新版二十一世纪中小学生素质教育文库()医学新探(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-03 02:25:27

点击下载

作者:读书堂

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

新版二十一世纪中小学生素质教育文库()医学新探

新版二十一世纪中小学生素质教育文库()医学新探试读:

内容提要

所谓交通,《辞海》中解释为“相互通达”。实际上我们今天所说的“交通”,常常与“运输”联系在一起,指人或物从一个地方移到另一个地方的方式和手段,不过,“交通”更多地指人的因素,而“运输”则主要是指货物的运送。从交通所行经的地域来看,我们可以把它划为陆路交通、水路交通与空中交通;从交通本身的特点来看,则可以划分为公路交通、铁路交通、河运、海运和航空等等。从更长远的角度来说,航天也属于交通的范畴。

现代的交通运输已成为一个国家经济发展不可缺少的重要部门。但从人类原始的“肩挑手提”、“以脚代步”的交通方式演变为今天现代化的交通运输,却是经历了十分漫长的历史过程的。交通对人类来说是如此的重要,关系又是如此的密切,以致于我们完全有理由认为,交通的发展与变革,是人类文明的重要标志之一。

人体探秘

大家一定读过或听说过我国四大古典名著之一的《西游记》吧,还记得其中第一回讲的是什么吗?以前,在我国东海之中有一座山,叫花果山,山上有一块巨大的仙石。由于感受天地灵气、日精月华,内部育成一个“仙胞”。忽一日,仙石迸裂,产出一卵,似圆球大。因见风,化作一石猴,他五官俱备,四肢皆全,活脱脱地几乎与人一模一样,这就是孙悟空的降生。

当然啦,这只是神话,不是真实的事情。石头里是不会长出生物来的,更何况作为人的化身的石猴。那么,朋友们是否知道,你、我以及其他的人都是怎么来的呢?在这里将向你们讲述人体的由来、试管婴儿、如何优生、单亲生殖以及如何控制人类自身的过度繁殖等等诸如此类的奇妙医学问题。

人从哪儿来

大家一定看到过生小兔、生小猫或生小猪这样的事情吧?这些小兔、小猫、小猪都是在雌性动物腹中孕育成熟,再经过产道分娩出来的,我们人体也不例外。这些小兔、小猫、小猪,以及我们人类的婴儿,一生下来也如石猴一样“五官俱备”、“四肢俱全”,十分可爱。然而,要想成为五官俱备、四肢皆全的小生命要经过很长一段时期的体内发育过程,这便是妊娠,或者人们常说的怀孕。对这样的小生命,我们起先称它们胚胎,以后大一点则叫胎儿。我们人类的妊娠期大约38周。那么在这么长的时间内,胎儿住在什么地方呢?它们怎样发育长大呢?它们最早最早又是由何而来的呢?

那么,让我们讲讲小胚胎的来龙与去脉。原来,在我们人类身体中专门有一系列专管繁衍后代的系统,称为生殖器官。在男性包括睾丸、排精管道、附属腺、阴茎和阴囊;在女性包括卵巢、输卵管、子宫、阴道及外生殖器。在睾丸中有非常复杂的像迷宫一样的小管道,这些小管道叫曲细精管。这些曲细精管正像江河源头一样可源源不断地产生如小蝌蚪那样的生命种子,这叫做精子。人体一次便可排出数亿个精子。但精子很小,大约只有60微米长(1微米=1/1000毫米),肉眼是看不见的,要用高倍显微镜或电子显微镜才可观察它的形态和结构。它由圆圆的头部和长长的尾部所组成,头部正面观呈卵圆形,侧面观呈梨形;尾部又称鞭毛,精子正是靠鞭毛摆动而像蝌蚪那样运动的。很有趣的是,在女性的卵巢也可产生另一半的生命种子,这就是卵子,一般情况下卵巢每月只排出一个成熟的卵子。一旦精子与卵子在母体输卵管中相遇时,便有一个最活跃的精子抢先进入卵子内,使卵子成为受精卵,这一过程称为受精。严格说来,新生命是从受精卵开始的。

以后,受精卵一方面要经过数次一分为二、二分为四等等的分裂(又叫卵裂),形成早期胚胎;一方面要运动至母体子宫腔内,并植入子宫内“定居”下来。对此时的胚胎来说,子宫真是个无比舒适的“温床”,这里有丰富的血管系统,供给胚胎营养物质与氧,使之不断长大。另外,由于子宫深深地位于母体腹内,不易受到外界环境的干扰,可保证胚胎安全发育成熟。

于是小胚胎在子宫里一呆便是九个多月。在这些日子里,胚胎细胞还要不断地分裂,细胞数目愈来愈多,胚胎也就不断长大,到一定时候,各细胞之间便开始向不同方向发展了,即有的胚胎细胞组合发展成人体的脑子,有的则构成我们的四肢,有的形成为腹内器官,如心脏、胃、肠等等。待到所有的器官都形成而且成熟了,一方面胎儿开始在子宫内骚动;一方面子宫也开始收缩,最终将胎儿分娩出来,这也就是呱呱落地的婴儿了。

