特种导弹科技知识(下)(txt+pdf+epub+mobi电子书下载)


发布时间:2020-05-31 16:04:25

点击下载

作者:冯文远

出版社:辽海出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

特种导弹科技知识(下)

特种导弹科技知识(下)试读:

前言

导弹是一种依靠制导系统来控制飞行轨迹的可以指定攻击目标,甚至追踪目标动向的无人驾驶武器,其任务是把战斗部装药在打击目标附近引爆并毁伤目标,或在没有战斗部的情况下依靠自身动能直接撞击目标,以达到毁伤的效果。也就是说,导弹是依靠自身动力装置推进,由制导系统导引、控制其飞行路线,并导向目标的武器。

导弹是一种威力大的杀伤破坏性武器,具有射程远、速度快、精度高、威力大等特点。自从第二次世界大战期间出现导弹,特别是20世纪50年代出现核导弹以来,导弹在军事上得到了广泛应用。世界各国都用各种类型的导弹装备军队,对军队武器装备、军事战略战术、科学技术进步和人类社会生活产生了巨大的影响。

不论什么武器,都是用于攻击的工具,具有威慑和防御的作用,自古具有巨大的神秘性,是广大军事爱好者的最爱。特别是武器的科学技术十分具有超前性,往往引领着科学技术不断向前飞速发展。

因此,要普及广大读者的科学知识,首先应从武器科技知识着手,这不仅能够培养他们的最新科技知识和深入的军事爱好,还能够增强他们的国防观念与和平意识,能储备一大批具有较高科学文化素质的国防后备力量,因此具有非常重要的作用。

导弹是高技术的武器种类,我们学习导弹的科学知识,就可以学得武器的有关高科技知识。这样不仅可以增强我们的高超军事素质,也可以增强我们高度的军事科学知识。

军事科学是一门范围广博、内容丰富的综合性科学,它涉及自然科学、社会科学和技术科学等众多学科,而军事科学则围绕高科技战争进行,学习现代军事高技术知识,使我们能够了解现代科技前沿,了解武器发展的形势,开阔视野,增长知识,并培养我们的忧患意识与爱国意识,使我们不断学习科学文化知识,用以建设我们强大的国家,用以作为我们强大的精神力量。

为此,我们特地编写了这套“青少年高度关注的导弹武器科技”丛书,包括《导弹武器科技知识》、《地地导弹科技知识》、《地空导弹科技知识》、《空地导弹科技知识》、《空空导弹科技知识》、《反舰导弹科技知识》、《舰空导弹科技知识》、《空舰导弹科技知识》、《反坦克导弹科技知识》、《特种导弹科技知识》共10册,每册全面介绍了相应导弹武器种类的研制、发展、型号、性能、用途等情况,因此具有很强的系统性、知识性、科普性和前沿性,不仅是广大读者学习导弹武器科学知识的最佳读物,也是各级图书馆珍藏的最佳版本。

美国卫兵导弹防御系统

卫兵导弹防御系统是美国从50年代初开始研制奈基-宙斯反导弹武器系统,1963年经改进演变为奈基-X系统,1967年美国政府决定在奈基-X系统基础上发展哨兵系统,1969年又对哨兵系统稍加改进,改名为卫兵系统。卫兵系统系美国唯一部署过的反导系统,1969年8月起动工建造北达科大福克斯反导基地,1975年10月工程完工,基地配备1部远程搜索雷达,1部导弹场地雷达和4个遥控发射场,遥控发射场包括地下控制室和导弹圆筒形垂直发射井(井径2.7米,深9.3米)内,共部署70枚斯普林特导弹和30枚斯帕坦导弹。1967年美国撤销了卫兵系统,当年2月关闭基地。部署时间仅6个月。卫兵反弹道导弹系统的截击导弹由斯普林特导弹和斯帕坦导弹构成:

其一,斯普林特导弹。美国研制的第一代高速低空近程反弹道导弹的导弹武器系统,简称低空反弹道导弹。1963年开始研制,至1970年参加拦截试验,研制经费约8亿美元。主要用于拦截洲际导弹或中远程导弹的再入弹头。导弹贮于发射井内,气体弹射发射。改进型为斯普林特Ⅱ型,主要增大机动能力和抗核能力,提高可靠性,但该型导弹未执行原计划于80年代初服役的部署。

斯普林特”导弹对付目标为弹道导弹再入大气层的核弹头;作战半径最大48千米,最小32千米;作战高度最大30千米,最小为15千米;杀伤概率为75%;制导方式为无线电指令制导;发射方式为地下井垂直发射;弹长8.2米,弹径1.37米,核战斗部采用高能中子为杀伤机理的核弹头,1000吨TNT,杀伤半径400米,动力装置为二级固体火箭发动机,命中能够精度24~27米。

其二,斯帕坦导弹。美国现役高空反弹道导弹武器系统,或称高空反弹道导弹。系奈基-宙斯导弹的改进型,用作美国卫兵反弹道导弹系统内高空拦截导弹,用于大气层外拦截洲际或远程弹道导弹。“斯帕坦”是美国Nike_Zaus导弹的改进型,是美国“卫兵”反弹道导弹系统的高空拦截导弹,可在大气层外拦截再入的洲际弹道导弹的核弹头。“斯帕坦”导弹是具有翼式三级固体导弹,采用无线电指令制导。导弹采用核战斗部,当战斗部在高空爆炸时,有70%-80%的能量在十分之一微秒内,以看不见的X射线释放出来,使来袭弹头烧毁。

