破解自然的奥秘——科学大发现(txt+pdf+epub+mobi电子书下载)


发布时间:2020-09-21 00:23:24

点击下载

作者:闻明,彭萍萍

出版社:中国环境科学出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

破解自然的奥秘——科学大发现

破解自然的奥秘——科学大发现试读:

考古大发现

太阳神庙

科纳拉克太阳神庙是印度著名的、历史悠久的大庙,它位于奥里萨邦科纳拉克小镇上,建在孟加拉湾海岸边的荒凉的沙漠上,颇为奇特。神庙建于13世纪,外形是别致的太阳神苏利耶的战车,有12对巨大的石雕车轮和7匹拉着战车的石马。寺庙内的雕饰精美细腻,造型生动。

关于这座神庙的来历各家说法不一:一种说法认为黑天神克里希纳的儿子萨姆巴患上了麻风病,在太阳神的治愈下才日渐好转,为答谢大阳神的救命之恩,克里希纳建立了这座庙宇,取名科纳克尔,意思是“太阳之乡”。这个小镇也因此得名。另一种说法是13世纪的卡灵伽国王纳拉辛哈·德瓦为了祈求太阳神治好太阳神庙他脊柱变形的毛病而修建了此庙。而现今的考古学家推论:当时奥里萨地区战乱连绵不绝,国王纳拉辛哈·德瓦修建此庙,是为了庆祝打败穆斯林入侵者、感谢太阳神的凯旋纪念碑。

神庙如今大部分受到摧毁,只剩下原来的一半,但这些留有残垣断壁的建筑仍然不失其当年的魅力,深深地吸引着来自世界各地的游人。

庞贝古城

公元79年8月24日,维苏威火山爆发,喷出了大量的火山灰和火山碎屑,将方圆数十千米以内的土地、城市、建筑完完全全地掩埋了,最深处竟达19米。所有的人和动物,都被活活掩埋,速度之快,无一幸免。即使侥幸离开家园而逃离劫难的庞贝人,再回到家乡时,已无法找到原来的城市。曾被誉为美丽花园的庞贝就这样沉睡在了时空之中。一切的安逸繁荣,就在刹那消失。意大利的古城庞贝

新的城镇很快又矗立起来。经过漫长的岁月,人们已忘却了这座完整密封于占地65公顷的火山屑中的罗马古城,只叫它“西维塔”。

1707年,人们在维苏威山脚下的一座花园里打开时,挖掘出三尊衣饰华丽的女性雕像。起初,人们以为这些不过是那不勒斯海湾沿岸古代遗址中的文物,没有人意识到,一座古代城市此刻正完整地密封在他们脚下占地近65公顷的火山岩屑中。

1748年,人们挖掘出了被火山灰包裹着的人体遗骸,这才意识到,1600多年前被火山爆发掩埋的一座城市正在悄悄苏醒!

大批的考古学家闻风而至,在他们精心的挖掘下,这个深埋于地下、曾经有过灿烂辉煌文明的庞贝古城终于重见天日了。

恐龙化石

19世纪早期,正是英国工业革命兴旺时期,到处开公路,修运河,发展交通。新修公路旁边的峭壁上偶尔能够见到一些暴露出来的骨骼、牙齿或其他部分的化石。由于医生的职业特点,曼特尔对脊椎动物化石尤其感兴趣。行医治病之余,他常常带着妻子玛丽安一起爬山涉水去寻找和采集化石。耳濡目染,玛丽安也对化石产生了浓厚的兴趣。1822年3月的一天上午,玛丽安在去接应诊的曼特尔回家的路上,偶然在路边的碎石堆里发现了几枚形状奇特的巨大动物的化石牙齿。曼特尔回到家里,看到玛丽安采集到的化石也兴奋异常,恐龙化石可是他们却始终认不出那是什么动物的牙齿。

为了探明化石牙齿的来源,曼特尔找到了有名的英国地质学家莱尔勋爵,把化石拿给他鉴定。莱尔翻来覆去地看了老半天,最后说不认识。曼特尔只得把收集起来的牙齿化石寄到巴黎科学院,请求当时研究古脊椎动物的权威居维叶帮忙鉴定。居维叶也从未见过这类化石,他只凭以往的经验再加上自己的猜测,初步断定牙齿化石可能属于一种灭绝了的古老犀牛,而且居维叶认为这些化石的地质年代不会太遥远。

熟知动物牙齿的曼特尔对居维叶的鉴定意见并不相信,他再次将那些化石标本转送给牛津大学的巴克兰教授,请求再进行鉴定。巴克兰也从来没有见过类似的化石。但他不敢轻易否定居维叶的意见,于是,他很轻率地对曼特尔说:“我同意居维叶的鉴定。”

两位学者的结论都不能够使曼特尔信服,他决心自己钻研出个令自己信服的答案来。打定主意,曼特尔收集了更多的化石,他带着化石标本来到伦敦大英博物馆,借阅资料并利用馆藏的动物标本进行对比,企图从中找到一些有助于鉴定的蛛丝马迹。尽管很长时间都没有进展,但曼特尔却毫不泄气。

在英国皇家博物馆,曼特尔结识了一位颇富实践经验的青年博物学家,那人当时正在研究一种生活在中关洲的现代巨型蜥蜴——鬣蜥。曼特尔将自己带来的牙齿化石与博物学家收集的鬣蜥的牙齿相对比,他惊奇地发现两者在形态上十分相似,比鬣蜥大得多。

