速度时应避开振动区域,这是由于后刀面摩擦和切屑形成时所引起的振动在某一切削速度下表现得特别剧烈,因此我们要避开这一振动区速度,防止切削刃微崩,提高刀具耐用度。

近年来,对切削不锈钢进行了大量的研究工作,对其切削理论也有更深的认识。如有人提出,切削不锈钢宜在低温下进行,通过切削奥氏体不锈钢的试验,证明其在800℃左右切削时最为适宜。其主要原因是:在奥氏体切削过程中,黏结和扩散磨损是影响刀具耐用度的重要原因,而在800℃左右这个温度区间,能明显减少刀具—工件,刀具—切屑之间的黏结,同时扩散磨损又没有明显增加。并且在这个温度下,有利于被切件的塑性变形,使切削力明显降低,切削过程轻快。根据这种观点,切削不锈钢宜采用较高的切削速度,为了使切削温度达到800℃左右,相应的切削速度是80~15m/min,并配以适当的切削深度和进给量,并推荐使用金属陶瓷刀片。

4.高温合金的切削特点及方法(1)高温合金的切削特点

高温合金金相组织复杂,合金组元多,有的合金元素高达20种以上,如镍基合金大都是六组元、八组元、十组元以上的合金。它强化效果好,合金性能高,因此,其切削性能很差。以切削45号钢的加工性为100%,而高温合金的相对加工性仅为它的20%左右。根据各种高温合金的性能,其切削加工性由易到难的排例顺序是:

变形高温合金→铸造高温合金。

变形高温合金的顺序是:GH34→GH2036→GH2132→GH2135→GH1140→GH30→GH4033→GH37→GH4049→GH33A。

铸造高温合金的顺序是:K11→K214→K1→K6→K10。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载