主要缺点:不能对付分导式多弹头和拦截机动飞行的弹头;速度不够高;机动能力差;不能有效地拦截带诱饵的目标。

对付目标为洲际弹道导弹末端的核弹头;作战半径最大640~960千米,最小185千米;作战高度最大320千米,最小为160千米;杀伤概率为50%;制导方式为无线电指令制导;发射方式为底下井垂直发射;反应时间约30秒;弹长16.6米,弹径1.1米,平均速度2.2千米/小时;核战斗部,当量200万吨TNT,杀伤半径大于8千米,动力装置为三级固体火箭发动机。

苏联的“A”导弹防御系统

研制背景

1930—1940年代,德国火箭专家沃纳·冯·布劳恩向纳粹政府提议研制A9/10系列导弹,而这个计划就是最早的洲际弹道导弹的设计思想。由于后来二战德国战败,这些构想未能实现。但是,冯·布劳恩在二战期间主持设计制造的V2火箭(“V”取自德语词Vergeltung的首字母,意为“复仇”)确实世界上最早的中程弹道导弹。V2上装备的是液体燃料发动机和惯性制导系统,从移动发射车上发射以避免遭受盟军的空袭。二战结束前夕,德国V-2弹道导弹使苏、美两国领导人清醒地认识到:弹道导弹武器将是战后遏制对方的撒手锏。

1945年4月底,美军抢先进入了本属于苏军占领区的德国诺德豪森市V-2弹道导弹地下制造厂,抢走了已经制造好的100枚导弹、所有导弹制造设备和技术文件资料。当然,美军的最大收获应该是俘虏了维尔纳V-2导弹研究中心的著名导弹专家冯.布劳恩教授和瓦尔特尔.托恩贝格教授,并将其送往美国。随后,美军将来不及运走的导弹制造设备和资料全部就地销毁。

当苏军赶到诺德豪森市V-2导弹地下制造厂时,整个制造厂已经变为一片废墟。联合考察委员会首先在诺德豪森市V-2导弹制造厂附近,找到了没被美军发现的德国导弹工程师和技术人员。在他们的帮助下,苏联专家在V-2制造厂几条通道的废墟中发现了许多没有被完全破坏的导弹零部件。随后,苏联专家与德国工程师一起,使用搜集到的零部件组装几枚V-2导弹,并对部分破坏较轻的导弹制造设备进行了修复。

1946年5月,苏联全面展开导弹研究工作,并决定在苏联兵器部、工业和通信装备部、造船部和航空工业部组建洲际弹道导弹科研中心。同时,苏联还将建立国家导弹试验靶场和导弹部队。同年8月,苏联部长会议任命特种设计局总设计师科罗廖夫担任洲际弹道导弹自动控制系统总设计师。

1947年10月15日,在苏联阿斯特拉汗州卡普斯京亚尔扬国家试验场,科罗廖夫领导的特种设计局首次成功进行了国产液体火箭发动机的点火试验。而冯·布劳恩和大批曾为纳粹服务的德国科学家转移到美国后,加入了美国军方发起的名为“文件夹行动”的中程弹道导弹研发计划,在V2设计思想的基础上研制了“红石”和“丘辟特”中程弹道导弹。

1948年,苏联成功地发射了第一枚R-1弹道导弹。随后,特种设计局在对R-1改进的基础上,研制出了射程达到600千米的R-2弹道导弹。1952年12月,科罗廖夫研制出了P-7洲际弹道导弹。该弹发射重量为170吨,弹头重量为3吨,射程为8000千米。

1953年9月,科罗廖夫首次提出了在P-7导弹的基础上,将人造地球卫星发射到空间轨道的设想。1954年5月26日,他致信苏联兵器部部长乌斯基诺夫,“根据您的命令,我已经向上级正式呈递参与研制世界上第一颗人造地球卫星的报告”。

1957年10月7日,苏联使用P-7洲际弹道导弹火箭发动机将世界上第一颗人造地球卫星送入空间轨道,从而使苏、美在洲际弹道导弹的军备竞争进入高潮。“有矛就必有盾”。导弹防御作为国家级的战略问题第一次摆在了苏联最高领导人的面前。1953年,苏联领导人得知美开始试验弹道导弹,而且还传来核武器正在被完善的信息,这就意味着苏联可能会对带有核弹头的弹道导弹束手无策。于是苏军总参谋部开会商量对策,开展讨论建立反导弹防御手段的问题。

二战后,大规模机械化兵团作战成为了苏联最高军事当局的热衷时尚,1949年8月23日,苏联首枚原子弹爆炸成功,随后苏联导弹火箭技术获得突破。使得大规模机械化兵团作战理论的发展以及核武器战略思想的形成造成了苏联最高当局重视大陆军、重视战略核武器的发展,而赫鲁晓夫的上台意味着苏联的核战略思想达到了巅峰,赫鲁晓夫高度重视苏联战略火箭军的发展,不遗余力大力发展战略导弹核武器,甚至偏好到不惜压缩海军航空母舰建设,全力发展战略火箭军,所以反导系统研制的提出真是恰逢其时。

