Experimental Researches in Electricity, Volume 1(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-06 09:30:05

点击下载

作者:Faraday, Michael

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

Experimental Researches in Electricity, Volume 1

Experimental Researches in Electricity, Volume 1试读:

Experimental Researches In Electricity.

By Michael Faraday, D.C.L. F.R.S.

Fullerian Profesor Of Chemistry In The Royal Institution. Corresponding Member, Etc. Of The Royal And Imperial Academies Of Science Of Paris, Petersburgh, Florence, Copenhagen, Berlin, Gottingen, Modena, Stockholm, Palermo, Etc. Etc.

In Two Volumes.

Vol. I.

Second Edition.

Reprinted from the Philosophical Transactions of 1831-1838.

London: Richard And John Edward Taylor, printers And Publishers To The University Of London, Red Lion Court, Fleet Street. 1849.

Preface.

I have been induced by various circumstances to collect in One Volume the Fourteen Series of Experimental Researches in Electricity, which have appeared in the Philosophical Transactions during the last seven years: the chief reason has been the desire to supply at a moderate price the whole of these papers, with an Index, to those who may desire to have them.

The readers of the volume will, I hope, do me the justice to remember that it was not written as a whole, but in parts; the earlier portions rarely having any known relation at the time to those which might follow. If I had rewritten the work, I perhaps might have considerably varied the form, but should not have altered much of the real matter: it would not, however, then have been considered a faithful reprint or statement of the course and results of the whole investigation, which only I desired to supply.

I may be allowed to express my great satisfaction at finding, that the different parts, written at intervals during seven years, harmonize so well as they do. There would have been nothing particular in this, if the parts had related only to matters well-ascertained before any of them were written:—but as each professes to contain something of original discovery, or of correction of received views, it does surprise even my partiality, that they should have the degree of consistency and apparent general accuracy which they seem to me to present.

I have made some alterations in the text, but they have been altogether of a typographical or grammatical character; and even where greatest, have been intended to explain the sense, not to alter it. I have often added Notes at the bottom of the page, as to paragraphs 59, 360, 439, 521, 552, 555, 598, 657, 883, for the correction of errors, and also the purpose of illustration: but these are all distinguished from the Original Notes of the Researches by the date of Dec. 1838.

The date of a scientific paper containing any pretensions to discovery is frequently a matter of serious importance, and it is a great misfortune that there are many most valuable communications, essential to the history and progress of science, with respect to which this point cannot now be ascertained. This arises from the circumstance of the papers having no dates attached to them individually, and of the journals in which they appear having such as are inaccurate, i.e. dates of a period earlier than that of publication. I may refer to the note at the end of the First Series, as an illustration of the kind of confusion thus produced. These circumstances have induced me to affix a date at the top of every other page, and I have thought myself justified in using that placed by the Secretary of the Royal Society on each paper as it was received. An author has no right, perhaps, to claim an earlier one, unless it has received confirmation by some public act or officer.

Before concluding these lines I would beg leave to make a reference or two; first, to my own Papers on Electro-magnetic Rotations in the Quarterly Journal of Science, 1822. xii. 74. 186. 283. 416, and also to my Letter on Magneto-electric Induction in the Annales de Chimie, li. p. 404. These might, as to the matter, very properly have appeared in this volume, but they would have interfered with it as a simple reprint of the "Experimental Researches" of the Philosophical Transactions.

Then I wish to refer, in relation to the Fourth Series on a new law of Electric Conduction, to Franklin's experiments on the non-conduction of ice, which have been very properly separated and set forth by Professor Bache (Journal of the Franklin Institute, 1836. xvii. 183.). These, which I did not at all remember as to the extent of the effect, though they in no way anticipate the expression of the law I state as to the general effect of liquefaction on electrolytes, still should never be forgotten when speaking of that law as applicable to the case of water.

There are two papers which I am anxious to refer to, as corrections or criticisms of parts of the Experimental Researches. The first of these is one by Jacobi (Philosophical Magazine, 1838. xiii. 401.), relative to the possible production of a spark on completing the junction of the two metals of a single pair of plates (915.). It is an excellent paper, and though I have not repeated the experiments, the description of them convinces me that I must have been in error. The second is by that excellent philosopher, Marianini (Memoria della Societa Italiana di Modena, xxi. 205), and is a critical and experimental examination of Series viii, and of the question whether metallic contact is or is not productive of a part of the electricity of the voltaic pile. I see no reason as yet to alter the opinion I have given; but the paper is so very valuable, comes to the question so directly, and the point itself is of such great importance, that I intend at the first opportunity renewing the inquiry, and, if I can, rendering the proofs either on the one side or the other undeniable to all.

