生命是什么:40亿年生命史诗的开端(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-22 08:55:35

点击下载

作者:(以色列)埃迪·普罗斯

出版社:中信出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

生命是什么:40亿年生命史诗的开端

生命是什么:40亿年生命史诗的开端试读:

版权信息书名:生命是什么:40亿年生命史诗的开端作者:[以色列]埃迪·普罗斯排版:skip出版社:中信出版社出版时间:2018-12-01ISBN:9787508689029本书由中信联合云科技有限责任公司授权北京当当科文电子商务有限公司制作与发行。— · 版权所有 侵权必究 · —序我整个下午都在津津有味地思考生命。如果你仔细想一想,就会发觉,生命是多么奇妙的事物!你知道吗,它和世间其他事物是如此不同,希望你明白我为什么这么说。——佩勒姆·格伦维尔·沃德豪斯(P. G. Wodehouse)

这本书主要关注的是一些基本问题,数千年来,它们一直困扰并折磨着人类。对这些问题的思考可以追溯到人类对自己在宇宙中位置的探索,即对生命体与无生命物体之间关系的追问。无论我们怎么强调确切回答这些问题的重要性,都不会言过其实,这些问题的答案不仅将揭示我们是谁、我们是什么,而且将影响我们对整个宇宙的理解。[1]宇宙是不是像人择原理(anthropic principle)的支持者所指出的那样,通过精密的调控支持着生命体的运作呢?又或者,人类在宇宙中的位置是不是更接近哥白尼的(Copernican)看法呢?用知名物理学家斯蒂芬·霍金(Stephen Hawking)的话来说,“人类不过是生活在一颗中等大小行星上的化学废料”。我们恐怕再也找不到比这两种观点差别更大的看法了。

20世纪40年代,另一位著名的物理学家埃尔温·薛定谔(Erwin Schrödinger)撰写了一本标题引人注目的书——《生命是什么》(What is Life?)。该书在一开头便谈到了这个问题,薛定谔写道:在一个有机体的空间范围内,发生在时间和空间中的事件该如何用物理和化学来描述?初步的答案……可以概括如下:当今的物理和化学虽然在描述这些事件上无能为力,但并不代表这样的事件不能被这些科学所描述。

几十年过去了,虽然这些年来伴随着诺贝尔奖获奖名单不断加长,人类在分子生物学领域获得了巨大的进步,但是我们仍然困扰于薛定谔那简单而直接的问题,它的确让人感到困惑。20世纪顶尖的生物学家卡尔·乌斯(Carl Woese)甚至声称,当前生物学所处的状态正类似于20世纪初期的物理学。在20世纪初,阿尔伯特·爱因斯坦(Albert Einstein)、尼尔斯·玻尔(Niels Bohr)、埃尔温·薛定谔和其他伟大的物理学家还没有完成对物理学的变革,而现在,生物学的变革也还没有完全实现。这确实是一个颇为激进的看法!不过令人失望的是,现代生物学仿佛心满意足地漫步于当前机械式的研究道路上,大多数从业人员对于要求重新审视学科的尖锐呼声,不是无知无觉就是漠不关心。[2]

没错,身处于现代的我们明确地知道生命冲力(élan vital)是不存在的。生命体和非生命体一样,都由没有生物活性的“死”分子构成,但是这些分子在一曲完整的“生命大合奏”中相互作用的独特方式,形成了十分独特的结果——包括我们在内的所有生命体的诞生。尽管半个世纪以来分子生物学取得了巨大进步,但是我们依然不知道生命是什么,它与没有生命的世界有何关联,又是如何出现的。诚然,半个世纪以来为了解决这些基本问题,人们投入了相当大的努力,但是那通往“应许之地”的大门却仿佛依然遥不可及。就像沙漠中的海市蜃楼一样,地平线处那象征着绿洲的棕榈树在闪烁着微光,当这一切仿佛触手可及的时候,这景象又消失了,徒留我们去体会对未知世界难耐的饥渴和无法满足的冲动。

所以,到底是什么造成了这持久且令人不安的困境?为了简单地阐明问题所在,请思考下面这个虚构的场景:你行走在一片原野上,这时你忽然看到了一台冰箱。这台冰箱功能完好,里面还放着几瓶冰镇啤酒。不过,一台位于原野中央且没有与任何外界能量源相连接的冰箱是如何运作的,它又如何维持内部的低温呢?它为什么会在那里,又是怎么到那里去的?你更仔细地去观察,终于发现冰箱顶部有一块与电池相连的太阳能板,太阳能板给维持冰箱正常运作的压缩机提供所需的能量。于是冰箱运作的谜题解开了。冰箱通过光伏板获取太阳能,因此太阳就是使冰箱运作的能量源。这能量使得压缩机能够将制冷剂泵为吸收了冰箱内热量的高温蒸汽,这由冷到热的过程与自然状态下的热量流动过程恰好相反。所以,尽管自然的规律是让冰柜内外的温度趋于平衡,但这个我们称作“冰箱”的物体通过一个功能性的设计,让我们能将饮食储藏在宜人的低温环境下。

但我们还没有弄清楚为什么冰箱会出现在那里。是谁把它放在那儿的?他又为什么要这样做呢?现在如果我告诉你没有人把冰箱放在那里,这冰箱是通过自然的力量自发产生的,你或许会露出难以置信的表情。多么荒谬!这不可能!自然不是这么运作的!大自然不会自发地生成高度组织化、远离平衡态且具有目的性的实体,比如冰箱、汽车、电脑等。这些物体都是人类设计的产品,它们刻意且具有目的性。大自然如果真的具有某种倾向的话,则倾向于将系统推向平衡态,推向无序和混乱而不是秩序和功用——果真如此吗?

简单的事实就是,哪怕是像细菌细胞一样最基本的生命系统,都是一个高度组织化、远离平衡态的功能性系统,这系统从热力学的角度来说和一个冰箱的运作方式类似,但是其复杂性却高了好几个数量级。冰箱充其量不过涉及数十个元件之间的互动与合作,而在一个细菌细胞中则存在成千上万个不同分子和分子聚合物之间的互动,有的分子本身就具有惊人的复杂性。这一切都发生在数千个同步进行的化学反应网络内。在冰箱的例子中,冰箱的功能显而易见是通过将热量从低温的内部泵到高温的外部,从而保证冰箱中的啤酒和其他东西处于低温的状态。但具有有序复杂性的细菌细胞又有什么功能呢?简单来说,我们可以通过观察它的行为来判断它的功用,就像我们通过观察冰箱的运作从而发现其用处一样,通过研究细胞的行为,我们可以发现它的功能或者说目的。那么通过研究,我们发现了什么结果呢?每一个活细胞都是一个高度组织化的工厂,正如任何一个人造的工厂一样,它需要与能量源和能源产生器相连接来保证其运行。一旦能量源被切断,工厂将立刻停止运行。这个迷你工厂通过利用能源产生器产生的能量,将原材料转化为许多功能性元件,这些元件将被组装起来,用于生产工厂的产品。这个高度组织化的纳米级别细胞工厂都生产些什么呢?更多的细胞!每个细胞到头来都是一个为了生产更多细胞的高度组织化的工厂!诺贝尔奖得主、著名生物学家弗朗索瓦·雅各布(François Jacob)就曾富有诗意地描述过这个事实:“每个细胞的梦想都是变成两个细胞。”