因此,苏共中央和苏联政府采纳了建议,并表示将下大力气解决导弹防御问题。经过军政高层的慎重考虑和仔细研究,苏共中央和苏联政府先后发布了两道命令,分别是由苏共中央和苏联部长会议于1956年2月3日联合签发的第170-101号命令和由苏联部长会议于1956年8月18日签发的第1160-596号命令,决定以第1设计局为骨干多家科研机构为辅助,开始研制苏联的第一代导弹防御系统。当时36岁的第1设计局专家戈利高里-基苏尼科被任命为“A”导弹防御系统的首席设计师,1958年被任命为“A”导弹防御系统的总设计师。

由于导弹防御系统是个新生事物,苏联的科研工作者在研发过程中碰到的困难和复杂性远远超出了预先的想象。当时,美苏两国都在开展导弹防御系统的研发设计工作,谁都没有现成的经验相借鉴,再说两国正处于冷战时期,互为假想敌,因此更不可能实现技术上的交流与合作。

经过一系列试验,科研人员认为:“第一,所有现役雷达的测量精度都不符合导弹防御系统的战术技术要求,对来袭弹道导弹的三种坐标测量值(间隔距离、方位角、高低角)的精确度太低。尤其是当弹头与弹体分离后,弹头的雷达特征会变得更小,这就使得雷达更难捕捉到弹道导弹弹头(战斗部)信号。第二,敌弹道导弹的飞行速度很快,而我方现役雷达的探测性能却不是很强,给我方导弹防御系统留下的作战反应时间太短。因此,研发性能先进、功率强大的雷达设备是我们目前工作的一项重要内容。否则,以现役雷达设备担任反导任务,不但工作效率低下,很难捕捉到导弹目标,而且其测量精度又不高,将会造成拦截导弹无法或来不及发射升空的局面,这样的导弹防御系统岂不成了摆设,白白耗费国家的巨额资金,却发挥不出应有的作用。第三,为了提升导弹防御系统的工作效能和拦截成功率,拦截导弹必须具备三种能力———精确的制导能力,高速的飞行能力,灵活的机动能力。拦截导弹的研制须在此三项指标上下功夫。”

首席设计师戈利高里·基苏尼科在最终形成的《导弹防御系统总体建设构想》中明确提出了导弹防御系统的五条设计原则:

第一,通过选择最佳工作波段、采用高灵敏度接收设备和大型天线阵列,研发出新式大型大功率辐射雷达,以扩大雷达的探测范围和提高雷达的探测精度。虽然导弹防御系统的雷达设备必将耗资巨大,但其在导弹防御系统中所起到的重要作用完全值得国家为此付出;

第二,要想提高雷达的三坐标(间隔距离、方位角、高低角)探测精度,必须抛弃传统的雷达测量方法,采用新式的三角测量法(即把3部雷达部署成一个等边三角形,每部雷达占据该三角形的一个顶点,由三部雷达分别测量空中目标的三种坐标,然后再由专门的处理设备进行数据处理,去粗取精,去伪存真,以得出空中目标精确的飞行弹道轨迹);

第三,研发和应用高性能的电子计算机和数据处理程序,电子计算机与雷达之间应通过宽带通信线路相互链接,以提高雷达的实时测量能力和雷达数据的传输处理能力;

第四,增强雷达的辨识能力,特别是当来袭弹道导弹的弹头与弹体实施分离之后,应能根据二者之间不同的雷达反射信号迅速准确地辨识出弹头目标,并继续跟踪之;

第五,拦截导弹击毁弹道导弹的方式———拦截导弹弹头爆炸后产生了大量弹片,这些弹片凭借动能与敌弹道导弹实施碰撞,从而将其击毁。

为了加快导弹防御系统的研制进度,苏联政府决定建设一个专门的导弹防御试验靶场。经过详细的论证和慎密的分析,苏联政府决定将导弹防御试验靶场建造在哈萨克斯坦巴尔喀什湖地区别特巴克塔拉草原的萨雷-沙甘。1956年夏天,“A”导弹防御系统试验靶场的大规模建设拉开了序幕。在科研人员和技术工人的辛勤劳作下,在半荒漠化的草原上迅速建起了大量的基础设施和技术试验设施。系统组成“A”导弹防御系统只是一种靶场试验型的导弹防御系统,还不是真正意义上的反导系统,其作用主要是为了检测和试验反导技术和反导兵器。该系统进行过多次实弹拦截射击试验,拦截导弹的型号是B-1000,靶弹的型号是P-5和P-12弹道导弹。

这个完整的系统包括:弹道导弹探测雷达;中央计算工作站;精确制导雷达;拦截导弹观测雷达;指令发送站;发射阵地;技术阵地;中央显示器;数据传输系统;靶场测量数据记录及处理设备。作战流程

当敌弹道导弹目标进入弹道导弹探测雷达的工作区域之后,探测雷达就会自动捕捉、跟踪该目标,测量其当前的位置坐标,并将收集到的信息数据传输至中央计算工作站。

中央计算工作站对敌目标的坐标数据进行分析处理之后,向3部精确制导雷达发出目标指示信息,并测算出敌目标的飞行轨迹。

3部精确制导雷达根据中央计算工作站传来的目标指示信息,自动捕捉和跟踪敌目标,并将敌目标不断变换的方位坐标数据源源不断地传送至中央计算工作站。

接到精确制导雷达传输来的数据后,中央计算工作站便开始测算敌弹道导弹的落点位置及己方拦截导弹的拦截弹道参数,并将生成的数据传输至拦截导弹发射阵地,供拦截导弹发射装置、自由陀螺仪、天线等设备使用。此外,中央计算工作站还需测算出己方拦截导弹最佳的发射时间,并下达发射指令。