一个正常的婴儿体重可不轻哩,它可达3000~3500克,此外,也正如“石猴”一样,五官俱备、四肢皆全。然而,不幸的是,人们有时会产出不正常的婴儿,如上唇发育不全,造成一侧缺了一块,这就是较常见的兔唇;若四肢发育有障碍,则会形成如短肢、甚至无臂、无前臂、无手或无指等——如海豚那样的畸形;更严重的是神经系统发育异常,可形成如“无脑畸形”,此时的胎儿无颅顶、发育不好的神经组织直接暴露出来,并且两眼向前突出等等,十分不好看。当然这种胎儿是不能活下来的。总之,只要某个系统发育有障碍,都可发生畸形,虽然目前医学科学工作者对形成畸形的原因已知道一些,如妊娠期间,生某些疾病、服用某些不该服用的药物、受到过大剂量的射线、酗酒等等,但有更多的原因有待我们去探索。另外,更加需要我们去研究的,是这些原因如何造成畸形的,只有将这前因后果都搞明白了,我们才能杜绝畸形的发生。

此外,人们会在公园里或大街上看到一对对活泼可爱的双胞胎,这是怎么回事呢?其实,双胞胎还可分二类呢,一类叫同卵双胎,这是由一个受精卵或早期胚胎,由于某种人们还不清楚的原因分裂成两半,而这两半都发育成一个完整的胚胎。将来这两个胚胎所形成的婴儿,不但性别相同,而且性格、容貌几乎也都一样;还有一类叫异卵双胎,是由于卵巢一次排出两颗成熟的卵,这两颗卵同时受精并各自发育成熟。这样异卵双胎可以是同一性别,也可以不同性别,至于容貌、性格是不会相同的。在极罕见的情况下,女性一次排出2个卵,它们都受精,以后又都分裂成两半,这样便会生下两对双胞胎了,其中一对是男孩、一对是女孩,这便是使人们惊讶地“龙凤四胞胎”了。

神奇的“单亲人”

现在我们知道,人体的生命是从一个精子与一个卵子结合而成合子(即受精卵)开始的,人类繁殖后代的这种方式叫作双亲繁殖,又称有性繁殖。其实,自然界中还有一种生命繁衍的方式,即单亲繁殖,或称无性繁殖,即它们不需要雌雄交配。不少低等生命可用这种方式繁殖后代。

虽然,双亲繁殖方式的二代可以从双亲各方继承许多优良品质,但同时也有其缺点,即其后代固然可保留双亲的遗传特性,也就不能将其中一方的全部优异性状遗传给后代。相反地,在低等生物的单亲繁殖方式,二代的遗传性状与亲代一样,而且还可以利用变异的方法保优去劣,使一代胜于一代。那么,高等动物能否进行单亲繁殖呢?作为最高等动物的人是否也能进行单亲育儿呢?从目前的发展现状、伦理等方面看,还只是幻想,但随着一些高等动物单亲繁殖技术的不断发展,这种幻想正在逐渐变成现实。

其实早在本世纪20年代,人们就已开始了对动物单性繁殖的研究了。1938年,我国著名的一代胚胎学家朱洗用细针刺激带血蛙卵的办法,首次成功地培育出了单亲蟾蜍。到了60年代,他又使单亲蟾蜍产卵以及受精,并培育出许多“没有外祖父的蛤蟆”,从而解决了单亲生物繁衍后代的问题。以后,又有科学家发明了一种核移植术。所谓核移植,就是先将卵子中的细胞核挑去,只留下无核的细胞质及外膜,然后再把另一个体细胞的核移植到去核的卵细胞中去。这样移植进去的细胞核就可以利用原来卵细胞的胞浆及外膜产生的多种刺激物质,进行分裂以及生长。例如1975年,英国科学家格登,就利用这种核移植术,将青蛙肠上皮细胞核移植至卵内,培育出单亲青蛙。1980年4月,我国武汉水生生物研究所的科学家们也用核移植术,成功地培养出两尾单性繁殖的鲫鱼。

单性繁殖哺乳动物一般也要经过两个过程,一是使单细胞分裂,发育成胚胎;二是使胚胎发育成小动物,要使单个的卵细胞分裂、发育成为胚胎,必须具备两个条件:一是卵细胞内一种称为染色体的遗传物质自行加倍;一是卵细胞必须能够进行正常地分裂。为了解决染色体自行加倍的难题,有科学家从某种真菌中提取了一种称之为细胞松弛素B的物质,将该物质加在单个卵细胞中,就可使卵中的染色体自行加倍,形成胚胎。然后将这种胚胎移植到“准备好怀孕”的母体子宫内,让胚胎继续发育,直至娩出。这种“准备好怀孕的母体”当然可以是亲生母亲(从她卵巢中取的卵),也可以是“继母”(不是她本人的卵子),也就是说母体所养育的胚胎并非亲子。

以上讲的当然只是目前动物中的情况。由于对动物细胞的处理和对人细胞的处理在技术上是基本相同的,可以想象,人类的单亲育儿也是可以做得到的。然而,如果真的有那么一天又将会给社会带来什么后果呢?这样的个体是否是在性格、行为等方面都是个“怪人”?人与人之间的道德标准是否将有极大的改变?……当然,所有这些都是科学家们在研究单亲育儿的同时应密切注意与慎重考虑的问题。相信将来随着科学技术的进一步发展,人类可以防止单亲育儿中一系列弊端的发生,同时涌现出大量高质量的单亲人。