Other parts of these researches have received the honour of critical attention from various philosophers, to all of whom I am obliged, and some of whose corrections I have acknowledged in the foot notes. There are, no doubt, occasions on which I have not felt the force of the remarks, but time and the progress of science will best settle such cases; and, although I cannot honestly say that I wish to be found in error, yet I do fervently hope that the progress of science in the hands of its many zealous present cultivators will be such, as by giving us new and other developments, and laws more and more general in their applications, will even make me think that what is written and illustrated in these experimental researches, belongs to the by-gone parts of science.

MICHAEL FARADAY.

Royal Institution,

March, 1839.

Contents

● Contents●

First Series.

§ 1. Induction of Electric Currents.

§ 2. Evolution of Electricity from Magnetism.

● § 3. New Electrical State or Condition of Matter.● § 4. Explication of Arago's Magnetic Phenomena.● Second Series.● § 5. Terrestrial Magneto-electric Induction.● § 6. General remarks and illustrations of the Force and Direction

of Magneto-electric Induction.● Third Series.● § 7. Identity of Electricities derived from different sources.● I. Voltaic Electricity.● II. Ordinary Electricity.● III. Magneto-Electricity.● IV. Thermo-Electricity.● V. Animal Electricity.● § 8. Relation by Measure of common and voltaic Electricity.● Note respecting Ampère's inductive results● Fourth Series.● § 9. On a new Law of Electric Conduction.● § 10. On Conducting Power generally.● Fifth Series.● § 11. On Electro-chemical Decomposition.● ¶ i. New conditions of Electro-chemical Decomposition.● ¶ ii. Influence of Water in Electro-chemical Decomposition.● ¶ iii. Theory of Electro-chemical Decomposition.● Sixth Series.● § 12. Power of platina, &c. to induce combination.● Seventh Series.● § 11.* Electro-chemical Decomposition continued (nomenclature).● ¶ iv. On some general conditions of Electro-chemical

Decomposition.● ¶ v. On a new measure of Volta-electricity.● ¶ vi. On the primary or secondary character of the bodies evolved

at the Electrodes.● ¶ vii. On the definite nature and extent of Electro-chemical

Decomposition.● § 13. On the absolute quantity of Electricity associated with the

particles or atoms of Matter.● Eighth Series.● §14. On the Electricity of the Voltaic Pile; its source, quantity,

intensity, and general characters.● ¶ i. On simple Voltaic Circles.● ¶ ii. On the Intensity necessary for Electrolyzation.● ¶ iii. On associated Voltaic Circles, or the Voltaic Battery.● ¶ iv. On the Resistance of an Electrolyte to Electrolytic Action, and

on Interpositions.● ¶ v. General Remarks on the active Voltaic Battery.● Ninth Series.● § 15. On the influence by induction of an Electric Current on itself:

—and on the inductive action of Electric Currents generally.● Tenth Series.● § 16. On an improved form of the Voltaic Battery.● § 17. Some practical results respecting the construction and use

of the Voltaic Battery (1034. &c.).● Eleventh Series.● § 18. On Static Induction.● ¶ i. Induction an action of contiguous particles.● ¶ ii. On the absolute charge of matter.● ¶ iii. Electrometer and inductive apparatus employed.● ¶ iv. Induction in curved lines.● ¶ v. On specific induction, or specific inductive capacity.● ¶ vi. General results as to induction.● Supplementary Note to Experimental Researches in Electricity.—

Eleventh Series.● Twelfth Series.● ¶ vii. Conduction, or conductive discharge.● ¶ viii. Electrolytic discharge.● ¶ ix. Disruptive discharge and insulation.● The electric spark or flash.● The electrical brush.● Difference of discharge at the positive and negative conducting

surfaces.● Thirteenth Series.● ¶ ix. Disruptive discharge (continued).● Glow discharge.● Dark discharge.● ¶ x. Convection, or carrying discharge.● ¶ xi. Relation of a vacuum to electrical phenomena.● § 19. Nature of the electric current.● Fourteenth Series.● § 20. Nature of the electric force or forces.● § 21. Relation of the electric and magnetic forces.● § 22. Note on electrical excitation.● Index.● Notes

Experimental Researches In Electricity.