曼特尔喜出望外,经过思索,他首先肯定,这些牙齿的化石不是哺乳动物的,而是属于爬行动物的,并且是一种现在已经灭绝了的巨大的食草爬行动物。

曼特尔回到家里,整理出在皇家博物馆研究的资料,写成一篇论文,把这批化石定名为“Iguanodon”(古鬣晰),翻译成汉语就是“禽龙”的意思。1825年,曼特尔在英国皇家学会报上报道了他的发现。

始祖鸟化石

迄今为止,人类已经发现了1个羽毛化石和7具始祖鸟化石标本,这些珍贵的资料全都是在德国巴伐利亚地区的索伦霍芬附近的侏罗纪后期(距今约1亿5千万年)石灰岩地层中发现的。在侏罗纪时期,索伦霍芬一带是一片泻湖,泻湖底部的水含氧量极低,非常有助于化石的形成和保存。在19世纪,索伦霍芬成了用于平版印刷的优质石灰石的主要产地,采石工人们在开采、挑选石材的时候,很容易就能发现一些动物的标本。始视鸟

1861年8月,德国古生物学家冯迈耶宣布在该处地层中发现了一个羽毛化石。人们还来不及对这个消息做出反应,一个多月后,冯迈耶又宣布在同一个地方发现了一具较为完整(缺少头部)的化石标本,这具化石标本清楚地显示出这种古生物有一对长着羽毛的翅膀,冯迈耶将之命名为“Archae- opteryx Lithographica”,意思是“长着古翼的印版石”,中文意译为“始祖鸟”。

出土这具始祖鸟化石的采石场的主人把这块化石作为治病的报酬给了当地的医生、化石收藏者卡尔·哈伯伦。后来,哈伯伦为了给女儿办嫁妆,向外界表示愿意出售该标本。大英博物馆自然历史部的负责人理查德·欧文是当时公认的古生物学权威,也是达尔文进化论的主要反对者,他把始祖鸟化石视为一大威胁,决心不惜任何代价将它买来控制在自己手中,由他本人来做权威鉴定。1862年10月1日始祖鸟化石抵达大英博物馆,以后一直留在那里,被称为“伦敦标本”。

汉谟拉比法典

公元前l600多年,汉谟拉比率领他的游牧民族占领了美索不达米亚,建立了巴比伦帝国。他的臣民们相互之间常常因观点不同而发生冲突,为了调整民众间的关系,维护统治秩序,汉谟拉比拟订了一套全体人民都必须遵从的法律,这就是汉谟拉比法典。法典石柱顶部

汉谟拉比法典制定的确切时间不清,大概在公元前1791年或前1790年始拟,完成于巴比伦尼亚统一之后。汉谟拉比法典用楔形文字刻写在一根高2.25米的黑色玄武岩石柱上,昭示天下、后人。这块石柱于1901年在伊朗被发现,现存于法国巴黎卢浮宫博物馆内。

法典包括序言、正文、结尾三部分。序言充满神化、美化汉谟拉比的言辞。正文包括282条法律,包括刑事法及有关占有奴隶、结婚和离婚、偿还债务和支付工资等方面,内容广阔地涉及了现代意义上的诉讼法、民法、刑法、婚姻法等内容,其意义在于调解自由民之间的财产占有、继承、转让、租赁、借贷、雇佣等多种经济关系和社会、婚姻关系。

法典表明古巴比伦社会存在着奴隶主、奴隶、小生产者三个基本阶级,其中法典对奴隶制予以严格的保护,这体现了法典的性质。结尾部分除继续对汉谟拉比歌功颂德以外,还强调了法典原则的不可改变性。

汉谟拉比法典的制定标志着古西亚法律制度的进步和国家的成熟。汉谟拉比法典

吐坦哈蒙陵墓

古代的埃及人在帝王谷埋葬了他们的几位最伟大的国王。到20世纪初期,考古学家们几乎已经发现了他们的全部陵墓。发掘出来的绝大多数陵墓令人失望,因为盗墓贼早已偷走了里面所有的珍宝。

可是,英国考古学家霍华德·卡特相信还有一座陵墓有待发掘,这就是少年夭折的吐坦哈蒙的陵墓。吐坦哈蒙是古埃及第十八位年轻的法老,他统治埃及9年,公元前1350年,18岁的他神秘地死去。

经过了几年的细致搜寻,1922年11月的一个早晨,卡特组织的考古小组终于发现了他们要寻找的这座陵墓。他们吐坦哈蒙墓的王座开启了在地下沉睡了几千年的吐坦哈蒙陵墓的墓门,并由此进入了世界第一宝藏。

当卡特和为他的工作提供资金的卡纳冯勋爵进入陵墓时,他们看到了一个特别的景象。这座陵墓已被封3000多年,从来未被盗墓贼发现过。陵墓内的每件物品都原封未动。其中有一个墓室装满了食品、家具和用于冥府的各种财物。考古小组由此发掘出文物3600多件。

国王单独躺在一个墓室里。他的尸体被放进了一个层层相套的三重黄金椁中,在他戴的死者面具上装饰着140块宝石。尽管吐坦哈蒙不是古埃及历史上功绩最为卓著的法老,但他却是当今最为文明的埃及法老王,他的黄金面具已经成了埃及古老文明的象征。