拦截导弹发射后,拦截导弹观测雷达将对己方拦截导弹的飞行情况实施跟踪和监测,并将拦截导弹的飞行坐标数据传送至中央计算工作站。中央计算工作站根据拦截导弹的坐标数据,及时修正或调整其飞行弹道参数,并将拦截导弹的目标指示信息传送至精确制导雷达。

精确制导雷达收到目标指示信息后,将测量到的敌导弹与己方拦截导弹之间的间距数据不断地传送至中央计算工作站。中央计算工作站将这些数据分析处理之后,再适时地下达引爆拦截导弹战斗部的作战指令。

中央计算工作站向拦截导弹发出的各项指令都是通过指令发送站传输给拦截导弹的。“A”导弹防御系统各个作战设施之间的情报数据交换都是通过数据传输系统来实现的。数据传输系统采用无线电中继线路,数据的传输格式是二进制数字码。技术设施“A”导弹防御系统的技术设施主要有:“多瑙河-2”远程探测雷达站(包括发送设备和接收设备),设施编号为#14;中央计算工作站,设施编号为#40号;3部精确制导雷达,设施编号分别为#1、#2和#3;B-1000拦截导弹发射阵地(包括和2个导弹发射场、2套CM-71П型导弹发射装置和1个地面指挥所),设施编号为#6;技术阵地(用于B-1000拦截导弹的组装、检测和加注燃料),设施编号为#7;拦截导弹观测雷达站;指令发送站;数据传输系统无线电中继站下辖16个分站,按类型分为三种,分别是中央无线电中继站(部署在#40设施)、终端无线电中继站(部署于#1、2、3和14设施)和中间无线电中继站;靶场测量数据记录及处理设备。“A”导弹防御系统试验靶场还设有许多测量点号,设施编号依次为#16、17、18、19、20、21、22。此外,试验靶场还装配有时间统一勤务系统及其相关设备。

科研人员在“A”导弹防御系统的研发过程中,还对弹道导弹的雷达特性进行了相关的试验和研究:利用部署在2号设施的РЭ-2雷达对中程弹道导弹目标开展了雷达特性研究;使用РЭ-2M雷达对洲际弹道导弹目标进行了雷达特性研究。B-1000型拦截导弹

B-1000型拦截导弹是一种两级制导导弹,其首席设计师是П.Д.格鲁申,是在第1设计局刚刚研制成功的C-25防空导弹基础上改进而成。该型导弹的平均飞行速度可达到1100米/秒,专门用于拦截敌来袭的弹道导弹。

B-1000拦截导弹安装有液体火箭发动机和固体燃料助推器,可使导弹的飞行速度瞬间加速至超音速。此外,固体燃料助推器上还安装有3个稳定器,以保证导弹在加速阶段处于稳定飞行状态。B-1000拦截导弹的弹翼不长,和空气动力舵一起被安装于导弹的第二级面上。弹翼与空气动力舵成“X”形状,相互垂直。

B-1000拦截导弹在飞行过程中的制导过程如下:地面指挥所发出制导指令后,传输给弹载接收设备,弹载接收设备再传送给弹载自动驾驶仪,弹载自动驾驶仪在风动式操舵机的协助下,根据指令的要求调整导弹的飞行轨迹,从而完成制导任务。

当B-1000拦截导弹接近敌弹道导弹时,地面指挥所发出弹头引爆命令,通过传输设备传送至弹头的保险-执行装置,保险-执行装置在确认命令无误后,才会启动爆炸程序引爆弹头,从而击毁敌弹道导弹。

B-1000拦截导弹的战斗部是高爆弹头,其首席设计师是К.И.科佐列兹夫。弹头爆炸后,可产生16000个主动杀伤体(杀伤体呈球状,表面是一层薄薄的金属壳,内部由碳化钨制成),杀伤体向四周高速飞散,速度可达到170米/秒。在杀伤体的强力碰撞下,敌弹道导弹将会直接被引爆。即使它侥幸逃过了这场“飞来横祸”,其外表也肯定被撞得是“千疮百孔”,等其进入大气层后,失去了保护层的弹头仅靠空气的摩擦力也可以将其燃烧殆尽。

试验中的靶弹包括了P-5中程弹道导弹和P-12中程弹道导弹。

代号P-5的单级近中程双重能力地地弹道导弹,北约代号SS-3“讼棍”,系SS-2导弹的后继型,是苏军液氧和酒精推进剂导弹的最终型号。1954年装备部队。采用地面发射方式,导弹牵引运输,在发射阵地加注推进剂,测试后点火发射。

总长20.747米,直径1.652米,总重量28900~29100千克,最大射程1200千米,发射方式为地面发射架垂直发射,命中精度1250~1500米(俄罗斯数据)、2500~5000米(西方数据),战斗部型号为常规弹头或核弹头,主动力型号为单级液体火箭发动机,氧化剂/燃料液氧/92%酒精+8%水(总重量24400千克)(燃烧时间115.4秒),制导方式为惯性制导,最大射程1200千米,命中精度1250米,实际散布横向2500米,纵向5000米,发射方式为地面固定阵地发射。

P-12导弹,北约代号SS-4“凉鞋”,苏联第一代战略火箭军一级液体燃料单弹头中程弹道导弹。50年代中期初始设计,59年定型生产,装备部队。装备总数500余枚。导弹发射方式有地面固定阵地和发射井两种。