关于生命的主要问题就在于此,正如我们会觉得冷藏室、集能设备、电池、压缩机和制冷剂等部件能自发地组装成一台功能正常的电冰箱是一件难以置信的事情,即使所有的部件都已经齐备,一个自发形成的高度组织化、远离平衡态的微型化学工厂同样令人难以置信。不仅基本常识告诉我们一个高度组织化的个体不会自发形成,一些基本的物理学法则也反复说明着同样的道理。系统倾向于朝着混乱和无序的状态发展,而不是秩序和功用。也难怪20世纪最伟大的物理学家们如尤金·维格纳(Eugene Wigner)、玻尔、薛定谔等都觉得这个问题十分令人困惑。生物学和物理学在这个问题上似乎互相矛盾,难[3]怪智能设计论(Intelligent Design)的鼓吹者们能到处兜售他们的观点。

活细胞的存在本身所包含的悖论就具有重大的意义。这意味着研究生命的出现这一问题并不像追溯某个家族的源流那样,它不是个人在历史兴趣下展开的隐秘活动。只有解释了生命的产生背后存在的悖论,我们才能理解生命是什么。也只有在理解的基础上,我们才能为这被称作“生命”的化学系统的产生提出一个合理的解释。

这本书的目的是重新审视这个引人入胜的话题,并证明我们能够勾勒出那控制着所有生命的出现、存在和本质的基本法则。有赖于当前化学界新领域的出现,即君特·冯·凯德罗夫斯基(Günter von [4]Kiedrowski)提出的“系统化学”(Systems Chemistry),本书将描述我们如何连接起生物与化学之间的断层,而作为生物学基本范式的达尔文主义,不过是自然力量的广泛物理化学特征在生物学上的体现。我试图融合生物学与化学的野心主要基于一个看法:我认为自然中存在一种被长期忽略的稳定性,我将这种稳定性称为动态动力学稳定性(dynamic kinetic stability,DKS)。如果将这种形式的稳定性糅合到达尔文主义的进化观中,可以产生一个囊括了生物和前生物系统的广义进化论(general theory of evolution)。有趣的是,查尔斯·达尔文(Charles Darwin)自己早已意识到可能存在这样一种具有普适性的生命法则。他在一封给乔治·沃利克(George Wallich)的信中写道:我相信我曾经说过(但我找不到原文),根据连续性原理,在未来,生命的法则可能会被证明是某种普适规律的结果或者一部分。

这本书试图说明,查尔斯·达尔文的远见卓识是正确的,并且这种理论现在已经开始成形。我将论证,在物理与生物之间起到桥梁作用的科学——化学——能够回答这些有趣的问题,即便这答案还不够完备。对生命是什么的深刻理解,除了能回答我们是谁、是什么的问题之外,更将给我们带来对宇宙本质及其基本法则的洞见。

在撰写这本书的过程中,我曾从许多人的反馈和交流中获益。我特别希望感谢让·昂格贝尔(Jan Engberts)、乔尔·哈普(Joel Harp)、斯伯伦·奥托(Sijbren Otto)和里奥·拉多姆(Leo Radom)为这本书的初稿提出的详细建议和批评。我还要感谢米切尔·格斯(Mitchell Guss)、杰拉尔德·乔伊斯(Gerald Joyce)、埃利奥·马蒂亚(Elio Mattia)、埃莉诺·奥尼尔(Elinor O’Neill)、戴维·奥尼尔(David O’Neill)和彼得·斯特拉热夫斯基(Peter Strazewski)为本书做出的总体评价,还有戈嫩·阿什克纳西(Gonen Ashkenasy)、斯图尔特·考夫曼(Stuart Kauffman)、君特·冯·凯德罗夫斯基、肯·克拉亚夫德(Ken Kraaijeveld)、普里·洛佩斯—加西亚(Puri Lopez-Garcia)、梅厄·拉艾(Meir Lahav)、米凯尔·迈勒(Michael Meijler)、凯帕·鲁伊斯—米拉索(Kepa Ruiz-Mirazo)、罗伯特·帕斯卡尔(Robert Pascal)、厄尔什·绍特马里(Eörs Szathmáry)、伊曼纽尔·坦嫩鲍姆(Emmanuel Tannenbaum)和纳撒尼尔·瓦格纳(Nathaniel Wagner)所贡献的珍贵讨论,这些讨论结果对我的理解有很大的帮助,还有我的妻子奈拉(Nella),我们之间的讨论、她敏锐的眼光和观点都极大地影响了这本书。最后,我特别希望感谢牛津大学出版社的编辑拉塔·梅农(Latha Menon),她对科学深刻的理解和出色的编辑能力,保证了这本书不会被不必要的生物学术语所淹没,她为这本书的最终成型做出了重要的贡献。当然,书中所有的讹误完全由我自己负责。

[1] 人择原理最早由天体物理学家布兰登·卡特(Brandon Carter)于1973年提出,该理论认为物质宇宙必须与观测它的智能生物相匹配,即如果宇宙不是我们现在看到的样子,那么我们便不会存在。该观点被视为哥白尼原理的反面。——译者注

[2] 生命冲力由法国哲学家亨利·柏格森(Henri Bergson)于1907年在其著作《创造进化论》(Creative Evolution)中提出,这一概念为有机体的进化与发展提供了一种假设性的解释,柏格森认为进化不完全是一个机械式的过程,并将进化与生命本身的“意识”联系起来。目前科学界的共识认为生命体中并不存在所谓的生命冲力。——译者注

[3] 智能设计论认为,在自然系统中,有一些现象无法用无序的自然力量充分解释,因此这些特质应该是由某种智能体的设计而产生的。——译者注

[4] 系统化学是在合成化学的研究框架下,从系统的层次出发来研究广泛存在于生命科学中复杂现象的新领域。系统化学与传统合成化学的不同之处在于,在传统合成化学中,由化合物构成的混合物是需要被剔除的成分,而从系统化学的层面来看,这些混合物可能是系统运作的必要成分。——译者注第1章生命体是如此奇妙