怎样提高人口素质

想以单亲繁殖来制造“高质量的单亲人”或许一半是科学,一半是幻想。但是从当前医学、遗传学的发展水平看,尽量做到“优生”是完全可能的。

什么是优生呢?意思是通过对人类某些智力和身体素质遗传学规律的研究,来改善人类生育后代的质量,从而保证与提高整个人类种族的素质。尤其是自本世纪50年代以来,由于遗传科学的发展,人们对于遗传物质的结构、功能、遗传规律有了进一步的认识,对于遗传与遗传病的关系也有了较全面、较深刻的了解,意识到遗传病对社会、对人类的严重危害,因而促使科学家们去探索在体格与智能上都具有优良性状后代的生育方法。

保障优生的办法很多,首先建立起来的,也是有效可行的是产前诊断,或叫生前诊断。由于这门新兴学科的发展,它使得以前不能及早诊断的遗传性代谢病、染色体异常等都能在婴儿出生前得到诊断,从而及时采取流产、引产等方法不让这种不正常的婴儿出生。

产前诊断最常用的方法是羊膜穿刺术。那么什么是羊膜穿刺术呢?首先让我们讲一下什么是羊膜。原来胚胎在母体的子宫内不是直接与母体相接触的。在母体与胚胎之间有胎膜相隔开,胎膜又包括绒毛膜、卵黄囊、尿囊、羊膜以及胎盘和脐带。羊膜则是包围于胚胎体外的第一层胎膜,在羊膜与胚胎之间的空隙称为羊膜腔,其中充满液体,称为羊水。羊水中含羊膜分泌的液体以及胚胎本身排泄活动的产物,同时还有从胚胎或胎儿脱落的上皮细胞等。由此可见我们人体在出生前好像是生活在“汪洋大海”里呢!而“海洋”里的液体以及其他成分都是医生们诊断婴儿是否健康的好根据。

羊膜穿刺术即在妊娠14~20周时,经B型超声波诊断确定胎盘和胎儿位置后,于下腹恰当的地方用注射器穿刺进入羊膜腔,取大约20毫升羊水经低速离心、取其上清液作生物化学性质鉴定,取离心沉淀下来的细胞作细胞染色体检查。在对上清液体作生物化学检查时,不同的检查项目可筛查出不同的遗传缺陷,如对羊水中一种称为甲胎蛋白的检查可以确定胎儿是否患有神经管缺损,经过酶学的检查可以确定胎儿是否患有先天性代射病等。细胞学的检查不但可以知道胎儿是男孩还是女孩,还可以诊断是否有染色体异常。

近年来医生又发明了一种比羊膜穿刺术更精细的诊断胎儿有无疾病的方法,这就是绒毛细胞的检查,它将产前诊断的时间由孕中期(14~20周)提前到孕早期(6~7周),这样给孕妇带来较少的手术痛苦,也更安全些。

除了上述这种采取羊水,检查细胞的方法外,科学家们还发明了一种胎儿镜,使得医生能在体外直接观察胎儿是否有先天性畸形,从而可直接采取相应的手术措施。近年来科学家们又将分子生物学的理论与技术运用于产前诊断,即采用一种称为“分子杂交”的方法,可以更早与更广泛地用于遗传疾病的基因诊断,使得人类对遗传病的防治、提高人口素质达到了一个更高的水平。

为了生育高质量的下一代,人们不只是让那些有遗传病或先天性疾病的胚胎不得成长与出生,另一方面还要促进体能和智能上优秀的个体繁衍。为此,除了防止近亲(指三代之内有共同祖先的人)结婚、禁止有严重遗传性疾病者、精神病人、先天畸形者以及重度智力低下者结婚以外,还可采取选择高体能或高智能个体的精子,将它们低温(—192℃)保存起来,以备给那些想要孩子而又不能生育者进行人工授精。当然这样做一定要经过严格的法律程序,确保顺利进行。此外,现在科学家们已确知,高智能或高体能的个体的许多特征是由遗传物质——基因来决定的,因此,将来科学家们还可以人工合成可遗传的基因,或者从细胞中分离出基因,将它引入受精卵内,使得未来的新个体具有该基因的优良品性,这样也就可以达到提高人类素质的目的。

如何控制人口的激增

人口的激增已成了全世界三大难题之一(其他两大难题是:环境污染及能源缺乏)。当然这是一个复杂的社会问题,但从医学角度说最主要的还是人类不知道,或是缺乏有效办法来控制自身繁衍的缘故。人口问题在第三世界尤为突出,我国也不例外。例如1952年我国人口为5.7亿,到了1992年达到11.6亿,即增加了一倍以上。虽然我国采取了一系列措施,目前每年出生人口仍然在2500万左右,预计到2000年,我国人口总数将达到13亿,这不仅是一个惊人的数字,而且将严重制约我国经济建设和社会发展的进程。为此我国将“控制人口数量、提高人口素质”。并且提出要将平均年人口增长率控制在12.5%以内。那么从医学发展看,人类如何能控制自身的繁衍呢?