岩洞艺术

大约3.5万年前,欧洲最初的现代人创造了该大陆最早的艺术。西班牙是欧洲一个古老的国家,长期以来,它作为欧洲的文化中心之一以及著名的旅游大国为人们熟知。另外,西班牙的史前文化也颇富盛名,如岩洞壁画艺术常常被人们津津乐道。

1879年,人们在西班牙桑坦德附近阿尔塔米拉的山洞里发现了大量的岩石壁画。

壁上所绘的动物几乎和真的一样大小,有野牛、马、公野猪和鹿等。但在1902年以前,人们一直没弄清它形成的确切年代。山洞里非常黑,所以艺术家必须靠用动物油脂作燃料的灯照明来工作,壁画是用矿物制成的不同颜料绘制而成的。

如今我们知道,任何绘画艺术的起源都可以追溯到壁画艺术。西班牙岩洞壁画的发现,不仅为我们展示了当时动物的各种有趣的形态,而且还提示了艺术最初的发展轨迹,这个“西方艺术的起源”的美誉并非浪得虚名。

数理化工大发现

歌德巴赫猜想

1742年,歌德巴赫发现每个不小于6的偶数都是两个素数(只能被它本身整除的数)之和。如6=3+3,12=5+7,等等。

1742年6月7日,歌德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:a任何一个大于等于6之偶数,都可以表示成两个奇质数之和;b任何一个大于等于9之奇数,都可以表示成三个奇质数之和。

这就是歌德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉都不能证明,这引起了许多数学家的注意。至今,许多数学家仍在努力攻克它,但都没有成功。曾经有人做了具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7……有人对33×108以内且大过6之偶数一一进行验算,歌德巴赫猜想a都成立。但严格的数学证明尚待数学家们继续努力。

勾股定理

我国是世界上最早发现勾股定理的国家,但是我们的祖先率先发现这一几何宝藏并非一蹴而就的,而是经历了漫长的岁月,通过长期测量发现的,其间走过了一个由特殊到一般的艰辛过程。

我国的几何起源很早。据考古发现,十万年前的河套人就已在骨器上刻有菱形的花纹;六七千年前的陶器上已有平行线、折线、三角形、长方形、菱形、圆等几何图形。随着生活和生产的需要,越来越多的几何问题摆在我们祖先面前。《九章算术》

四千年前,黄河流域经常洪水泛滥。大禹(公元前21世纪)率众治水,开山修渠,导水东流。在治水过程中,他“左准绳,右规矩”。(这里“规”就是圆规,“矩”就是曲尺,由长短两尺在端部相交成直角合成,短尺叫勾,长尺叫股),运用勾股测量术进行测量。在《周髀算经》中,表明大禹已经知道用长为3∶4∶5的边构成直角三角形。

到了商高(公元前1120年)所处时代,我国的测量技术及几何水平达到了一定高度。《周髀算经》中,记载着周公与商高的一段对话。商高说:“故折矩以为勾广三,股修四,径隅五。”这里的“勾广”就是勾长,“股修”就是股长,“径隅”就是弦长。就是说,把一根直尺折成矩(直角),如果勾长为3,股长为4,那么尺的两端间的距离,即弦长必定是5。这表明,早在三千年前,我们的祖先就已经知道“勾三股四弦五”这一勾股定理的特例了。

在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”

从制作工具、测量土地山河到研究天文;从《周髀算经》到《九章算术》,我们的祖先逐渐积累经验,从而发现了勾股定理。为纪念祖先的伟大成就,我国将这个定理命名为勾股定理。

当代中国数学家吴文俊说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的……17世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

0的发现

零是位值制记数法的产物。很久以前,当人们采用这种记数法遇到空位的时候,就会采用不同的方式来表示它的存在。世界上较早采用位值制记数法的有巴比伦、玛雅、印度和中国等,这些地区和民族都对零的产生和发展作出过自己的贡献。

世界上最早采用十进制记数法的是中国人。“零”这个符号之所以产生的原因,最初其实也并不是为了表示“无”,而是为了弥补十进制值记数法中的缺位。从公元七世纪起,中国开始采取用“空”字来作为零的符号。但是,中国古代的零是圆圈○,并不是现代常用的扁圆0。现在普遍使用的包括“○”在内的印度—阿拉伯数码是在13世纪的时候由伊斯兰教徒从西方传入中国的,而那时中国的○已经使用100年了。

希腊的托勒密是最早采用这种扁圆○号的人,由于古希腊数字是没有位值制的,因此零并不是十分迫切的需要,然而当时用于角度上的60进位制时,则很明确地以扁圆0号表示空位。可是,托勒密的0并没有作为数参加运算,也没有单独使用的情况。

最先把零作为一个数参加运算的是印度人。

他们在很早的时候就采用了十进位值计数法。空位最开始是用空格表示的,后来为了避免看不清带来的麻烦,就在空格上加一小点,如用5·8表示508。公元876年,在印度的瓜廖尔地方发现了一块石碑,上面的数字和现代的数字很相似,这可能是由小点发展为小圈0表示零的最早根据。

印度人承认零是一个数并用它参加运算可以说是对零的发现的更为重要的贡献。

后来,历经了漫长的岁月,印度数字传入了阿拉伯,并发展成为现今我们所用的印度—阿拉伯数字。但直到1202年,意大利数学家斐波那契把这种数字(包括0)传入欧洲,现代的零的概念和印度—阿拉伯数字中的零号才逐渐流行于全世界。