First Series.

§ 1. On the Induction of Electric Currents. § 2. On the Evolution of Electricity from Magnetism. § 3. On a new Electrical Condition of Matter. § 4. On Arago's Magnetic Phenomena.

[Read November 24, 1831.]

1. The power which electricity of tension possesses of causing an opposite electrical state in its vicinity has been expressed by the general term Induction; which, as it has been received into scientific language, may also, with propriety, be used in the same general sense to express the power which electrical currents may possess of inducing any particular state upon matter in their immediate neighbourhood, otherwise indifferent. It is with this meaning that I purpose using it in the present paper.

2. Certain effects of the induction of electrical currents have already been recognised and described: as those of magnetization; Ampère's experiments of bringing a copper disc near to a flat spiral; his repetition with electro-magnets of Arago's extraordinary experiments, and perhaps a few others. Still it appeared unlikely that these could be all the effects which induction by currents could produce; especially as, upon dispensing with iron, almost the whole of them disappear, whilst yet an infinity of bodies, exhibiting definite phenomena of induction with electricity of tension, still remain to be acted upon by the induction of electricity in motion.

3. Further: Whether Ampère's beautiful theory were adopted, or any other, or whatever reservation were mentally made, still it appeared very extraordinary, that as every electric current was accompanied by a corresponding intensity of magnetic action at right angles to the current, good conductors of electricity, when placed within the sphere of this action, should not have any current induced through them, or some sensible effect produced equivalent in force to such a current.

4. These considerations, with their consequence, the hope of obtaining electricity from ordinary magnetism, have stimulated me at various times to investigate experimentally the inductive effect of electric currents. I lately arrived at positive results; and not only had my hopes fulfilled, but obtained a key which appeared to me to open out a full explanation of Arago's magnetic phenomena, and also to discover a new state, which may probably have great influence in some of the most important effects of electric currents.

5. These results I purpose describing, not as they were obtained, but in such a manner as to give the most concise view of the whole.§ 1. Induction of Electric Currents.

6. About twenty-six feet of copper wire one twentieth of an inch in diameter were wound round a cylinder of wood as a helix, the different spires of which were prevented from touching by a thin interposed twine. This helix was covered with calico, and then a second wire applied in the same manner. In this way twelve helices were superposed, each containing an average length of wire of twenty-seven feet, and all in the same direction. The first, third, fifth, seventh, ninth, and eleventh of these helices were connected at their extremities end to end, so as to form one helix; the others were connected in a similar manner; and thus two principal helices were produced, closely interposed, having the same direction, not touching anywhere, and each containing one hundred and fifty-five feet in length of wire.

7. One of these helices was connected with a galvanometer, the other with a voltaic battery of ten pairs of plates four inches square, with double coppers and well charged; yet not the slightest sensible reflection of the galvanometer-needle could be observed.

8. A similar compound helix, consisting of six lengths of copper and six of soft iron wire, was constructed. The resulting iron helix contained two hundred and fourteen feet of wire, the resulting copper helix two hundred and eight feet; but whether the current from the trough was passed through the copper or the iron helix, no effect upon the other could be perceived at the galvanometer.

9. In these and many similar experiments no difference in action of any kind appeared between iron and other metals.

10. Two hundred and three feet of copper wire in one length were coiled round a large block of wood; other two hundred and three feet of similar wire were interposed as a spiral between the turns of the first coil, and metallic contact everywhere prevented by twine. One of these helices was connected with a galvanometer, and the other with a battery of one hundred pairs of plates four inches square, with double coppers, and well charged. When the contact was made, there was a sudden and very slight effect at the galvanometer, and there was also a similar slight effect when the contact with the battery was broken. But whilst the voltaic current was continuing to pass through the one helix, no galvanometrical appearances nor any effect like induction upon the other helix could be perceived, although the active power of the battery was proved to be great, by its heating the whole of its own helix, and by the brilliancy of the discharge when made through charcoal.