导弹战术技术性能数据:全长21米,直径1.65米(最大),最大射程1930公里,起飞重量27.2吨,制导方式惯性制导,弹头重量1360公斤,核弹当量50万吨,命中精度2300米,反应时间60~90秒,发射方式为地面阵地或发射井发射。弹道导弹探测雷达“多瑙河-2”远程探测雷达主要用于探测来袭的敌弹道导弹目标,测算其三坐标(间隔距离、方位角、高低角)和飞行弹道,并将目标指示信息传输给精确制导雷达。“多瑙河-2”远程探测雷达的首席设计师是В-П-索苏里尼科夫。“多瑙河-2”远程探测雷达是米波雷达,由天线系统、发射机、接收机、指示设备、目标自动跟踪设备、坐标测定设备组成。“多瑙河-2”远程探测雷达的各系统呈分散部署状态,其天线系统与发射接收设备之间有大约1公里的间距。发射天线的外形呈抛物柱面形状,尺寸为8米×150米,安装有2个缝式波导辐射器。发射天线在空间形成2个方向图,其波瓣宽度为0.6度×12度。

接收天线由两排天线组成,尺寸为20米×150米,安装有2对缝式波导辐射器。接收天线在空间形成1个方向图,其波瓣宽度为0.6度×12度。“多瑙河-2”远程探测雷达的发射机由2个发射器组成,其中每个发射器的辐射功率是40千瓦。中央计算工作站“A”导弹防御系统各技术设施之间的信息交流与协作都是通过中央计算工作站来完成的,其首席设计师是苏联计算机技术之父C-A-列别捷夫。

中央计算工作站的主要职责是:第一,根据探测雷达收集到的数据,初步测算来袭弹道导弹的飞行弹道;第二,生成目标指示信息,并传送至精确制导雷达;第三,根据精确制导雷达收集到的数据,精确测算出来袭弹道导弹的飞行弹道;第四,精确测算来袭弹道导弹的落点位置;第五,计算己方拦截导弹的飞行弹道参数;第六,给拦截导弹发射阵地及发射设备提供必要的发射准备数据;第七,确定拦截导弹观测雷达天线和指令发送站天线转向角的度数;第八,确定拦截导弹的发射时间,并下达发射指令;第九,对发射后的拦截导弹实施指挥控制;第十,测算拦截导弹与敌来袭弹道导弹的相遇时间,并对拦截导弹下达引爆指令。

中央计算工作站由中央计算机、特种计算机、分配-转换设备、时间计数器(电子时钟)和中央控制面板组成。

中央计算机是一台三址并联式高速电子计算机,采用定点二进制数,运算速度达到40000次/秒,内存容量为4096字节,每秒可进行5万次乘法运算和30万次加法运算。时间计数器也叫电子时钟,是把当前的时间数据传输至计算机系统,使“A”导弹防御系统各技术设施之间的工作时间保持同步。精确制导雷达

3部精确制导雷达根据中央计算工作站传来的目标指示信息,对敌弹道导弹目标实施自动捕捉和跟踪,并将敌目标不断变换的方位坐标数据源源不断地传送至中央计算工作站。

精确制导雷达采用三角测量法测量来袭弹道导弹的三坐标,其间距测量误差不超过10米。该雷达还安装有间距测量自动校准仪。

拦截导弹探测天线的直径为4.65米,可向拦截导弹发射询问脉冲,并接收来自拦截导弹接收应答器回复的应答脉冲。其可移动部分的重量为8000公斤。天线传动装置的功率分别为2千瓦(E1轴)和2千瓦(E2轴)。天线发射机发出分米波雷达高频询问脉冲,其脉冲功率达到1兆瓦,脉冲持续时间为0.5微秒,脉冲跟踪频率为400赫兹。天线接收机具备自动调整增益系数的功能,确保雷达可连续使用脉冲进行弹道导弹目标三坐标的测量。

精确制导雷达的测距设备主要用于测定敌弹道导弹与己方拦截导弹之间的相隔距离。工作时,测距设备通过数字化跟踪系统利用脉冲探测的方式完成测量任务。此外,测距设备还安装有弹头自动辨识系统,能根据空气阻力的不同,自动分辨出敌来袭弹道导弹的弹头与弹体部分。这样,测距设备只需跟踪测量弹头的相关数据就可以了,既简化了测量过程,缩短了测量时间,又提高了测量精度,真是“一举多得”。

角跟踪系统主要用于控制天线的转动。根据目标指示信息,天线在角跟踪系统的操控下实施角度转动,使用单脉冲方法完成对来袭弹道导弹的自动化跟踪任务,并测量出其角坐标。功能检测设备主要用于检测精确制导雷达的战备和工作是否处于正常状态。

显示器设备的功能:操作人员通过该设备,可及时了解雷达各个分系统的工作状况,并对其在作战模式和功能检测模式下的工作状态进行监测。精确制导雷达有一个明显的特征:在作战模式下,精确制导雷达几乎所有的运作都由中央计算工作站通过数据传输系统的无线电中继线路实施远程控制,很少需要操作人员的手工参与。