黄金分割

古希腊的毕达哥拉斯和他的学派在数学上有很多创造,著名的黄金分割就是他在公元前6世纪发现的。

一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,便站在那里仔细聆听,似乎这声音中隐匿着什么秘密。他走进作坊,拿出尺子量了一下铁锤和铁砧的尺寸,发现它们之间存在着一种十分和谐的关系。

回到家里,毕达哥拉斯拿出一根线,想将它分为两段。怎样分才最好呢?经过反复比较,他最后确定按照1∶0.618的比例截断最优美。

后来,德国的美学家泽辛把这一比例称为黄金分割律。这个规律的意思是,整体与较大部分之比等于较大部分与较小部分之比。无论什么物体、图形,只要它各部分的关系都与这种分割法相符,这类物体、图形就能给人最悦目、最美的印象。

中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称其为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。直到19世纪黄金分割这一名称才逐渐通行。

浮力定律

浮力定律现在又称阿基米德定律,这一定律的发现和一个传说故事有关。有一次,大学者阿基米德在众目睽睽之下光着身子从澡堂里飞奔而出,欢呼雀跃,周围的人都不知究竟发生了什么事使他忘乎所以。

原来,国王命令金银匠做了一顶纯金的王冠。新王冠做得很精巧,国王也很高兴。可是国王并不信任工匠,为了检验工匠是否在黄金中掺进了廉价的金属,国王决定让阿基米德在不损坏王冠的情况下辨别出皇冠的质地。

接到任务,阿基米德好几天都想不出什么好主意,他废寝忘食,近乎痴迷。好心的朋友劝他去洗个澡,放松放松。当他坐到满满一盆水里去时,从盆边溢出去的水引起了他的注意,他脑子里灵光一闪,猛地从澡盆里跳出,来不及穿上衣服就狂奔回家。

他在家里做好了试验,来到国王面前,把盛满水的一个大盆放在一只大盘子里,又叫国王拿出一块与皇冠同重的0.75千克的黄金和两只大小一样的杯子。然后,阿基米德将王冠放在盆子里,水溢出来后将溢出的水都装进一只杯子里。然后用同样的方法把0.75千克黄金溢出来的水装进另一只杯子里。最后他拿着两只杯子走到国王面前,说道:“陛下,请您比较一下,这两只杯子里的水一样多吗?”

国王一眼就看到一只多一只少。于是阿基米德肯定地说:“王冠里一定掺了银或者其他的金属,它不是纯金的。”

原来,阿基米德利用了物质的密度、体积和重量的相互关系,同一物质的密度是固定的,即重量与体积之比是一个确定的数。这样,如果王冠是纯金的,它所排出的水应该与0.75千克纯金所排出的水的体积一样,如果不一样,那么王冠里肯定掺了其他金属。阿基米德

阿基米德辨别王冠的故事仅是一个传说,但他研究物体所受浮力的规律并发现了浮力定律却是千真万确的。他把密度不同的物体放入水中发现:密度和水相同的物体完全浸入水中,但不会沉入水底;密度大于水的物体一直下沉至容器底部;密度小于水的物体总是浮在水面上。阿基米德分别采用了密度不同的物体——木块、蜡块、石块、铁块、铜块、金块等放入水中反复做试验,所得的结果是完全一致的:它们的重量都和所排开的水的重量相等。

阿基米德意识到这是一个普遍规律。于是,他把研究结果写进《论浮力》的著作中。在书中,他明确地表述了浮力定律,并用严密的逻辑推理对浮力定律进行了证明。他指出:浸在液体中的物体受到向上的浮力,浮力的大小等于它所排开液体的重量。这就是著名的浮力定律。为纪念这位伟大的科学家,人们把浮力定律命名为阿基米德定律。

单摆等时性

伽利略是一位虔诚的天主教徒,每周都坚持到教堂做礼拜。1582年的一天,教堂里一个被修理工无意碰到而摆动起来的大吊灯引起了伽利略的注意。他的脑海里突然闪出测量吊灯摆动时间的念头。凭着自己学医的经验,伽利略以脉搏计时,同时数着吊灯的摆动次数。

起初,吊灯摆动速度较大,过了一阵子,吊灯摆动的幅度变小了,摆动速度也变慢了,直到停止了摆动。令伽利略惊奇的是每次测量的结果都表明来回摆动一次需要相同的时间。通过这些测量伽利略发现:吊灯来回摆动一次需要的时间与摆动幅度的大小无关,无论摆幅大小如何,来回摆动一次所需时间是相同的。即吊灯的摆动具有等时性,这就是伽利略最初的发现。

伽利略的试验并没有就此结束,回到房间后,他到处寻找试验所需要的东西。他找来丝线、细绳、大小不同的木球、铁球、石块,用细绳的一端系上小球,将另一端系在天花板上。这样,一个单摆就做成了。用这套装置,伽利略伽利略的摆钟模型继续测量摆的摆动周期。试验证明,无论用铜球、铁球,还是木球,只要摆长不变,单摆来回摆动一次所用时间就相同。这表明单摆的摆动周期与摆球的质量无关。

为了找出决定摆动周期的因素,伽利略继续从试验中寻找答案。多次试验之后,伽利略发现利用不同的摆长,可以十分简便地得到不同的摆动周期。由此可见,摆的长度是影响摆动周期的惟一因素。在实验基础上通过严密的逻辑推理,伽利略证明了单摆周期与摆长的平方根成正比,与重力加速度的平方根成反比。