有生命和无生命的个体之间存在着惊人的差异,不过这两种物质形式之间确切的联系却让人难以把握。尤其是生命体中那精密而明显的设计,引发了人们源源不断的思考。生命的设计中所清晰展现出的创造力和准确性不亚于世界奇观。比如,眼睛精密的结构及其虹膜光圈、具有调节焦距能力的晶状体,以及连接到用于信息传输的视神经的光敏视网膜,都是大自然设计的经典范例。但这还仅仅是自然设计的冰山一角。随着分子生物学在过去六十余年的飞速发展,我们发现自然的设计能力远远超出了我们的想象。核糖体就是一个很好的例子,核糖体是存在于所有活细胞中的细胞器。它们在细胞中成千上万地存在,用于制造生命赖以生存的蛋白质分子。核糖体是一个高度组织化且精密的迷你工厂,它们高效地运作,通过连接上百个或更多的氨基酸,在短短几秒的时间内大量生产长链状的蛋白质分子。这个精密而高效的实体是一个直径20~30纳米的复杂化学结构,即仅仅200万~300万分之一厘米。试想一下,一个设备完善的工厂,却仅仅存在于一个肉眼完全看不见的微小结构中,这确实让人赞叹。所以,来自以色列魏茨曼科学研究所的阿达·约纳什(Ada Yonath)、剑桥大学分子生物学实验室的万卡特拉曼·拉马克希南(Venkatraman Ramakrishnan)和耶鲁大学的托马斯·施泰茨(Thomas Steitz),由于阐明了核糖体的结构与功能于2009年获得了诺贝尔化学奖。

和生命的设计能力同样让人叹服的是它惊人的多样性,这是人们灵感的持续来源。红玫瑰、长颈鹿、蝴蝶、蛇、红杉、鲸鱼、菌类、鳄鱼、蟑螂、蚊子、珊瑚礁等等,人们惊叹于自然的奇观及其不竭的创造力。自然界有上百万个物种,这还没包括一个隐秘的王国,也就是细菌的世界。那个看不见的王国本身就具有惊人且令人费解的多样性,而它才刚开始进入人们的视野。生命的设计和多样性不过是构成神秘而独特的生命现象的众多特质中的两种。生命的许多特征非常引人注目,不费吹灰之力就可以发现。比如你不可能忽视生命的独立性和目的性,就连我刚满两岁的孙女都不会忽视这些。她可以清晰地分辨出真正的狗和玩具狗。她会愉快地和玩具狗玩耍,但她会害怕真正的狗。她不确定有生命的狗会给她带来什么意外。她很快就意识到玩具狗的行为是可以预测的,而真正的狗则拥有自己的意识。

生命还有一些特质,是乍看之下不那么明显的(虽然实验室中的科学家一望便知),这些特质也不断地激发人们的求知欲,它们亟待科学的解释。所以,如果我们想理解生命是什么,我们最好以思考生命体和非生命体的区别为起点,开始我们探索的旅程。最终,要理解生命,我们必须要理解它们所具有的特殊性质,包括这些性质本身以及它们形成的历程。有些特质,就像我们即将看到的那样,可以从达尔文主义的角度来理解,尽管关于这种解释的争议依然存在;另外的一些特质却不能从这个角度来理解,它们的本质也始终令我们感到困扰。这些特质无疑曾困扰过20世纪伟大的物理学家们,包括玻尔、薛定谔和维格纳,因为它们似乎有悖于基本的现代科学原理。生命还有一些特质连生物学家们也完全束手无策。否则我们该如何理解卡尔·乌斯前段时间描述生命时所说的那段话呢?“有机体是汹涌的洪流中[1]一种坚韧的模式——这是存在于能量流中的模式。”这个晦涩且近乎神秘的说法是由20世纪顶尖的分子生物学家所提出的,他也正是被称为“生命的第三王国”的古菌的发现者。乌斯的说法再次证明,生命的特质是一个棘手的问题。

所以,我们面前有这样一个有趣的现象:生物学家们致力于学习生命系统,他们能够深刻领会生命的复杂性,甚至已经成功触及了关键问题,却依然对什么是生命感到疑惑。那些对大自然有深刻理解的物理学家也同样感到困惑。虽然他们都在努力地探索着生命问题的本质,但我们也只能说“生命是什么”这个延续了3000年的谜题,至今仍然是一个谜。那么就让我们以思考生命与众不同的特征,以及这些特征为何如此奇妙为起点,开始我们探索的旅程吧。生命的有序复杂性

生命体都是十分复杂的。实际上,理查德·道金斯(Richard Dawkins)在《盲眼钟表匠》 (The Blind Watchmaker)中的第一句[2]话就指出,我们动物是宇宙中最奇妙的事物。这句引人注目的开场白已经足以让我们意识到,生命一定有一些极为特别之处。但到底是什么让我们这些生命体如此特别?或者更准确地说,如此“复杂”?“复杂性”又意味着什么?我们可以说“复杂性”这个词语本身就很复杂——这听起来好像在兜圈子——“复杂性”这一概念至今既没有被准确定义,也没有在生物学领域被成功量化。那么,我们不妨先关注生命体的“高度有序性”这一特点——它体现了复杂性与生物学密切关联的部分。

在无生命的世界里,我们可以轻易地找到体现着复杂性的例子。一颗鹅卵石形态的复杂性来自其不规则的形状。如果要精确地描绘它们的形状,我们需要更多的信息——它们的形状越是不规则,我们所需要的信息也就越多。在某些情况下,我们甚至需要知道鹅卵石表面棱角的物理位置。但最重要的一点是,鹅卵石的不规则性,即它们复杂性的来源,是“随意”的。某一块鹅卵石可能是不计其数、形态各异的鹅卵石中的一枚,但无论它形态如何,都不会改变它是鹅卵石这一本质,也就是说,决定鹅卵石之所以为鹅卵石的并不是它不规则的形态。与之不同的是,在生命体的世界里,复杂性没有这么随意,它反而非常确定。在生命有序的复杂性中哪怕做出最微小的改变,都可能带来无法预料的后果。比如,在人类的DNA(脱氧核糖核酸)序列中做出一个微小的改变,哪怕仅仅改变了DNA序列30亿个组成单位中的一个,都有可能导致成百上千的基因疾病,比如镰状红细胞贫血症、囊性纤维化和亨廷顿病(又称“慢性进行性舞蹈病”)。这些在生命体的复杂结构中的细微改变会减弱生命体的生存能力,在极端的情况下,甚至会使生命体死亡。