请再想一想“人体的由来”那一节,或许可以给你许多启发,并从中想出好办法来。今后我们是否可从以下几方面着手,解决人类的生殖问题呢,而且它们必将比现有的办法更有效、更安全。(1)调节人体的内分泌水平来控制生殖。首先让我们讲一下什么是内分泌。原来我们人体的某些细胞可以分泌一些称为激素的物质,它可以对其他细胞的功能起调控作用,这种细胞叫内分泌细胞。事实上人类女性的排卵以及子宫内膜的改变都是在内分泌控制之下进行的。因此只要我们人类彻底了解了人体内这些激素的分泌规律及作用方式,那么我们便可以随意安排排卵时间,调度子宫内膜的周期改变,一方面不让精子与卵子“相遇”;一方面即使有受精发生,而子宫内膜可以不接受受精卵的植入。这样当然便不会有胚胎的形成了。(2)控制精子的发生与成熟。正如前面说过人体的精子是在曲细精管中源源不断地形成的。同样地人们也可以采用药物来控制精子的成熟过程。

事实上我国的科学家已发现数种药物有这种作用,然而有毒副作用。今后只要人们想出好办法一方面发挥它们阻止精子发生的作用,一方面去除它的毒副作用,那么此类药物便可大显神通了。(3)杀伤已排出的精子或卵子。主要的是可以发明专门针对精子或卵子的疫苗,或者用后面我们要提到的“单元隆抗体”,它们能如导弹一样追击精子或卵子,一旦这种导弹打击到精子与卵子,便可将它们灭活。当然,杀伤性药物也可运用,但至今却缺乏特异性,它们也可能伤及其他正常细胞,未来的科学家们或许可找到更特异的药物来。“人口爆炸”不能继续下去,这不仅是社会学、更是未来医学的一大任务。

医生的得力助手

按理说,人体是很完美的,除了“五官俱备”、“四肢皆全”之外,机体还有一整套保护与防卫的系统与机制,以防止发生疾病。但有时仍难免遭受诸如病毒、细菌、寄生虫等生物因子的骚扰或是有害物质、射线等理化因子的伤害;或者因本身代谢、遗传、衰老的缘故和偶然的外伤等而导致器官功能的衰弱与失常,于是人们产生了各种疾病。虽然有些疾病医生们一望便知,如面部长个疖子、大腿摔跤而骨折、饮食不慎而腹泻等。但有些疾病却不可能“一眼看穿”,它们或是隐藏于机体内部;或者没有什么表现,这样也会使医生们于陷困难的境地。遇到这种情况,医生们往往须利用现代化工具,将疾病找出来。这些工具就是当今与未来医生的好帮手。

本领高强的X射线

小朋友们都知道,齐天大圣孙悟空有一双“火眼金睛”,不但可以遥望几千里之外的事物,还可窥察人体,知道一个人体内是否有病。当然,“火眼金睛”只是我国古人们的奇思异想。然而,当代医生们真的有如“火眼金睛”一样的好帮手,籍此可找出隐藏在我们人体内部的疾病。这些“火眼金睛”是什么呢?它们就是X射线、计算机体层扫描术(简称CT)等。

上个世纪末,德国物理学家伦琴,一天,当他在暗室中研究高压电流通过低压气体的放电现象时,偶然发现实验室内一块表面涂有铂氰化钡结晶的纸板发出了荧光。这一现象引起了他极大的兴趣,他想一定有某种射线作用于纸板。为了证实这一想法,他用数层黑纸包裹一张照相底片,然后让这种射线通过,结果发现底片竟然也曝光了。这无疑证实这种未知的射线具有普通光线所没有的穿透能力。由于当时不明了这种新发现射线的各种性质,所以伦琴给它取名为X射线。后来,人们为了纪念他的功绩,又称X射线为伦琴射线。

现在知道,X射线是一种电磁波,它以光速沿直线前进,具有以下四个基本特性:

穿透性:即能穿透可见光不能穿透的物质,其中包括我们的人体。

荧光作用:X射线肉眼看不见,但被某些荧光物质吸收后,可发出荧光,这便是X射线用于荧光透视的原理。

摄影作用:X射线有一点与日光相同,即可以使胶片感光,这是应用X射线作照相检查的基础。

电离作用:X射线通过任何物质并被吸收后,都会产生电离作用。例如当我们人体暴露于X射线时,人体细胞可发生一系列化学变化,产生生物效应。医生们正是利用这种电离效应来治疗某些疫病的,如肿瘤等。

我们知道,人体各部分组织的密度是不同的,厚度更不一致。因此,它们对X射线的吸收系数也不一样。密度大、体积大的器官组织吸收的X线多,在荧光屏上的影象为黑暗部分,相反地,在照片上因曝光少而呈白色;反之,密度小的器官影象在荧光屏上为明亮部分,胶片上因感光多而显黑暗。这样我们便得到了明暗不同的平面图象。同样不难想象,当某种组织器官发生病变或损伤,对X射线的吸收也不同于原来的组织,这样就会形成异常的X线平面图象。医生们即可根据这些平面图象,发现体内病灶,从而作出正确的诊断,如肺结核、胃溃疡、骨折、脑肿瘤等等。