但让伽利略沮丧的是,他始终无法对自己发现的这一奇妙规律给出一个明确合理的解释。直到100多年后,当牛顿发现地心引力时,这个规律才有了圆满的解释。

但是伽利略很快就发现可以利用摆来制造一台精确的时钟,而这个建议也一直未被采纳。直到1656年第一架摆钟出现以前,人们仍然经常为短时间计时而感到困难,不得不用脉搏或水滴来粗略地计时。

自由落体定律

亚里士多德认为物体自身重量越重,下落的倾向就越大,下落的速度也就越快;物体越轻,下落的倾向就越小,下落的速度也就越慢。因此,亚里士多德得出了一个结论:物体下落的快慢和它的重量是成正比的。

在我们今天看来,亚里士多德的论断是错误的。然而在古代,亚里士多德有很高的声望,他所说的话没有一个人敢怀疑。所以在将近两千年的漫长岁月里,人们一直把亚里士多德的论断当作真理。直至16世纪,这个论断才被伽利略推翻。

伽利略首先进行了逻辑推理,从推理中发现物体下落的快慢和它的重量无关。伽利略设想,如果亚里士多德的观点是正确的,轻重不同的两个物体下落时,重的物体下落快,轻的物体下落慢。可是,如果将它们绑在一起同时下落会出现什么情形呢?按照亚里士多德的观点,绑在一起后的物体会比原来重的物体更重,所以它们就比重的物体下落得快。可如果从另一个方面分析,重的物体要带动轻的物体运动,它们应该比重的物体下降得慢一些。这两个结论很显然是矛盾的。由此伽利略得出结论:物体下落的快慢与重量无关,所有物体下落的快慢都是相同的。

伽利略又继续研究物体下落的距离和所用时间的关系。可是又遇到了难题,因为在那个时代是没有钟的。为了计算时间,伽利略在一个大的盛水桶底部钻一个小孔,并安上龙头,在龙头下面放上接水容器。打开龙头,水就会流入接水容器,称量容器中所接水的质量就可以确定经历的时间。物体下落时,运动的速度很快,经历的时间也极短。用这种粗糙的装置测量精确的时间显然是办不到的。伽利略仔细观察小球在斜面上的运动,发现斜面越陡,小球运动得越快。于是伽利略把小球的下落运动看成是小球斜面运动的一种特殊情况。因此伽利略就开始用斜面做实验来研究物体下落的规律。当斜面的倾斜度很小时,他就能比较准确地计算时间了。伽利略反复进行斜面实验,测量出小球在斜面上运动的比萨斜塔距离和所用时间,通过推导距离、时间、速率和加速度之间的关系,得出了小球沿斜面滚下或自由下落的运动都是匀加速运动的结论,又进一步发现了物体下落运动的规律——自由落体定律,即物体从静止状态开始下落,物体运动的距离同下落时间的平方成正比。

帕斯卡定律

帕斯卡在对托里拆利大气压实验的研究过程中,受其启示产生了新发现。他注意到气体、液体同属流体,于是他从流体的角度看待托里拆利实验,开始研究液体的压强。

为此,他专门制作了一个适用于测量液体压强的压强计。这个压强计有一根橡皮管,一端接压强计,另一端接扎有橡皮膜的金属盒,把金属盒放入液体中便可以测量液体内部的压强。各种实验证明水越深,压强就越大。更让他惊喜的发现是:在同一深法国巴黎卢森堡公园度,水向各个方向的压强相等。帕斯卡又把水换成多种不同液体反复实验,得到的结论完全相同。在实验事实的基础上帕斯卡进一步发现:液体内部的压强由液体的重力产生。压强的大小仅仅由液体的性质和深度决定,与液体重量和体积无关。由此推论:重量和体积较小的液体也能够产生较大的压强。但许多人都对此结论表示怀疑。

因而,在1648年帕斯卡进行了一次公开实验。他将一个木桶装满水用盖子封住,在桶盖上面竖一根细长的管子并把它插入桶中,然后让人站在高处给细管灌水。结果只用了几杯水,木桶就被压裂了。在场的人大为震惊,此后再也没有人怀疑帕斯卡的理论了。

之后,帕斯卡又开始了对液体中的压强传递方式的新探索,他在一个充满水的容器上竖直安装两根粗细不同的圆筒,筒里装上活塞。两个活塞放相同重量的物体时,帕斯卡发现小活塞向下运动,大活塞向上运动。要使活塞静止不动,就必须给大活塞上多放一些物体。帕斯卡反复实验,并且把实验数据作了详细的记录。

帕斯卡在对实验数据进行大量的数学运算后终于发现:当活塞静止时两个活塞上的重量与面积的比值是相等的,这个比值正好等于液体对容器任何一部分单位面积上施加的压力。

1653年,帕斯卡在《论液体平衡》的论文中明确指出:加在密闭容器上的压强,能够大小不变地被液体向各个方向传递。这就是著名的帕斯卡定律。可惜这一重大发现并没有得到及时的运用,这篇论文直到帕斯卡死后才被发表出来,这不得不说是科学界和人类社会的一个遗憾和损失。