精确制导雷达将导弹三坐标的测量数据以数字码的形式传输给中央计算工作站,既可以确保数据的质量,也能保证数据的准确性。精确制导雷达的电子设备大量采用了离散计算技术,应用了多种新型半导体元器件和布线新技术。这在现在看来并不算什么,可在当时20世纪50年代后半期,这些可都是最先进的技术解决方案。精确制导雷达从值班模式转入作战模式约需要15秒的时间。在作战模式下,精确制导雷达的电力功率是650千瓦。拦截导弹观测雷达

拦截导弹观测雷达主要用于跟踪己方的拦截导弹(从导弹发射直到弹头引爆),其首席设计师是С-П-拉宾诺维奇。

拦截导弹观测雷达是脉冲型分米波雷达,探测距离为1~60公里,距离测量误差为30~50米,角坐标测量误差为10分。拦截导弹观测雷达通过弹载接收应答器发回的信号对拦截导弹实施自动跟踪,并将收集到的三坐标数据传输给中央计算工作站。

1个拦截导弹观测雷达站由3个观测雷达(其中2个是备用雷达)、1个中央操作台和1个自动化监控站组成。每个观测雷达包括天线-馈线系统、发射机、接收机、测距系统、天线阵指控系统、坐标离散转换系统和控制面板。

拦截导弹观测雷达的天线系统被设计成一个呈三面的抛物镜,可旋转,有三个信道,分别是目标捕捉信道、精确跟踪信道和补偿信道。三个抛物镜的直径分别是1米、2.5米和2.5米。

天线发射机是一种磁控管,可生成重复频率为880赫兹的高频脉冲,脉冲功率为1兆瓦,脉冲持续时间为1微秒。

天线接收机也分为三个信道,即目标捕捉信道、精确跟踪信道和补偿信道。

拦截导弹观测雷达也是由中央计算工作站实施远程控制与操作,二者之间的联系与指令传输也是通过数据传输系统的无线电中继线路实现的。

拦截导弹观测雷达从值班模式转入作战模式约需要15秒的时间。该雷达是固定式安装,无法移动,并配备有专门的雷达罩和安全掩体。指令发送站

指令发送站的功能:转换和传输用于控制拦截导弹的指令。

中央计算工作站发出指令后,通过数据传输系统的无线电中继线路,以频率为400赫兹的二进制数字码的形式传输至指令发送站。指令发送站将这些数字码转换成无线电信号后,再以频率为40赫兹的加密调频形式传输给指定设备。

指令发送站的工作波段是分米波,其电话勤务模式下的输出功率不低于180千瓦。指令发送站由中央计算工作站实施远程控制与操作。该站从值班模式转入作战模式约需要15秒的时间。指令发送站是固定式安装,配备有专门的安全掩体。发射阵地

发射阵地包括2个发射场区、2套СМ-71П型固定式导弹发射装置和1个地面指挥所。

地面指挥所是固定式安装,配备有安全掩体。导弹发射自动化监控设备、电力传动监控设备、发射校检设备和发射控制台都被安装在地面指挥所内。发射阵地通常都做好发射两枚拦截导弹的准备,一枚是主弹,另一枚是备用弹。如果主弹拦截失败,则立即发射备用弹拦截敌弹道导弹。

拦截导弹的射前准备及发射过程都是自动化的,不需要操作人员的参与。中央计算工作站将各项指令通过数据传输系统传送至地面指挥所,然后再由地面指挥所发射控制台进行自动化操作。技术阵地

技术阵地的工作职责:组装B-1000拦截导弹;对弹载设备进行自动化综合检测;为B-1000拦截导弹加注固体燃料、油料、气体和战斗弹药。

在分解状态下,B-1000拦截导弹的第二级部分被运送至安装-测试厂房,在这里完成导弹第二级的启封和装配工作。组装完成后,技术人员还要使用各型技术设备(比如无线电指控设备、观测设备、自动驾驶设备、引爆设备、遥测设备、电气设备等等)对导弹的第二级进行全面的检测和测试。与此同时,对ПРД-33型固体燃料助推器、导弹点火装置、起爆管的加注和装药工作也在紧张有序地进行之中。

待测试和加注工作都完成之后,技术人员再将ПРД-33固体燃料助推器加装到导弹的第二级上。然后,再使用运输拖车将装配好的导弹运至燃料加注站,加入燃料、气体和氧化剂。加注完毕后,拖车会把导弹运至弹药加装站,为导弹安装战斗部。最后,再把组装后的导弹运送至发射阵地。中央显示器

中央显示器主要用于:观测敌弹道导弹/己方拦截导弹的运动轨迹和三坐标;给反导设备发送工作模式指令;接收反导设备工作模式状态报告。中央显示器由目标指示显示器、制导显示器、高度显示器和操作控制台组成。

目标指示显示器可显示半径450公里之内的作战态势,一些重要标点(如敌来袭导弹的飞行弹道、己方拦截导弹的飞行弹道、拦截爆炸点、精确制导雷达的位置、发射阵地的位置等等)都以发光的形式突出标识在显示器上。制导显示器上显示的图像与目标指示显示器基本相同,只是显示的范围小了不少,只显示半径160公里之内的作战态势。

上述两种显示器表现的都是水平面态势,而高度显示器显示的是垂直面态势。高度显示器主要是以高度和时间作为基本参数来展现作战态势,其最大高度值为225公里,最大时间值为130秒。此外,在显示器还能看出离两导弹相撞剩余时间的长短。操作控制台是“A”导弹防御系统远程制导指挥控制系统的组成部分之一,其工作模式主要有三,分别是战前模式、作战模式和功能监控模式。数据传输系统