虽然X射线透视机在帮助医生诊断疾病上显示出无比威力,作出了巨大的贡献。然而,X线仍具有两个重要的缺陷:一是人体的器官都是三维结构的立体实物,而X线照片只是以平面图象来反映,它相当于透视部位的全部器官、组织的重叠图象,因此仍不能得到更多、更明确的有用信息;二是X射线透视机尚不能显示密度变化在5%以下的人体软组织病变,也找不出早期细小的病灶。那么如何克服X射线透视的这两个重要缺点呢?科学家们想到了一种古老的数学图象重建原理,就是说可以将人体的扫描图象重塑成立体结构,做法是从不同方位的角度对一个物体进行投影,然后用数学的方法重建它的图象。当然,这在技术上是较为困难的。首先从理论上说必须从无限多的角度投影,另外,要在荧光屏上显现出一个实体图象需要取30~150万个数据,并且还要进行繁琐的计算才能实现。于是人们自然想到了电子计算机的帮助。1967年这一宏伟目标终于实现了,一位名叫豪斯・弗德的电子工程师设计出了一台最早的计算机体层摄影装置,并试用于临床,1972年他正式发布这种新诊断技术,并命名为计算机体层扫描术,简称CT。由于它诊断效果好,方法简单、迅速、无痛苦、损伤小、不具危险性,因而迅速得到了广泛的应用,大大地促进了医学影象学的发展。

那么,CT是怎样工作的呢?大体上说它分三大步骤:即X光扫描、数据处理、终端显示。在扫描过程中,由于扫描装置是可以活动的,因此可从各个不同角度对患者的病变部位进行扫描,然后将扫描所得的数据由光信号变成电信号,并输送给电子计算机处理系统,经过分析处理后以电信号的形式输送给显示装置,经过阴极射线管,再将电信号转变成光信号,这样就可以在荧光屏上显示出患者病变部位的清晰图象。

CT可以查出一厘米以上的器官或组织的病变,因此用途很广,它常被用于以往很难做到的心血管动态扫描,以及头颅及内脏器官病变的检查等。然而CT技术仍有不尽人意之处,譬如只能诊断一厘米以上的病灶,事实上对于某些疾病一厘米已属不小了,一厘米大小的癌症可能早有转移,因此今后还须对CT进行改良,使它真正能做到“明察秋毫”,更小的病魔也可以将它揪出来。

神通广大的内窥镜

上面我们讲到的仪器,都是从人体外部进行探测的,那么,我们能否发明一种仪器,它可以像“人造隧道”那样伸进人体内部来直接地检查疾病呢?这种想法真是不错。事实上,科学家们已发明了不少这样的仪器,这就是“内窥镜”。

早在本世纪50年代后期,一种叫纤维内窥镜的仪器便已问世并应用于临床。它主要由光导纤维束与一个探头组成。所谓光导纤维就是极细极细的玻璃纤维,一般只有几微米,比人的头发还要细几倍,它能迅速地传递光信号。主探头也是一个很小的探察装置,一般只有11~13毫米,但探头内有超微型的摄象装置。有了内窥镜医生们便可观察甚至拍摄人体器官内部的情况了,之后随着电子学的发展,于80年代又出现了现代高科技产品——电子内窥镜,这样便不再以纤维传象,而代之以光敏集成电路摄象系统,这样所能显示的不但影象质量好,光亮度强,而且图象大,可检查出更细小的病变。

内镜既然可以直接观察人体内部器官的病变,因此可以大大提高疾病早期的检出率,这对于癌症尤为重要,因为癌症早期治疗效果远较晚期为好。此外,内镜对于一些消化性疾病,如胃、十二指肠炎,或是溃疡也能作出准确诊断。近年来,医生们又将内镜技术与超声技术结合起来,可用于消化道肿瘤浸润深度的判断、良性与恶性肿瘤的鉴别,以及对其他一些病变的诊断,都显示出巨大的威力。

此外,内镜还可用于治疗。

内镜下局部止血可避免手术下止血的复杂过程,减少病人的痛苦,同时见效快。内镜激光治疗可应用于消化道疾病如出血肿瘤等。

内镜激光也适用其他疾病的治疗,如肠息肉的治疗。所谓肠息肉是指突出于肠腔的增生组织团块,多为椭圆形,并有一蒂与肠粘膜相连,少数肠息肉可发展为癌肿,应用内镜可以将肠息肉切除。此外,对于晚期内脏肿瘤患者,可应用治疗解除梗阻、缓解症状、延长寿命。近年来,医生们还发展了多种新技术,其中有内镜的高频电凝治疗、内镜的微波治疗、内镜的气囊、水囊扩张治疗等。这些技术一方面可收到更好的治疗效果,一方面又将治疗的范围更加扩大。

在日常生活中,人们不小心吞下异物,可用内镜观察,在其引导下,将异物取出,避免了手术的痛苦,迅速而又方便。

崭新的磁共振成像术

除了X线、CT之外,医生们还有一种“神秘武器”,这就是磁共振成象术,简称为MRI。这是在磁共振频谱学及CT技术基础上发展起来的一项崭新的成象技术。

我们知道,构成我们机体的70%是水分,其分子式是H2O,在这个分子结构中,“H”原子具有一个不对称的质子,而质子具有自身旋转的特性,同时也就产生电磁效应。但在通常的情况下,许多质子皆是无规律地排列,因此各个质子所产生的磁效应相互抵消,表现不出具体的磁性来。然而当外加一个磁场时,各个质子所产生的有如一个个小磁体的磁矩便会排列成为一个方向,此时若再加一个脉冲磁场,就会使这些方向一致的磁矩产生一定角度的回旋运动,而且随这个脉冲磁场的变化还可产生一系列的电磁波,这就是人们熟知的“磁共振现象”。另外,科学家们将一个回旋运动时间称为质子的“驰豫时间”。