光色散

1665年英国正在闹瘟疫,为了减少感染,剑桥大学暂时放假了。牛顿回到了自己的家乡。他虽然也去田里干活,但更多的精力还是用于科学研究。他在上大学的时候,就非常喜欢做物理实验,接触到许多的光学仪器。当时的光学仪器存在许多的缺陷,这些问题却被牛顿牢牢记在了心里。那个时代的光学仪器非常原始,无非是一些平面镜,凹、凸透镜及三棱镜等元件,因而牛顿在家里就能够方便地开展自己的工作。一天,牛顿拿出一块玻璃三棱镜准备做实验,一束阳光射了进来。细心的牛顿发现地面上呈现出红、黄、青、紫等各种颜色的光,而且排成了鲜艳彩带。牛顿以前曾多次使用过三棱镜,都没有发现这个现象。雨后,天空中美丽的彩虹就是悬浮于空中的小水滴将太阳光分散了的结果牛顿开始对这一现象进行认真的研究。他用支架把三棱镜安放好,接着拿出两张硬纸板。在一张纸板上刻出一条缝放在棱镜前面,将另一张放在棱镜后面作光屏。当一束阳光穿过窄缝射到棱镜上时,在进入棱镜的一面发生一次折射,从棱镜的另一面射出时又发生一次折射。经过两次折射后,光线的方向变了,在后面的屏上形成一条由红、橙、黄、绿、蓝、青、紫七种颜色排开的彩色光带。难道白色的阳光是由这七种颜色的光组成的吗?牛顿开始查找资料,很快便发现了对这一现象的解释:白色的光通过三棱镜后之所以变成依次排列的各色光,并不是白光有复杂成分,而是白光与棱镜相互作用的结果。

牛顿开始考虑这个问题的真实性。如果白光通过棱镜后变成七种颜色的光是由于白光与棱镜的相互作用,那么这些颜色的光经过第二个棱镜时必然会再次改变颜色。

他根据自己的想法继续做实验。牛顿先在棱镜后面竖放一张开有小孔的屏,这样转动前面的棱镜,就可以使不同颜色的光单独地穿过小孔。在屏的后面再放一块三棱镜,就能观察到这些单色光通过第二块棱镜后颜色是否会改变。但实验的结果表明,这些单色光经过第二块棱镜后没有再分解,颜色也没有变化,看来别人的解释并不正确。紧接着牛顿又想,既然一块棱镜能把白光分解成七种颜色的光,那么用另一块棱镜就可能使这些彩色的光复原为白光。于是他又在第一块棱镜后倒放了一块顶角较大的棱镜,果然实验成功了,七种颜色的光带又变成白光。

这些成功的实验使牛顿认识到白色的阳光的确具有复杂的成分,它由七种不同颜色的光组成。三棱镜之所以能把它们分开,是因为各种单色光相对于棱镜有不同的折射率。后来这些实验被称为著名的“光的色散实验”。

惯性定律

历史上三位科学家都对惯性定律的发现作出了不可磨灭的贡献。第一位是古希腊最伟大的思想家、哲学家和科学家亚里士多德。他主张从经验出发研究事物,十分重视通过观察总结事物的规律。对于物体运动规律,他从马拉车车就运动,马停止拉车车就不再动的现象出发,总结出物体运动必须有一个力来维持的理论。他的理论在16世纪之前一直占统治地位,直到16世纪末期,意大利物理学家伽利略对此学说发起了挑战。

伽利略的高明之处在于把观察、实验、理性思维和数学结合在一起探讨物理问题,寻找物理学运动规律。为了寻找物体运动的规律,伽利略设计了一个斜面实验。

伽利略将两个光滑斜面相连,然后让球从一个斜面上以一定的高度滚下。他发现,无论如何改变另一斜面的坡度,小球都会不管实际路程的长短,而沿着斜面上升到与下落等高的地方。在此基础上,天才的伽利略对此作出了天才的设想:若第二个斜面是无限延伸而绝无摩擦的水平面,则小球将会永远向前运动。他进一步推理得出结论:物体运动并不需要力来维持。最终,他把这个发现概括为“只要除去使物体加速和减速的外部原因,运动物体必将严格地保持它一旦获得的速度”。

尽管历史上已有许多人对惯性运动作了种种描述或设想,但像伽利略这样经过严格的推理而得出明确的结论还是第一次。伽利略这一发现在惯性定律的建立上取得了突破性的进展,但是,伽利略所指的水平面实际上是以地球为中心的球面,而不是空间的一条直线。这个认识还是不完全的,最终的惯性定律是由牛顿完成和精确的。

1687年,英国伟大的数学家和物理学家伊萨克·牛顿在总结前人工作的基础上,写了名为《自然哲学的数学原理》的光辉著作,建立了经典力学体系。作为经典力学的坚实基础,惯性定律在100年后被继承和完善了,他提出了著名的三大运动定律,促进了近代科学研究的发展。

牛顿三大定律中的第一定律就是惯性定律。牛顿指出物体的质量越大,惯性也越大,质量是物体惯性大小的量度。定律内容表述为:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

万有引力

在科学史上,牛顿对万有引力定律的发现可以说功绩卓越。其他科学家如胡克、哈雷也在这方面作出了非常重要的贡献,但与牛顿相比,他们的观点和研究方法总是存在某些缺陷,最终与跨时代的利学发现失之交臂。万有引力定律的发现解释了行星围绕太阳运动的原因

牛顿于1687年发表了《自然哲学的数学原理》。他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证。为物理理论中已经确立的定律、新假说、实验观测等,提供了一个极好的范例。