在数据传输系统的协助下,“A”导弹防御系统各技术设施之间可以相互传输数据和指令,以增强工作的协作性和交互性。此外,数据传输系统还可以传输时间统一信号、提供电话通信服务、同步测量设备之间的工作。

从本质上讲,数据传输系统是一个分米波无线电中继线路网,其发端就是中央计算工作站,其终端就是“A”导弹防御系统的各个技术设施。无线电中继线路有长有短,以中央计算工作站为起点,到“多瑙河-2”远程探测雷达站的距离是10公里,到发射阵地的距离是146公里,到1号精确制导雷达的距离是135公里,到2号精确制导雷达的距离是296公里,到3号精确制导雷达的距离是150公里……总之,无线电中继线路全长约为1230公里。据统计,数据传输系统拥有中央无线电中继站、终端无线电中继站和中间无线电中继站的数量竟高达16座。

终端无线电中继站安装有脉冲信号编解码及转换设备、分米波雷达接收-发射设备、天线-馈线设备、显示设备、功能监控设备、电力供应设备等等。数据在传输过程中,都以脉冲二进制数字码的形式实施传输,脉冲持续时间为0.3-0.6微秒。由于使用了脉冲信号暂时分离技术,每条无线电中继干线都包含有16个独立信道,而每个信道都能传输14位二进制码。也就是说,一条无线电中继干线每秒可传输10万个脉冲信号。对于整个数据传输系统来讲,每8个小时就能传输300亿个脉冲信号。

多次试验证明,“A”导弹防御系统的数据传输系统具有很高的可靠性和准确性。靶场测量数据记录及处理设备

在试验或作战模式下,“A”导弹防御系统的各个技术设施都记录下了大量的数据,包括输入数据、输出数据、雷达工作参数、中央计算工作站工作参数等等。这些数据都被统一记录在专用磁带上。

靶场测量数据记录及处理设备主要包括:M-50型万能高速电子计算机;输入/输出数据监测-记录设备;磁带数据专用输入设备;外弹道测量设备等等。

外弹道测量设备是测量数据的一个主要来源,其职能主要有两个:第一,记录敌弹道导弹和己方拦截导弹的坐标数据;第二,在遥测设备的协助下,记录拦截导弹弹载指控系统的工作参数。

至于被记录在磁带上的数据信息,其处理工作则是由M-50型万能高速电子计算机来完成的。数据处理完毕后,计算机就能得出一些对后续研究工作极为重要的结论,比如敌弹道导弹的雷达反射特征、敌弹道导弹运行轨迹的特点、己方拦截导弹指控系统的动态性能、拦截试验作战分析等等。M-50万能高速电子计算机采用定点40位二进制数,运算速度达到50000次/秒,内存容量为4096字节,每秒可进行4万次乘法运算和30万次加法运算。成功

1955年,为了使反导研制工作协调一致的进行,第1设计局又成立了由基苏尼科领导的第30特别科研小组。他们首先要解决的一个重要课题是:该反导系统不仅要能远距离发现敌弹道导弹的能力,还要有识别真假弹头并对其跟踪的能力。为了实验发现真假弹头的可能性,基苏尼科带领第30特别技术小组在哈萨克斯坦导弹靶场研制出了PO-1远程警戒实验雷达和PO-2远程警戒实验雷达;后又在堪察加实验场研制出PO-3远程警戒实验雷达。为了实验该雷达识别真假弹头的能力,第1设计局向堪察加靶场发射了数枚P-5,P-7和P-12导弹。结果表明了只要加大雷达发射机的功率,便可远距离发现敌人的导弹。

在进行了多次的模拟仿真试验之后,科研人员决定实施一次实弹拦截试验。1961年3月4日,在萨雷沙甘靶场,“A”导弹防御系统成功地拦截了一枚P-12型弹道导弹(靶弹)。因为毕竟是试验,所以该枚弹道导弹的弹头填装的并不是战斗弹药,而是惰性装药。但在1961年3月26日的反导试验中,P-5型弹道导弹(靶弹)的弹头便填装了真正的战斗弹药,当然这次试验也获得了圆满成功。

1961年3月4日,A反导系统在世界上首次成功地对在25000米高空飞行,速度3000米秒的P-12导弹的常规弹头实施了拦截。这次实验取得圆满成功。该系统的成功标志着苏联的反导系统的研制方面已步入了一个崭新的时代。25年后,美国才研制出同样的系统。试验取得成功的消息传到了莫斯科,令火箭狂尼基塔·赫鲁晓夫欣喜若狂,以至于他在一个大型国际论坛上得意洋洋地宣告:“……苏联有着这样一些能人,……我们的导弹,可以说,击中太空中的苍蝇……”

苏联科研人员通过一系列的反导试验,得出了如下结论:第一,“A”导弹防御系统完全具备拦截洲际弹道导弹的能力;第二,“A”导弹防御系统内的各型雷达表现良好,性能优异,不但能准确分辨出弹头与弹体,而且还能提供精确的坐标测量数据和制导信息;第三,“A”导弹防御系统具备一定程度的抗干扰性。