非同寻常且令人困惑的一点是,这种有序的复杂性也存在于微小如细菌细胞的个体中,这些细胞的宽度不过是1毫米的千分之一。从各方面来看,细菌细胞都仿佛一个精密的纳米级工厂。“纳米级”指的是这个工厂里的元件都只有分子的大小,即长度仅为1毫米的百万分之一。这个纳米级工厂包括了复杂但完善的化学反应网络。这些化学反应使细胞能够从环境中汲取能量,合成与储存不同形式的化学物质,并调控细胞机器以保证细胞的正常运作。它的功能我们可以无穷无尽地列举下去。细菌细胞不仅仅是了不起的化学家,更是伟大的物理学家。这个微观的个体采用了所有现存的机械手段——泵、转子、发动机、螺旋桨,甚至是用于裁切的剪刀,而这些结构的大小都是纳米级的。它们保证了细胞能够高效地发挥其功能,这样才能满足细胞的“意志”。

但是生命体无可争议的复杂性与非生命体的复杂性大相径庭。这个现象在让人们感到困惑的同时也带来了两个问题。其一,细胞的有序复杂性是如何维持的?其二,这种复杂性是如何产生的?有序复杂性和热力学第二定律这个宇宙的基本法则从本质上来说互相违背。虽然我们在这个阶段还不会细谈热力学第二定律,但是简单来说,热力学第二定律指出有序的系统都将自发地朝着混乱的状态发展。比起秩序,大自然好像更青睐混乱的状态,可以说,混乱就是一种自然的“秩序”。打个比方来说,我们手里有一副按顺序排列的扑克牌,它们按牌面由大到小排列,先是两对A,然后是两对K,两对Q,依此类推,排在最后的是两对2。我们只要洗牌,这些牌的顺序自然就被打乱了。你几乎可以确定此时这副牌的顺序是随机排列的,而形成具有某种规律序列的可能性非常小。我书桌的日常状态也是一个很好的例证:无论我多么频繁地整理我的书桌,它总是很快就回到了之前乱七八糟的样子。然而,在生命体中,高度有序的状态对保证生命功能的正常运行而言十分关键,这种有序性的维持也是十分精准的。有一个生物学术语专门用来形容这种有序的状态:稳态(homeostasis),该词源自表示“静止不动”的希腊词。

那么,在重要的物理和化学法则不断削弱这种有序复杂性的情况下,细胞又是如何维持其有序复杂性的呢?至少在热力学第二定律的语境下,这个问题回答起来比较简单:活细胞通过不断利用能量来维持其结构的组织和完整性,我们可以将这称为细胞的运作模式。这也是我们必须要进食才能够生存的原因——只有这样身体才能获得必要的能量,从而确保维持生命稳态的调控机制能顺利进行。这也解释了为什么我的书桌会时不时地变得整洁——因为每当书桌乱到影响我正常工作时,我便会消耗能量去整理书桌让其恢复秩序井然的状态。所以,从热力学的角度来说,生命有序的高能量状态不存在任何矛盾之处,就像汽车能够抵抗地心引力而向上坡行驶,还有电冰箱能在外部的热量不断流向内部的情况下维持内部的低温状态一样合情合理。上坡行驶的汽车和内部低温的冰箱通过不断利用能量来维持它们不稳定的能量状态。在汽车的例子中,能量来源于汽车发动机中燃烧的汽油,而在冰箱的例子中,冰箱压缩机运作的能量源是电力。从能量的角度进行类比,人体通过利用外界能量源来维持其高度有序的状态,而这个能量源就是我们从食物中获得的化学能,如果我们食用的是植物,那么这能量源就是由叶绿素所捕获的太阳能。总的来说,这一过程中没有太大的问题。

不过,一个更有难度的问题是,最简单的生命系统中,最初的组织是如何产生的。虽然人们普遍认为达尔文主义的进化论可以解释生物复杂性的出现,但事实却不然。达尔文主义的进化观可以宽泛地解释一个简单的单细胞有机体(我们也可以将其称为微生物“亚当”)是如何演变成大象、鲸鱼或人类的。但是,达尔文的理论并不能解决原始的生命体是如何出现的这个问题。所以,这恼人又亟待解决的问题便是:一个能够进化的系统从一开始是如何产生的?达尔文提出的进化论是一个生物学理论,他主要处理的是生物系统的问题。但生命的起源是一个化学问题,而化学问题只有通过化学(或是物理)理论才能找到最佳的解决方式。至于为何用生物学的概念来解释化学现象在方法论上存在缺陷,我们会在下文谈到,在某种程度上,这种研究方法是导致生命起源问题走入“死胡同”的原因之一。

显而易见,达尔文本人明确回避了生物起源这一问题。他承认在当时的知识发展状态下,提出这个问题的时机还不成熟,当时这个问题的解决看上去仿佛遥遥无期。所以,第一个微观的复杂结构体是如何产生的?这个问题至今富有争议且令人困惑。难道那像精密工厂一样的活细胞完全是由细胞前体随机组装而成的吗?仅仅由那些各式各样的零部件随机组合就能形成恰到好处的结构吗?这种情况不太现实。著名宇航员弗雷德·多伊尔(Fred Doyle)曾打过这样一个比方:这种情况发生的可能性,和一阵狂风刮过垃圾场后自动组装起一架波音747差不多。生命体的有序复杂性很奇怪,非常奇怪,而它的产生甚至更加奇怪。生命的目的性特征

生命的目的性特质是生命系统有序复杂性的一个方面,人类数千年来早已明确意识到了这一特质的存在。生命的目的性特质是如此明晰,以至于生物学家们专门想出了“目的性”这个术语来描述它。目的性大约在半个世纪之前被提出,为了将其与“目的论”相区分,目[3]的性的英文后缀暗示了某种宇宙规律的存在。我们将在第2章和第8章中详细描述这两个术语之间的关联。目前,就让我们简单地记住,目的性作为一个生物学现象从经验上来说是确凿无疑的。所有生命的行为背后仿佛都有某种目的,而目的性这一术语不过描述了这种显而易见的行为模式罢了。所有生命体都忙于各自的活计,筑巢、收集食物、保护幼崽,当然还有繁殖。事实上,正是这种行为模式让我们能在生物世界中大致理解并预测事件。比如,我们能理解一位哺育后代的母亲,我们不会(至少知道不应该)分离母熊和它的幼崽;我们明白两个雄性生物为什么会为了雌性而相互竞争;我们也知道流浪猫为什么会在垃圾桶中翻翻拣拣。依据生命的目的性特征,我们光凭直觉就可以理解生物世界的运作(当然也包括人类活动)。

相比而言,要理解和预测发生在非生物世界里的事件,要依据的法则就颇为不同。非生物的世界里不存在目的性,只有物理和化学定律。比如,你朝空中扔了一个球,那么这个球会落在什么位置呢?我们不能通过思考球的意图来计算出它准确的落点。球不具有任何目的性。这个问题只有通过牛顿运动定律才可以解决。当你将化学物质混合到一起时,这些化学物质将如何反应并会生成什么样的物质呢?根据这个问题的性质,你会利用适当的化学法则来做出合理的预测。这些例子中物质的行为没有目的,没有意图,其运作只依据自然的法则。关于非生物世界中物质的“目的”这种说法,早在17世纪现代科学革命中就被破除了。