关于万有引力的发现还有一个有趣的传说:一次,牛顿正在花园里小坐。这时,一个苹果从树上掉了下来……虽然这件曾发生过无数次的事再平常不过,但却引起了这位巨人的沉思:究竟什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着,终于,他发现了对人类具有划时代意义的万有引力。

在《自然哲学的数学原理》中,牛顿提出了一个思想实验,设想有一个小星球很靠近地球,以至几乎触及到地球上最高的山顶,那么使它保持轨道运动的向心力当然就等于它在山顶处所受的重力。这时如果小星球突然失去了运动,它就如同山顶处的物体一样以相同的速度下落。如果它所受的向心力并不是重力,那么它就将在这两种力的作用下以更大的速度下落,这是同我们的经验不符合的。可见重物的重力和星球的向心力必然是出于同一个原因。

紧接着,牛顿根据惠更斯的向心力公式和开普勒的三个定律推导了平方反比关系。牛顿还反过来证明了若物体所受的力指向一点而且遵从平方反比关系,则物体轨道呈圆锥曲线——椭圆、抛物线或双曲线。在原理中,牛顿同磁力作用相类比,得出这些指向物体的力应与这些物体的性质和量有关,从而把质量引进了万有引力定律。

牛顿把他在月球方面得到的结果推广到行星的运动上去,并进一步得出所有物体之间万有引力都在起作用的结论。这个引力同相互吸引的物体质量成正比,同它们之间的距离的平方成正比。牛顿根据这个定律建立了天体力学的严密的数学理论,从而把天体的运动纳入到根据地面上的实验得出的力学原理之中,这是人类认识史上的一个重大的飞跃。

雷电的本质

1745年,荷兰莱顿大学的教授马森布洛克和他的朋友库诺伊斯做了一个有趣的实险。他们先用摩擦机产生电,再用金属丝把电引入玻璃瓶内,可以看见闪电的火花。他们一同设想:能不能将电储存起来呢?他们将瓶内灌满水,接通导线,再继续摇动摩擦机,却看不见一个火花。这时库诺伊斯像是要把电捞出来一样,一只手端起瓶子,另一只手到水瓶里去探索,哭然他觉得右臂一阵麻胀,猛然将手缩回来。马森布洛克由此得到启发,将玻璃瓶贴了锡箔制成了能储存电的瓶子,由于马森布洛克是荷兰莱顿人,所以人们将它称为“莱顿瓶”。

一直从事大气电理论研究的富兰克林听说了这个实验,颇受启发。他将天上经常打死人畜的闪光的雷电与地下的电联想到了一起。两种电到底是不是一回事呢?为自己提出这个课题时,富兰克林已经整整40岁了。

1749年,富兰克林在大量实验的基础上证明了闪电是一种电力性质,闪电和电火花具有同样的特性,都是瞬时的,都是相似的光和声,都能燃着物体、熔解金属、流过导体、具有集中于物体尖端等特点。1752年,他用著名的风筝实验,证实了自己的观点:闪电就是一种放电现象。

7月的一天,终于盼来了费城一个大雷雨的天气,富兰克林带着儿子选了一块广阔的草地,按照设定引“天电”的方案,将一只特制的风筝徐徐放到阴雨密布的天空。

突然,一道闪电劈开云层,在天空划了一个“之”字,接着嘎嘣一声脆雷,那如铜钱般的雨点就瓢洒盆泼般地倾了下来。富兰克林让儿子威廉拉紧风筝线站到草地旁边的一所房子屋檐下,这样,靠近手的一节线就不会因淋湿而导电。这一切都是精心设计好的,风筝是绸子制的,不怕雨淋,线是麻绳很结实,靠乎的一节又换成绸带,不导电,富兰克林和他的儿子利用风筝将麻绳与绸带间用金属线挂一把铜钥匙。雷电引入莱顿瓶中

富兰克林站在屋檐下紧张地注视着西边的天空,只见电光一道道闪过,雷声一声更比一声响亮。期盼的现象终于出现了:麻绳上的细纤维一根一根都直竖起来,这说明风筝线上已有电了。富兰克林小心翼翼地将带来的莱顿瓶接在钥匙上,使莱顿瓶充电。然后,他又使莱顿瓶放电。从而证明了聚集在瓶内的电是来自空中的闪电。瓶里的电也有火花,可以点燃酒精灯,可以用它做各种电气实验。天电、地电果然是一样的!

以后,许多科学家又重复了富兰克林的实验,以确证对闪电的认识。经过长期的研究,科学家们逐步揭示了雷电的本质:云层之间,或云层与地面之间,云与空气之间的电位差增大到一定程度时,就会发生猛烈的放电现象,随之产生震耳欲聋的雷鸣。

红外线

1672年,人们发现太阳光(白光)由各种颜色的光复合而成。当时,牛顿作出了单色光在性质上比白光更简单的著名结论。用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。1800年,英国物理学家赫歇尔从热的观点来研究各色光时,发现了红外线。赫歇尔的职业是牧师,但却对太阳光独有钟情。为此,他专门买了一块很大的玻璃三棱镜放在自己的桌子上,不时欣赏太阳光透过它形成的七色彩带。1800年的一天早晨,年过花甲的赫歇尔看着美丽的七色彩带,脑海里突然闪现了一个好奇的念头:“阳光带有热,具有红外线夜摄功能的摄像机能可是组成太阳光的七种单色光中,哪一够在全黑环境下进行拍摄,甚至可以将肉眼也无法分辨的物体清种带的热最多呢?”这一看似简单的问题晰地拍摄下来在当时谁也不知道,于是,赫歇尔便开始思考这个问题,试图找出正确的答案。