人体由各种器官及组织构成。因此,在磁共振的过程中,不同组织有不同强度的磁共振信号,以及不同的“驰豫时间”;另外,即使同一组织,在病理及生理状态下,磁共振信号强度及驰豫时间亦不相同。这些差异可由磁共振信号反映出来。这样便构成了磁共振成象而应用于临床诊断的基础。再者,由于不同组织及同一组织不同状态下质子密度不同,因而通过MRI还能提供组织器官及病灶细胞内外的物理、化学、生物及生化等方面的信息。还有一点要提及的是,在操作过程中,MRI不造成放射性损伤,还可以从任何方向作断层分析,因此MRI技术“异军突起”,在当代医学诊断中愈来愈显出它的特殊地位。MRI几乎可用于全身各处疫病的检查与诊断,如脑内、胸腔内、腹部、盆腔等。

20世纪是科学技术迅猛发展的时期,医学影象学的巨大成就除了上面提到的CT及MRI以外,还有一种最新技术叫放射性核素发射计算机断层,简称为ECT。它包括正电子发射断层(简称PET)和单光子发射断层(简称SPECT)。ECT综合利用了核医学的示踪技术和CT的图象重建原理,兼有二者之长,既具备形象化显示活体生理和代谢功能的能力,又有分辨率高、能进行立体探测和断层显示的优势,是目前医学影象诊断技术中的后起之秀。

近几年科学家们还研制出一种比CT清晰一千倍的成象新技术,叫作离子微层析扫描,简称IMI。它是利用有丝加速器发射出细微的离子来,让这种离子束通过组织,再用特制的硅探测器测定出它通过该组织时损失了多少能量,而后再由计算机进行综合分析,从而从不同角度显示该组织的结构或病变。科学家们相信,IMI甚至可以识别出早期癌细胞的变化,如果真是这样,将大大提高癌症早期的诊断率,挽救更多的生命。

奇妙的超声波

我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为16~20,000赫兹。因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。通常用于医学诊断的超声波频率为1~5兆赫。

虽然说人类听不出超声波,但不少动物却有此本领。它们可以利用超声波“导航”、追捕食物,或避开危险物。大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。

我们人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征我们便可以估计出探测物的距离、形态及其动态改变。医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑室结构;以后到了60年代医生们开始将超声波应用于腹部器官的探测。如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。

目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。

A型:是以波形来显示组织特征的方法,主要用于测量器官的经线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。

B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。

M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。

D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。

人体生物电的利用

电及电的利用人们早就熟知而习以为常了。在冬天手冷了,只要双手互相使劲地搓就会产生电和热;若用一块毛皮擦一根金属棒,则在金属棒上会产生更多的电荷,此时用它碰碰小纸屑,小纸屑便可被吸引附着在金属棒上。至于现代化的家庭几乎样样都离不开电。电灯、电扇、电冰箱、电话、电视机等等。可是你可知道,我们人体也有电的产生与电的不断变化呢!

前面我们已经谈到过,我们人体是由许多许多细胞构成的。细胞是我们机体的最基本的单位,因为只有机体各个细胞均执行它们的功能,才使得人体的生命现象延续不断。同样地,我们若从电学角度考虑,细胞也是一个生物电的基本单位,它们还是一台台的“微型发电机”呢。原来,一个活细胞,不论是兴奋状态,还是安静状态,它们都不断地发生电荷的变化,科学家们将这种现象称为“生物电现象”。细胞处于未受刺激时所具有的电势称为“静息电位”;细胞受到刺激时所产生的电势称为“动作电位”。而电位的形成则是由于细胞膜外侧带正电,而细胞膜内侧带负电的原因。细胞膜内外带电荷的状态医生们称为“极化状态”。

由于生命活动,人体中所有的细胞都会受到内外环境的刺激,它们也就会对刺激作出反应,这在神经细胞(又叫神经元)、肌肉细胞更为明显。细胞的这种反应,科学家们称“兴奋性”。一旦细胞受到刺激发生兴奋时,细胞膜在原来静息电位的基础上便发生一次迅速而短暂的电位波动,这种电位波动可以向它周围扩散开来,这样便形成了“动作电位”。

既然细胞中存在着上述电位的变化,医生们便可用极精密的仪器将它测量出来。此外,还由于在病理的情况下所产生的电变化与正常时不同,因此医生们可从中看出由细胞构成的器官是否存在着某种疾病。

有一种叫“心电描记器”的仪器,它便是用来检查人的心脏有否疾病的一种仪器。这种仪器可以从人体的特定部位记录下心肌电位改变所产生的波形图象,这就是人们常说的心电图。医生们只要对心电图进行分析便可以判断受检人的心跳是否规则、有否心脏肥大、有否心肌梗塞等疾病。