但目的性的存在,将我们引向了一个非常奇怪,甚至是怪异的现状:从某种根本意义上,我们好像同时生活在两个被各自的规则所控制的世界里。非生物的世界由物理和化学定律控制,而生物世界则按照目的性的规则来运行。确实,鉴于这两个世界彼此不同,我们和这二者之间的互动也有不同之处。试想一下我们和非生物世界之间的互动。我们在必要的时候会从一个地方搬迁到另一个地方;我们在天冷的时候会为身体保暖;我们在下雨的时候不让自己被淋湿;我们建造起封闭的物理空间来保护自己并且在其中生活;尽管有重力的作用,我们还是学会了上坡;我们还会生火做饭、制作工具、修补漏雨的屋顶、避免受到物理伤害等等。我们所有和非生物世界的互动都基于一个认知,那就是宇宙的运行受到某种自然法则的控制,而这些法则主要可以通过物理知识来描述。理解这些法则能帮助我们避开麻烦,如果我们善于利用自然的运作模式,我们甚至可以更高效地实现生活中的目标。这实际上就是科技的本质,即创造有益的方式来利用自然法则的系统。

我们与生物世界之间的互动则颇为不同,而且远比与非生物世界的互动要复杂。就像我们先前提到的那样,生物世界是符合目的性的,所有生物都忙于实现自己的目的,而它们在这么做的过程中也就不得不考虑其他生命体的目的。因此,生命体之间形成了一个彼此间行为互相依赖的互动网络。再想想人类,我们通过语言、文字和动作与我们的家人、同事和社会中的其他人进行无数的互动。这些互动有时是为了合作,有时是为了竞争。比如,我们在咖啡店买一杯卡布奇诺,又或是去理发店理发,这都属于合作性互动;在市场里为了某个物件讨价还价,抑或是抵抗入侵者,这都属于竞争性互动。当我们每个人在追寻生命的意义或是目标时,这两种互动方式在我们的生活中无处不在。我们也不断地与许多非人类的生命形式互动。我们所需的营养来自包括动物和植物在内的其他生物,并且我们会保护自己以免受到其他生物的袭击,除了多细胞的熊、鲨鱼、蛇、苍蝇或蜘蛛之外,还有单细胞的各种细菌。许多人类与非人类生物之间的互动是合作性的,比如我们喂养的宠物狗会陪伴我们,并且会在看到入侵者时警示我们;我们的肠道为数百万细菌提供了生存环境,作为回报这些细菌也协助我们进行消化和实现其他功能。

我们对这两种不同的互动方式是如此习以为常,以至于我刚才举的那些区别明显的例子,都被我们视作理所当然。我们容易接受熟悉的现象,而不是去怀疑它。但如果我告诉你,所有火星上的物质都遵循一套法则,而金星上的物质都遵循另一套不同的法则,你可能会觉得很吃惊。“怎么会这样呢?两种物质形式怎么会各自遵循一套独特的法则呢?”所以,地球上生命和非生命两种物质形式遵循不同的规律,并且二者之间不断发生物质交换(非生命物质可以转变为生命物质,反之亦然)的现象需要有一个合理的解释。大自然中这鲜明的二重性是如何共存的?这现象又意味着什么?

在进行深入探讨之前,请先让我把一个问题说清楚:显而易见,在遵循目的性的生物世界中,控制非生物世界的物理化学原则依然适用。我们不用怀疑这一点。地心引力对一个摔下楼梯的人和一包从架子上掉下来的糖作用是一样的。但这样的自然法则在处理生命系统的某些问题上,并没有太大的帮助。比如,当你和邻居就某个财产问题发生纠纷时,当你的过期证件需要更新时,又或是当你在抵抗一只富有攻击性的恶犬时,地心引力和热力学第二定律起不到什么作用。在生命的世界里,这些自然法则不具备什么有助于预测的价值。当然,这些法则依然适用,但它们在处理这些问题时仅处于次要的位置。仿佛另有一套更具有主导性的规则绑架并压制住了物理与化学的规则。如果你想预测一头埋伏的狮子会采取什么行动来袭击一头毫无防备的斑马、一位母亲会怎样照料年幼的后代、一位律师将如何代表愤愤不平的客户来发起诉讼,那么在这些情况下,物理与化学没有办法处理这些由目的性主导的行为。无论是物理学家还是化学家,都无法对这些行为做出有效的预测。如果你想预测那些生物世界中即将发生的事情,你会根据不同事件的性质去咨询生物学家、心理学家、经济学家、律师或者其他目的性专家。

所以,比起物理化学世界,人类更了解目的性的世界,这一事实就不让人感到惊讶了。试想一下,大学里以不同领域为研究中心的院系设置。人文、贸易和法学的学院都投身于研究目的性的世界(还有医学院,但是程度要稍浅一些)。但仅有自然科学一个学院研究自然世界,而这个学院中也还有生物系在笨拙地探索目的性的世界,试图弄明白我们是否应该以及能否解决存在于这两个世界中的悖论。我们目前面临着一个不容忽视又令人费解的现实:那些主要由物理和化学所描述的自然法则,对处理目的性世界的问题无能为力,而我们自身也正是这目的性世界的一部分。

有趣的是,尽管难以否定生命系统的目的性特征,但一些生物学家依然很难在这个问题上达成共识。“目的”这个令人不安的词语尽管被包装成科学术语“目的性”,但依然让许多生物学家感到不安。科学革命颠覆了延续2000年的目的论思想,所以生物学家对这种先前错误思想的残余有着高度的警觉,也不愿意去轻易接受这种思想。但目的性的存在确实不容否认,支持这个观点的证据无处不在且数不胜数,我们不能将它简单地弃之不理。

一个有趣的现实是,那些反对目的性的生物学家们在日常生活中,就在下意识地践行这个规律。他们就像我们所有人一样,依靠着目的性而生存。比如,每当我们开车时,我们都将生命赌在了目的性上!我们上车的目的是安全到达目的地。我们在路上要绕过无穷无尽的机械金属结构(也就是其他车辆),在路上肆意疾驰的行为会对人身安全造成很大的威胁。两个像汽车这样的金属结构相撞可以对个人造成巨大的灾难,但我们却欣然接受了这样的风险。为什么会这样呢?因为目的性。我们知道在每一个这样飞驰着的金属结构中都有一个司机,他们的目的和我们一样,那就是完好无损地到达目的地。虽然有时我们会遇到莽撞的司机,他们的行为看上去好像并不受目的性的控制。但大多数情况下,对我们大部分人来说,目的性的运行十分可靠。所以就像我们预期的那样,我们一般能够安全抵达目的地。因此,那些声称不相信目的性的人们实际上是目的性无声的信徒。我们日常打交道的世界由生物和非生物两个系统组成。对于非生物世界的问题,我们当然会采用物理和化学的法则来处理。但是,无论我们有没有意识到目的性的存在,如果我们不遵循其规律行事,那么我们在日常生活中简直寸步难行。毫无疑问,在生物世界中目的性才应该是我们做出预测和判断的依据。