11. Repetition of the experiments with a battery of one hundred and twenty pairs of plates produced no other effects; but it was ascertained, both at this and the former time, that the slight deflection of the needle occurring at the moment of completing the connexion, was always in one direction, and that the equally slight deflection produced when the contact was broken, was in the other direction; and also, that these effects occurred when the first helices were used (6. 8.).

12. The results which I had by this time obtained with magnets led me to believe that the battery current through one wire, did, in reality, induce a similar current through the other wire, but that it continued for an instant only, and partook more of the nature of the electrical wave passed through from the shock of a common Leyden jar than of the current from a voltaic battery, and therefore might magnetise a steel needle, although it scarcely affected the galvanometer.

13. This expectation was confirmed; for on substituting a small hollow helix, formed round a glass tube, for the galvanometer, introducing a steel needle, making contact as before between the battery and the inducing wire (7. 10.), and then removing the needle before the battery contact was broken, it was found magnetised.

14. When the battery contact was first made, then an unmagnetised needle introduced into the small indicating helix (13.), and lastly the battery contact broken, the needle was found magnetised to an equal degree apparently as before; but the poles were of the contrary kind.

15. The same effects took place on using the large compound helices first described (6. 8.).

16. When the unmagnetised needle was put into the indicating helix, before contact of the inducing wire with the battery, and remained there until the contact was broken, it exhibited little or no magnetism; the first effect having been nearly neutralised by the second (13. 14.). The force of the induced current upon making contact was found always to exceed that of the induced current at breaking of contact; and if therefore the contact was made and broken many times in succession, whilst the needle remained in the indicating helix, it at last came out not unmagnetised, but a needle magnetised as if the induced current upon making contact had acted alone on it. This effect may be due to the accumulation (as it is called) at the poles of the unconnected pile, rendering the current upon first making contact more powerful than what it is afterwards, at the moment of breaking contact.

17. If the circuit between the helix or wire under induction and the galvanometer or indicating spiral was not rendered complete before the connexion between the battery and the inducing wire was completed or broken, then no effects were perceived at the galvanometer. Thus, if the battery communications were first made, and then the wire under induction connected with the indicating helix, no magnetising power was there exhibited. But still retaining the latter communications, when those with the battery were broken, a magnet was formed in the helix, but of the second kind (14.), i.e. with poles indicating a current in the same direction to that belonging to the battery current, or to that always induced by that current at its cessation.

18. In the preceding experiments the wires were placed near to each other, and the contact of the inducing one with the buttery made when the inductive effect was required; but as the particular action might be supposed to be exerted only at the moments of making and breaking contact, the induction was produced in another way. Several feet of copper wire were stretched in wide zigzag forms, representing the letter W, on one surface of a broad board; a second wire was stretched in precisely similar forms on a second board, so that when brought near the first, the wires should everywhere touch, except that a sheet of thick paper was interposed. One of these wires was connected with the galvanometer, and the other with a voltaic battery. The first wire was then moved towards the second, and as it approached, the needle was deflected. Being then removed, the needle was deflected in the opposite direction. By first making the wires approach and then recede, simultaneously with the vibrations of the needle, the latter soon became very extensive; but when the wires ceased to move from or towards each other, the galvanometer-needle soon came to its usual position.

19. As the wires approximated, the induced current was in the contrary direction to the inducing current. As the wires receded, the induced current was in the same direction as the inducing current. When the wires remained stationary, there was no induced current (54.).

20. When a small voltaic arrangement was introduced into the circuit between the galvanometer (10.) and its helix or wire, so as to cause a permanent deflection of 30° or 40°, and then the battery of one hundred pairs of plates connected with the inducing wire, there was an instantaneous action as before (11.); but the galvanometer-needle immediately resumed and retained its place unaltered, notwithstanding the continued contact of the inducing wire with the trough: such was the case in whichever way the contacts were made (33.).

21. Hence it would appear that collateral currents, either in the same or in opposite directions, exert no permanent inducing power on each other, affecting their quantity or tension.

22. I could obtain no evidence by the tongue, by spark, or by heating fine wire or charcoal, of the electricity passing through the wire under induction; neither could I obtain any chemical effects, though the contacts with metallic and other solutions were made and broken alternately with those of the battery, so that the second effect of induction should not oppose or neutralise the first (13. 16.).

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载