同样地,人类的大脑也如心脏一样能产生电流,因此医生们只要在病人头皮上安放电极描记器,并通过脑生物电活动的改变所记录下来的脑电图,便知道病人脑内是否有病。当然,由于比起心电来,脑电比较微弱,因此科学家要将脑电放大100万倍才可反映出脑组织的变化,如脑内是否长肿瘤、受检查者有否可能发生癫痫(俗称羊癫疯)等。科学家们相信,随着电生理科学以及电子学的发展,脑电图记录将更加精细,甚至有一天这类仪器还可正确地测知人们的思维活动。

充满魅力的核医学

前面我们讲的内窥镜虽然已是十分精细的仪器,但要送入人体内部,如气管、食管、腹内、胃内、膀胱内等也还毕竟十分麻烦,而且多多少少使病人感到难受,甚至痛苦。那么有没有办法让“示踪”的物质进入体内,又可在体外看到它们与人体内部组织细胞相互作用的情况,从而知道器官有否疾病呢?有的,这就是放射性同位素与核医学。

首先,让我们讲一下什么是放射性同位素。世界上所有的物质都是由分子组成的,分子又由原子构成。原子则由原子核及其外围的电子构成。原子核带正电,电子带负电。但原子核又由质子和中子组成,中子不带电,而质子则带有正电荷。自然界中有些元素,如镭、铀等,可自动地将原子核中的物质放射出来以保持原子核的稳定性,元素的这种性质便叫放射性。如果同一元素其原子核中的质子数相同,中子数不同,那么这些元素便称为同位素,如氢有氕、氘、氚三种同位素。那么,所谓放射性同位素指的是具有放射性的同位素。现已知道的放射性同位素有一千多种,有的是天然的,有的则是人工制造出来的。

放射性物质对医生们诊断与治疗疾病有很大的帮助,并在此基础上建立起一门新兴的医学学科,这就是核医学。简单地说核医学就是将极其微量的、高度特异的放射性试剂引入人体内,然后用核探测方法从人体外追踪这些试剂参加代谢的情况,以了解体内生物化学的过程。

在我们人体内脊柱两侧各有一个肾脏(即平时所说的腰子),在肾脏的上面有一个扁平的腺体,这就是肾上腺。肾上腺能合成与分泌一种十分重要的生命物质叫肾上腺皮质激素,但要生成肾上腺皮质激素则需要胆固醇作原料。因此医生们可以用I—131同位素标记的胆固醇注入到人体内,I—131便会浓聚于肾上腺,然后医生们便可用仪器跟踪与显示它们,并将整个肾上腺图象摄影记录下来,这样也就可以知道肾上腺合成肾上腺皮质激素的能力。例如当肾上腺发生肿瘤时,这种合成能力增强便可以从图象里显示出来。同样地,我们的心脏主要以脂肪酸作为能源,正常的心肌会摄取注入人体的以C—11标记的脂肪酸。这样,医生们便可用一种称为正电子发射断层仪来了解心肌的断层图象。一个患有心肌梗塞的病人,由于其氧化脂肪酸的能力下降,此时图象会显示出异常与图像缺损。

放射性同位素在疾病治疗上也显示出巨大威力,它们所放射出来的有三种射线,即α、β和γ。它们都属于电磁波。用于治疗上,以γ、和β为主。医生们常用的同位素放射源有镭源、钴源等。

镭是一种天然放射性同位素,是1898年由世界著名科学家居里夫妇发现的。镭不断地衰变而成为放射性气体氡,氡再继续衰变便可发出α、β、γ三种射线。镭最初用于治疗皮肤癌,现在经过精心制备可将它放入器官腔内,治疗诸如子宫体癌、子宫颈癌、食管癌、直肠癌等十分恶性的肿瘤。此外,还有一种镭针可以直接插入癌瘤内进行治疗,这样可以最大限度地杀死癌细胞,而使正常组织受到较少伤害。

当前,计算机的飞速发展更加促进了核医学的进展。例如十几年前要花几十分钟的核医学图象处理,现在只需两、三分钟,此外分辨率也不断提高,使图象更加清晰。随着特异试剂如单克隆抗体等的问世以及显象剂的改进,核医学必将在下个世纪为人类的防病治病再创辉煌。

“生物武器”与基因疗法

一提到“生物武器”,人们或许会想到“细菌战”。是的,用病菌或细菌产生的毒素伤害人、畜的战争叫“细菌战”,所用的病菌及其携带者、细菌毒素等则称为“生物武器”或“细菌武器”。但在这里我们讲的医生的生物武器是指用当代分子生物学、细胞学、免疫学等理论与技术所建立的用于疾病诊断以及治疗的最新手段,这些手段代表了医学发展新水平以及今后发展的新方向之一。

生物导弹

导弹指的是可以依靠控制系统制导的,能十分准确地击中预定目标的高速飞行武器。导弹的种类很多,如地对空、空对空导弹等,这些都是用于真正的战争的。我们这里讲的是用于找出疾病或是治疗疾病,尤其是癌症的医学诊治药物或方法,这便是“生物导弹”,或称为“单克隆抗体”。