也许,像我们人类这样的多细胞生物在行为上具有目的性的特征,这还不会多么令人惊讶。毕竟,我们人体是极其复杂的。我们拥有大脑和神经系统,所以我们可以说人类这种多细胞生物的目的性特征是神经复杂性的体现。但是,惊人之处在于并不仅仅是人类、猴子、骆驼等具有大脑和中枢神经系统的多细胞生物具有目的性的特征,这特征在单细胞的层面也十分明显!如果我们将一个细菌放到具有浓度梯度的葡萄糖溶液中,我们会发现那细菌将“游动”到葡萄糖浓度高的区域。这个现象叫作“趋化性”(chemotaxis)。细菌通过利用葡萄糖的化学能来为其新陈代谢提供能量,所以这种“趋化性”的行为对细菌来说就好像是出门吃晚餐一样,其行为本质与打算猎捕斑马的狮子无异。

当然,我们不能从字面的意思上来理解细菌细胞的“游动”。一个结构简单的细菌,比如大肠杆菌,是通过鞭毛来运动的。鞭毛旋转的方向决定了细菌将在溶液中朝着哪个方向移动。如果溶液中含有营养物,那么细菌鞭毛便会朝着一个方向旋转,以确保细菌朝着营养物的方向前进。但是,如果溶液中含有毒素,那么鞭毛便会向相反的方向旋转,让细菌翻转过来,从而朝着反方向运动。大肠杆菌这种定向“游动”的行为是再明显不过的:活细菌在没有大脑或者任何神经活动的情况下,这一团被细胞膜包裹的化学聚合物(细胞膜本身也是化学聚合物),能够追随着自己的生存目标来寻找食物,避开危险。其实,细菌和人类行为模式之间的差别并没有我们想象得那么大。

我们刚刚主要关注了活细胞行为中体现出的目的性特征,事实上,反映了这一特征的不仅仅是细菌的行为。正如前文所提到的那样,细胞那高度复杂的结构就是目的性特征最确切无疑的体现。细菌细胞中几乎所有组成部分都与某种细胞功能相关,就像一个钟表的所有零部件,比如钟摆、齿轮、弹簧、指针、钟柜等等都具有特定的功能。二者之间的差别仅在于,细胞结构的复杂性和精密程度要远远超过钟表。从1953年詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)阐明遗传分子DNA的结构开始,许多诺贝尔奖都颁发给了研究细胞结构与功能的先驱者们,这证明了科学界对这些标志性科学成果的高度重视。哪怕是最简单的细胞都是目的性设计下的奇观,它们的精密程度和复杂性令人赞叹。最起码我们可以说:目的性在单细胞和多细胞层面的体现一样明显。无论你从哪个角度来观察生物世界,目的性都无处不在。

我们对目的性作为一个正确观念的确信引发了一个问题。我们相信物质世界是不存在生命活力(vital force)的,而且生命体都是由无生命的“死”分子组成的,那么这到底是怎么回事呢?这些没有活力的物质是怎么组成生命的?为什么竟会有自然形成的物质能根据自身的意志来行动?为何一块和细菌细胞差不多大小的糖晶体,会有和细菌细胞完全不同的行为模式?确实,糖晶体由一种有机化合物蔗糖所构成,而细菌细胞由数千个有机分子和分子聚合物结合并由细胞膜包裹而成,但复杂的有机混合物为何会与一种有机化合物蔗糖有如此不同的行为呢?我们可以确信,混合任意比例的有机物质肯定不能产生生命系统。

所以生命看似具有的生命冲力,也就是细菌细胞中明显存在的目的性特征,到底来源于哪里?其本质又是什么呢?为什么生物世界运行的法则看上去会与非生物世界不同?如果想要理解生命,我们必须用解释非生命系统的化学方法为生命系统的目的性特征提供合理的解释。仅用“复杂性”这个宽泛的理由来解释说目的性是“复杂系统所呈现出的性质”是浅薄且不具有说服力的。这种回答就好像在生命冲力这个错误的观念上套上了科学的外衣。我们在第2章将会谈到,法国生物学家雅克·莫诺(Jacques Monod)因为阐明DNA的复制过程及其在蛋白质合成中的作用而获得了诺贝尔奖,他曾对活细胞中复杂的化学活动表达过赞叹,但也对其中明显存在的悖论感到困惑。难怪20世纪伟大的物理学家们对物质世界中存在的行为二重性感到好奇又困惑。目的性的问题有着深刻的科学和哲学意义。如果我们真的相信生命体的物质本质,那么生命的目的性特征最终应该归因于某种具有目的性特征的物质,就像坚硬的盐晶体和柔软的橡皮球,它们的性质最终都可以归因于组成它们的物质。我们如果不理解目的性,就不能理解生命。所以,理解目的性就是我们理解生命的一部分,我将在第8章中提出目的性的物理化学特征和产生机制。

我们已经注意到,生物系统的行为和形式都具有目的性。但这目的究竟是什么?我们能明确地指出它吗?如果我们询问不同的人,他们生命的目标或意义是什么,我们将得到各式各样的答案。有人可能会说他们想环游世界,有人想挣很多钱,还有人想加入奥运会国家队,又或是结婚并生10个小孩,还有人想写一本关于生命本质的书。像这样的愿望清单可以无穷无尽地列下去。当然,一个人也可以同时拥有好几个目标。我们人类是一个躁动不安的物种,我们永远难以满足。但如果我们想了解生物的目的性,那么我们最好先观察最简单的生命形式,而不是复杂的多细胞生物。而最简单的生命形式莫过于原核细菌。我们将看到,这单个细胞的每一个行为和它复杂内部结构的每一个方面,都是符合目的性的。这个细菌细胞的所有目的性结构都指向了一个目标,那就是细胞分裂。当我们明白了单细胞生物的这一特点,我们可以推测出,多细胞生物也具有十分强烈的细胞复制冲动。说到底,许多生物一生的目标如果不是明确与繁殖相关,也都可以理解成为了实现繁殖而进行的间接行为。生命体,哪怕是最简单的生命体,都很奇怪,的确非常奇怪。