俄罗斯A-135战略反弹道导弹系统

研制历史

冷战时期,苏联从战略军备竞赛的高度出发,开始研制这种战略反导系统,直到1995年2月才完全投入使用。但是,随着冷战的结束,国际形势发生了巨大变化,A-135系统显然已不能适应当前的安全需要,加上该系统昂贵的操作费用,核弹头潜在的危险性及其效能的不断退化,使得一些俄罗斯领导人萌生了让这把“金色保护杀退役的念头。据俄罗斯军方透露,该系统中有的部分已经撤除,重点将转向其它方式的战略防御。尽管可能不会正式退役,但由于缺乏资金支持,A-135的作战能力日渐消退,前途岌岌可危。

苏联最早发展的反导系统是A-35。该系统从1959年提出研制,直到1978年才进入部队服役。A-35的作战能力极其有限,只能对付6到8枚洲际弹道导弹的袭击。在1959年,由于洲际弹道导弹力量很小,A-35还能免强应付。

但到了70年代,洲际弹道导弹有了大规模的发展,A-35的反导能力实在是杯水车薪。70年代初,苏联估计至少有60枚100万吨当量的弹头瞄准莫斯科,是A-35系统作战能力的近10倍。随着分导式多弹头的出现,威胁又提高了一个数量级。在此背景下,苏联部长会议于1975年6月决定部署一种代号为A-135的新一代反弹道导弹系统。

A-135反导系统装备了两种导弹系统:一种是代号为53T6的高超音速大气层内导弹拦截弹,类似于美国的斯普林特;另一种是代号为51T6的大气层外导弹拦截弹,类似于美国的斯帕坦。

A-135于1989年宣布成军,一共有7处发射基地,其中5处是新建造,两处是由苏联第一代反弹道导弹ABM-1(俄国编号A-35/A-35M)Galosh(橡皮套鞋)导弹发射阵地改建。1995年初整套系统进入警戒状态,开始运作。系统建成时一共部署100枚导弹,符合反弹道导弹条约中的规定,这些导弹又分成两类:36枚射程较远的51T6拦截弹,北约编号SH-11Gorgon(蛇发女妖);与64枚射程较短的53T6拦截弹,北约编号SH-08Gazelle(瞪羚)。

由于设计时技术条件的限制,这两种导弹的弹头均为约10000吨当量的AA-84型战术热核弹头,从而不需要非常精确的制导即可摧毁来袭弹头,这与当今流行的直接踫撞杀伤拦截弹头有很大区别。但是根据一些公开新闻报道资料,53T6导弹现在可能改为使用传统弹头,而非过去的核子弹头作为拦截的手段,以降低对于地面被保护目标的伤害;而51T6导弹则已经过期退役。

西方情报部门一开始将51T6导弹称SH-11,后改称ABM-3戈耳贡。51T6是一种大型两级导弹,装在标准的运输-发射筒内,像洲际弹道导弹一样从地下井中发射。导弹的一级发动机装有固体推进剂,用于导弹的快速加速。二级是液体火箭主发动机,有一个单推力室和4台微调发动机。这种固/液配置可使二级发动机更容易控制,既保证了拦截末段有很高的能量,又可使推力有很好的可控性,从而提高了导弹的机动能力。为了节省燃料,二级发动机可以停机并重新点火,而对于固体发动机来说这是根本不可能的。在导弹的设计过程中,还特地进行了辐射加固,因为根据设计要求,51T6拦截弹的作战环境中可能会有核爆炸,既可能是来袭的再入核弹头爆炸,也可能是其它A-135系统拦截弹的核弹头爆炸。

在发射前,指挥中心将拦截点的大致位置装入51T6拦截弹的惯导系统中。惯导系统用于在拦截的初始快速助推段进行飞行控制。在拦截末段,导弹第二级通过Don-2NP作战雷达的指令制导机动到位。51T6拦截弹没有采用末制导,因为它所携带的1万吨当量级AA-84核弹头在脱靶距离内有足够的杀伤力。51T6导弹的有效射程为350公里。操作

53T6大气层内拦截弹与S-300V系统(西方称SA-12)使用的9M82反战术弹道导弹相似。西方一开始称其为SH-08,后改称ABM-3瞪羚。它是一种锥形单级导弹,带有固体助推发动机,通过气动控制进行机动。53T6的最大飞行速度达10马赫以上,可承受的横向过载和轴向过载是常规地空导弹的数倍,可达30g以上。

53T6导弹也放置在运输-发射筒中,从地下井发射。发射后,导弹一经飞离发射井,立即通过气动控制转弯在最短距离上迎击再入的来袭目标。53T6拦截弹的表面采用了高强度低重量的铝钛合金和特殊的防热层,以免导弹被在大气层内高速飞行引起的气动热烧毁。该弹的有效射程达80公里,其射程和最大作战高度分别是原设计指标的2.5倍和3倍。53T6与51T6一样,也装有AA-84热核弹头。但与51T6不同的是,53T6使用自己的作战管理雷达。53T6有两部雷达,一部相控阵雷达跟踪导弹和目标,而另一部雷达则向导弹提供指令数据。

导弹样弹的试验发射从70年代后期就开始进行,其中还包括1982年6月18日进行的发射两枚弹拦截洲际弹道导弹再入弹头的试验。据美国情报部门分析,到1988年,共生产了500枚这种导弹;而据一些美国中央情报局的分析家认为,可能共生产了3000枚。

51T6和53T6两种拦截弹都是从特别加固的发射井发射。这是一种普通的发射井,配备了特殊的速开井盖,以便导弹能快速发射。由于53T6大气层内拦截弹的尺寸较小,因此发射井的深度和内部结构

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载