那么什么是“单克隆抗体”呢?为什么又称它为“生物导弹”?原来我们人体中存在有一种十分有用的“健康卫士”,它称为B淋巴细胞。当外来细菌、病毒、或是异性物质侵入我们人体时,它们便立即产生一种对抗这些细菌、病毒或异性物质的“抗体”。抗体可把它们溶解或杀灭。正是由于抗体有这种功能,科学家们便想出了一种“细胞杂交”的方法,使这种抗体可以源源不断地产生。什么是“细胞杂交”、它又为什么可不断产生抗体呢?顾名思义,“细胞杂交”就是用两种不同的细胞将它们融合成一种细胞。为了制造特异性的抗体,科学家们将B淋巴细胞与一种瘤细胞融合在一起,于是所产生的“杂交细胞”一方面具有瘤细胞不断生长繁殖的性质(科学家们称之为“永生不死性”),一方面又有B细胞产生专一抗体的性质。科学家们再将这种杂交细胞所产生的抗体提纯出来,这便是单克隆抗体了。

由于单克隆抗体是B细胞针对某一细菌、或某一特殊癌细胞而产生的,因此它就会像“导弹”一样只跟踪激发B细胞产生抗体的目标(或为细菌、癌细胞等),而不会伤及“无辜”的其他细胞。另外,为了使我们能看到单克隆抗体与目标(如癌细胞)的结合,以便医生作出准确诊断,科学家们让单克隆抗体与可以显示的物质结合在一起,如荧光素、放射性核素等,这样医生们便知道疾病(如癌症)的部位、大小等。若是将单克隆抗体与抗癌药物、毒素等结合在一起,然后将这种结合用于人体,那么单克隆抗体就会追踪目标,并且将抗癌药物或毒物带到癌症部位,将癌细胞杀死。

目前单克隆抗体在医疗中正起着巨大的作用,然而也还存在着一些问题。例如由于提纯很困难,有时难免带有杂质,这样诊断与治疗效果便不会太好,此外,癌细胞等坏家伙还会发生“变异”,就像孙悟空七十二变那样,让你不认识它,这样单克隆抗体也就会找不到目标了。最后,外来入侵者如细菌、病毒及癌细胞还会产生“抗抗体”来中和单克隆抗体,就如“反导弹”一样来对付“导弹”。如何克服这些难题,还需要经过人们长期不懈的努力。

基因探针诊断技术与基因治疗

汉弗莱是美国1963~1969年的副总统。1967年他发现尿血(小便中有血液),医生用膀胱镜检查,诊断为“慢性增生性膀胱炎”,就是说不是癌症。不幸地是10年后他再检查时已确诊为“浸润性膀胱癌”了,就是说癌症已到了晚期,最终不治而谢世。

时隔十几年后的今天,美国新一代的医生将汉弗莱当年尿细胞标本,以及活组织标本和手术后的肿瘤标本再用一种最新的技术检查,发现这些标本中都存在一种称之为P53基因的突变,从而证实汉弗莱早在第一次尿血时已罹患膀胱癌了。那么为什么当年诊断不出汉弗莱生膀胱癌呢?原因就是那时还没有一种先进的称之为“聚合酶链反应”(简称为PCR)技术。

在我们人体细胞中至少存在有两种与癌症发生、发展密切相关的脱氧核糖核酸(即DNA)片段,即癌症相关基因。其中之一是导致肿瘤形成的“癌基因”,另一种是抑制肿瘤发生与发展的“肿瘤抑制基因”,平时人们称为“抑癌基因”或“抗癌基因”。如果细胞中癌基因过分活跃了,或是抑癌基因“丢失”了或某种原因而失去功能了,细胞便会恶变成癌。迄今科学家们已发现一百多个癌基因与十几个抑癌基因,其中一个称为P53的抗癌基因引起医生们的特别重视,原因是它的失活或突变与50%的人类肿瘤发生有命长,由于是宇航员们居住的“旅馆”,它还可以扩展和延伸;它同时还具有修复能力,能定期检修,按时更换设备,显示出很强的活力。

神奇的空间站

现在投入使用的只有俄罗斯的“和平号”空间站。曾经使用过的空间站有天空实验室、空间实验室—1、礼炮号系列等。目前正在紧锣密鼓地研制,并将下世纪竣工的永久性空间站,是许多国家正在联合开发的阿尔法国际空间站。

天空实验室于1973年发射上天,它的第一部分包括装配好的轨道工场、太阳望远镜、过渡舱、多用途对接舱。随后,阿波罗飞船被送上轨道,并与天空实验室对接,三名宇航员进入轨道工场。28天后,阿波罗飞船分离并返回地面。天空实验室的寿命不长,由于70年代太阳活动强烈,引起高层中大气分子密度加大,天空实验室轨道下降。1979年7月,天空实验室坠毁到南半球印度洋澳大利亚西部地区。

天空实验室的轨道工场是最基本部件,它由土星火箭的末级改装而成。轨道工场有卧室、餐室、工作室、盥洗室,环境优雅,室温适中。和轨道工场相接近的是过渡舱,它是实验室的控制中枢,里面装有电力控制和分配系统、数据处理系统、通信设备等。与过渡舱相接的是多用途对接舱,说它多用途,是讲它除了能对接外,还可以贮藏各种实验设备和胶卷暗盒。多用途对接舱上面有一个太阳望远镜,可以拍摄太阳活动的各种照片。

天空实验室的电力由太阳能电池和蓄电池供给。天空实验室具有一定的应急营救能力,整个实验室每批三名宇航员中就有一名技术专

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载