最后提一点关于目的性的现实及其能否作为一个科学概念的问题。有一种观点认为目的性不过是一个概念,它仅存在于我们的头脑中,而不是一个像重力一样的实际力量。但是,这种对概念与现实的区分可能并不如我们想象的那样站得住脚。的确,目的性是存在于我们头脑中的概念。目的性也确实是一种构想,一个能帮助我们更好地理解生物世界但从物理的角度不可捉摸的概念。不过,现在请思考一下牛顿所提出的万有引力,这难道不是一种实际存在的力吗?但是“实际存在”到底意味着什么?你见过、听过或者是触摸过这样的引力场吗?有没有一种科学仪器可以揭示出它的真实面目,比如说捕捉到它的图像?这些问题的答案是否定的。一个引力场无法用任何直接的方式来观察,它就像目的性一样,也是一个概念。引力场的概念对于我们的思考是有帮助的,我们可以通过它来解释诸如坠落的苹果等物体现象。但是在形而上学的层面上,引力和目的性一样都是一种协助我们组织和理解周围世界的构想。我们在第3章中将谈到的归纳法从本质上来说就是概念性的。所有推断出来的规则都是概念性的,它们除了存在于我们的头脑中之外无处可寻。实际上,引力的概念是可以被量化的,而目的性不可以。在科学界,可量化的概念的确比不可量化的概念更容易被接受。但这并不意味着一个可以被量化的概念比不能被量化的概念更“真实”。如果我们每天都在开车时把我们的生命赌在目的性上,那么即使它不能被量化,我们对它的真实性想必也颇为信服。生命的动态特征

我们已经详细地讨论过活细胞是高度组织化的个体,并且将其与钟表之类的机械结构做出了比较。它们的组织性体现于其中所有的零部件都为整体的运行服务。钟表的部件令其可以实现显示时间的功能,而细胞的部件让它可以实现细胞复制的功能。当然,钟表是一个为了实现某种功能而制造出的组织化个体,并且是由人类制造的,而细菌细胞却是自发产生的。无论如何,将生命体与机器类比为我们理解生命系统提供了帮助,并让我们能继续探究细胞的功能,从而发现这个了不起的“机器”更精确的工作细节。但是,只要仔细观察这两种不同的“机器”,我们就会发现钟表和细胞的机械特征存在着明显的差异。在一块钟表里,直到零件被磨损到导致钟表无法正常运行为止,其中的零件都将维持原样。钟表是一个静态的系统,其零部件是持久不变的。但每一个生命系统都是动态的,其各个部分都不断被更新。下面请让我来解释一下这个特征。

比如你遇到了一个多年不见的老朋友比尔,你和他打招呼说:“嘿,比尔,好久不见,你看上去一点儿也没变!”你会这样说是因为比尔和记忆里你上次见到他的样子差不多。但惊人的事实是:那个站在你面前的人,他叫作比尔,他的模样和谈吐都和比尔一模一样,但是从物质层面来说,他已经和你以前见过的那个叫比尔的人完全不同了。从你上次与比尔会面到现在为止,几乎所有比尔的细胞都已经更新过了,几乎所有构成了比尔(以及你和我)的物质都更新过了。我们身体的某些部分,比如头发和指甲的更新是十分明显的。但是组成我们身体其他部分的更新都发生在我们的视野之外,它们悄悄地发生。就像所有人类一样,我们的身体由约10万亿(10 000 000 000 000)个细胞构成(我们的身体里实际上还有约100万亿个细菌等外来细胞,但我们要稍后才会谈到这些细胞的重要性)。每个这样的细胞都由一系列的生物分子诸如脂质、蛋白质、核酸等组成。

蛋白质是生命的原型分子(archetypal molecules),所以我们不妨先来看看蛋白质。我们身体中一系列不同的蛋白质分子是生命大部分结构的组成部分。肌肉是蛋白质,软骨是蛋白质,酶是蛋白质,实际上许多细胞内部的化学反应都与蛋白质有关。关键在于,由于蛋白质在掌控生命功能方面具有重要的作用,所以它们的结构必须被严格地调控,以确保其中没有出现具有破坏性的变异。蛋白质结构中这样的变异很有可能造成灾难性的结果,甚至导致细胞的死亡。蛋白质结构的完整性对生命的成功运作至关重要。数年前,以色列理工学院的两位研究者阿夫拉姆·赫什科(Avram Hershko)和阿龙·切哈诺沃(Aaron Ciechanover), 以及加州大学欧文分校的欧文·罗斯(Irwin Rose)发现了维持蛋白质结构的关键机制,他们也因为这个发现成果获得了2004年的诺贝尔化学奖。他们发现细胞内的蛋白质被不断地更新,即细胞中的蛋白质在一个严格调控的过程中不断地被降解并且重新合成。

维持蛋白质的结构完整性至少是这个动态过程的一个原因。这个过程的具体机制与我们现在讨论的内容无关,但是这个蛋白质调控机制的直接效果就是,哪怕在短短的数小时中,我们身体中的细胞内蛋白质都已经被降解并再次合成过了。如果说蛋白质分子的动态特征还不够令你惊奇,那么我想细胞层面的物质更新应该会让你印象深刻。你身体内数百万个血细胞每天都在更新,你的皮肤细胞也在不断更新。实际上,在成年人体内每天都会产生上千亿个新细胞,来替换掉数量相当的已经死亡的细胞,这些细胞的死亡很多时候是设计好了的,这种过程又称为细胞程序性死亡。

简而言之,从本质上而言,那些让你成为你,让比尔成为比尔的物质处于不断更新的过程中。所以,在数周的时间内,从严格的物质角度来说,你已经是一个完全不同的人了。“生命就像机器”的类比虽然有其意义,但是并没有为我们提供任何关于生命的动态特征的解答。生命的确非常奇怪。如果要回答“生命是什么”这个问题,我们就必须要为生命的动态性与转瞬即逝提供一个合理的解释。生命的多样性

就像我们先前描述过的那样,生命拥有惊人的多样性。确实,在非生物世界里也存在可观的多样性,但是生物世界的多样性具有一些特质。非生命的多样性是随意的,而生命的多样性却是连贯且精心安排的。看看植物王国和动物王国吧,那数百万不同的物种,个个都能完美适应其特定生态位而生存其中。生命惊人且十分独特的多样性如此壮观,它无处不在,伴随在我们周围。

但是我们在周围环境中看到的宏观层面体现出的多样性,不过是多样性的冰山一角。多样性在几乎不可见的微观世界中具有完全不同的意义。微生物几乎无处不在。一项早期的研究显示,地球上的细菌14[4]生物量达到了2×10吨。其数量足以覆盖从地球表面到地下1.5米的所有空间!更近期的研究表明,1升海水中可能含有超过约10亿个[5]细菌,这无疑表明我们对这个隐形的世界知之甚少。确实,由于对多样的微生物群体进行测序和培育存在困难,所以对细菌多样性的估计还处于萌芽状态。有人估计,在1克土壤中细菌的种类就可以达到数百万的级别,并且一般估计地球上细菌物种的总数在1000万到10亿之间——我们所指的只是细菌的物种数而不是其总数!事实上,微生物的多样性极强,以至于微生物基因组研究者们根据全部基因中的共有核心基因,开始从“物种基因组”或泛基因组(pangenomes)的层面看待微生物,因为单个基因组太多样了,我们难以对其进行有效的描述。但一个清晰且不容反驳的事实是,微生物世界的多样性令人震撼。

不过,出人意料的是从达尔文到现在,生命多样性的基础为何,依然是一个让生物学家们困惑的问题。在达尔文的《物种起源》(Origin of Species)中,他提出了分歧原理(Principle of Divergence)。虽然,仅从这部里程碑式的著作中,我们不能完全弄明白分歧原理是从自然选择原理这一基本原理中衍生而出,还是应该被视为一个独立的法则。达尔文本人在这一点上的态度也颇为模棱两可。这一矛盾的根源所在是显而易见的,分歧意味着大量的物种由少数物种衍生而来,而选择(任何种类的选择都是这样,不仅仅是自然选择)意味着大量的物种被削减为少量的物种。二者从根本上相互矛盾,任你巧舌如簧也不能绕过这一点。所以,也难怪试图协调这二者[6][7]的现代生物学家们感到头疼不已。 我们比较清楚的是,生命多样性确实来源于生殖变异,虽然这种变异具体会以什么方式导致物种的形成和多样化依然充满了争议。在第8章中,我们会采用物理的方法来解决生物世界多样性问题,并揭示伴随着这种多样性而产生的生物间的互动合作。生命远离平衡态的状态

先前我们讨论过,生命这种有序复杂性状态的产生为何成了热力学上的谜题。生命本质的另一个方面也与这种复杂性相关,并且从热力学第二定律的角度来说也十分令人困惑,那便是生命远离平衡态的状态。请想象一只悬浮在空中的小鸟,它通过不断拍打翅膀来维持其几乎静止的位置。很明显,这只小鸟处于一个不稳定的状态。如果小鸟停止拍打翅膀,那么它便会坠落到地上。不过小鸟可以通过不断消耗能量来维持其不稳定的状态。小鸟通过不断扇动翅膀将空气向下推,因此可以抵抗地球的引力作用。

空中悬浮的小鸟和它不稳定的能量状态看上去是一个转瞬即逝的过程,仿佛不具备任何重要性。但是从能量角度而言,空中的小鸟和它不稳定的状态就像是所有生命体的一个隐喻。想想最简单的生命形式细菌细胞的能量状态。从热力学的角度来说,细胞也处于一个不稳定的状态,并且它也通过不断地消耗能量来维持其远离平衡态的状态。这远离平衡态的状态体现在许多方面上,但为了说明我们的观点,我们不妨先关注其中一点——活细胞中离子浓度梯度的维持。让我们先来看看这是什么意思。将一些食盐,也就是化学式写作NaCl的氯化钠溶解在水中,接下来盐晶体会离解成两个组成它的离子,也就+-是钠离子Na和氯离子Cl。食盐刚开始溶解时,溶液中两种离子的浓度并不是均匀的。但是,过了一段时间之后,那些离子通过扩散作用,会均匀地分布于溶液中。这一现象再次体现了热力学第二定律的作用。当溶液中一部分的离子浓度较高,而另一部分的离子浓度较低时,这种状态与离子浓度均匀的状态相比更不稳定,所以根据热力学第二定律,这种不一致的离子分布状态立刻就会改变。

但是对活细胞而言,本质上处于不稳定状态的离子浓度梯度对许多生理功能而言是必不可少的。比如,细胞内部与外部之间存在不一致的离子分布,又称为浓度梯度,尽管有热力学第二定律的作用,这种浓度梯度依然可以维持下去。为什么会这样呢?细胞为了一直维持这个本质上不稳定的浓度梯度,必须要通过离子泵将离子逆浓度梯度传递,这一过程就像小鸟不断挥动着翅膀来维持悬空的状态一样。当然,细胞必须要使用能量才能保证这些离子泵的运行,而细胞也必须通过我们之前提到的那些方式来获得能量的供应。

换句话说,细胞可以维持远离平衡态的状态,这从热力学角度而言并不是什么神秘的问题,细胞通过不断消耗从环境中获得的能量来维持这个状态。虽然这种能量消耗的模式能够被小心翼翼地维持,但是我们这种模式背后隐藏着一个重大的谜题——这种远离平衡态的化学系统一开始是如何产生的?如果像我们认为的那样,是化学过程导致了地球上生命的产生,那么生物产生前地球上的化学过程,怎么会从一个低能量的平衡态系统朝着一个复杂的、高能量的,并且远离平衡态的系统发展呢?回想一下热力学第二定律的内容,即所有系统都朝着更加稳定的状态发展,那么生命系统的出现必然是与该定律相悖的。如果从热力学第二定律的角度来看待这个不稳定且远离平衡态的系统的出现,结论就是:一个系统理论上不能从这种稳定的状态变成那种不稳定的状态。但是这事实上却发生了!所以,这一过程到底是怎么发生的,才是真正令人困惑的问题。生命的手性特征

生命系统中的许多分子都是手性分子,这意味着该分子的镜像与原物质不重合。我们的双手就体现了这样的特征,我们的左手是右手的镜像,但是左手和右手的形状不能直接重合(见图1)。所以我们就用“手性”一词来描述分子这样的特质,并且通过不同的分类方式,我们可以区别手性分子的两种不同形式。D—L命名法(D, L classification)是一种比较早期但在生物学领域沿用至今的分类方法,这种方法以分子与有机物质甘油醛的空间关系为标准,将手性分子标记为D(dextro的缩写,又可称为右旋),而它的镜像则被标记为L(levo的缩写,又可称为左旋)。值得注意的是,D和L两个手性分子的物理化学性质是一样的(虽然偶尔有一些例外的情况,但这些情况现在不在我们的考虑范围之内)。这也意味着在任意一个环境中,两种手性分子的数量也应该是一样的。因为,如果一开始有一定数量的手性物质,该物质仅由单一的手性分子比如说D构成,那么根据热力学第二定律,只要有充分的时间,这个由单一手性构成的物质将成为外消旋体(racemic),这意味着这个物质将具有相同数量的D和L两种形式的分子(这一现象是由D和L两种形式之间的缓慢相互转换而造成的)。简单来说,外消旋体比简单的手性分子形式更加稳定——它更加无序,而只要有充分的时间,物质便会朝着这种更无序的状态发展。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载