经过冥思苦想,几天以后,赫歇尔便找到了解决这一问题的方法。他在自己房中的墙上贴上一张白纸作为光屏,使经过三棱镜的七色光带照在纸屏上。然后,在每一条光带的位置桂一支温度计。他怕自己的观察不够全面,又在红光带和紫光带外各挂了一支温度计。

做好这一切之后,赫歇尔记录下每支温度计开始的读数,然后就在一旁观察。温度计的水银挂缓慢地上升。大约过了半个小时,所有温度计的读数不再变了。赫歇尔发现绿光区的温度上升了3℃,紫光区的温度上升了2℃,紫光区外的那支温度计读数几乎没有变化。然而令他吃惊的是,红光区外的那支温度计的读数竟上升了7℃。

多次的实验结果都是相同的:红光区外的那支温度计的读数上升最多。经过详细的分析之后,赫歇尔认为阳光的光谱实际上比人们看到的七种单色光更宽,在红光带外一定还有某种人眼看不见的光线,而且这种光线携带的热量最多。

得到准确结论后,赫歇尔对外宣布:大阳发出的光线中除可见光外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外测,因而叫作红外线。

红外线一经发现,很快应用到了军事、工业、科研等领域。近50年来,医学领域也开始应用这一技术。如在诊断中,红外热象仪能有效地诊断肿瘤、血管疾病等。

理论分析和实验研究表明,不仅太阳光中有红外线,而且任何温度高与绝对零度的物体(如人体等)都在不停地辐射红外线。就是冰和雪,因为它们的温度也远远高于绝对零度,所以也在不断地辐射红外线。因此,红外线的最大特点是普遍存在于自然界中。也就是说,任何“热”的物体虽然不发光,但都能辐射红外线。因此,红外线又称为热辐射线简称热辐射。

电流磁效应

电流,特别是电池的发现,不仅激发了人们研究电现象与化学现象、磁现象之间联系的兴趣,也为发现这种联系提供了可能性。

1802年,意大利的法律学家兼哲学家罗曼尼斯曾做过伏打电堆联结成的电路对磁针的影响的实验,并且看到了磁针的微小转动,但是他误认为这是电堆的两极对磁针的作用,没有想到是电流的作用。因为当时流传的看法是:电堆的两极与磁石的两极有类似性质。从主观方面来看,寻找电与磁的内在联系正是奥斯特从事科学研究的长远目标。

1812年,奥斯特作了这方面的探索。他从导线通电后发热的现象出发,进一步推测如果逐渐缩小导线的直径,将会出现光和磁的效果。结果,他只看到了光的效果而未获得磁的效果,失败说明此路是不通的。

1819年冬,奥斯特在哥本哈根为一些科学工作者讲授电磁学方面的问题,当时他也正在研究电流对磁针是否有作用的课题,但一直没有什么成效

1820年4月的一天,丹麦物理学家奥斯特要作一次电学方面的演讲,听众是一些物理爱好者和精通物理知识的学者。演讲之前,奥斯特一直在思考电和磁之间的联系,他打算试一下电流对磁针的作用。但是,在实验准备就绪之后,却发生了一件意外事故,使得他在演讲之前未能进行实验。

带着准备就绪的实验设备,奥斯特走进了演讲大厅。他边讲边做演示实验,深入浅出地给听众讲解电磁学知识。这次演讲精彩极了,一次接一次地赢得大家热烈的掌声。演讲临近尾声,奥斯特顺手将一枚小磁针放在了一根导线的下方,磁针的指向正好与导线的方向平行。当给导线通电的时候,他看到磁针发生了转动。

磁针转动的角度很小,根本没有引奥斯特的电磁实验起听众的注意。可是奥斯特对这个现象却十分重视,他敏锐地意识到,这也许是他一直探索的电和磁的联系。

初次的发现使奥斯特非常激动。演讲一结束,他立刻回到实验室研究这个现象。

在此后的3个月时间里,奥斯特做了60多个这方面的实验,用无可辩驳的事实证明了电和磁之间存在的联系:电流可以产生磁场。

奥斯特的发现具有重大的科学价值和历史意义,他不仅揭露出电与磁之间的内在联系,还发现一种新的自然力——旋转力。同时,为电的应用开辟了一个新的领域。

欧姆定律

从18世纪末到19世纪初,在科学领域最领先的是法国。而德国的物理学家们片面强调定性的实验,忽视理论概括的作用,他们对于法国人数学物理方法甚为不满。

当然,德国也在发生变化。1806年,拿破仑大军挫败了普俄联军,给了德国以巨大打击。一些改革者提出以法国科学为榜样,彻底发行德国科学体制。德国教育有了较快发展,大学引进法国科学经典著作为教本,开办讨论班和研究生班,进入了以往认为的科学禁区。欧姆正是在这种环境中开始电路实验的理论研究,发现欧姆定律的。

1822年,法国数学家傅立叶将导热规律总结为“傅立叶定律”。其内容是:通过等温面的导热速率与温度梯度及传热面积成正比。

1826年,欧姆从傅立叶定律受到启发,认为电流现象与热传导类似。导热杆中两点之间的温度差相当于导线中两端之间的驱电力;导热杆中的热流相当于导线中的电流。欧姆猜想,如果导热杆中两点之间的热流强度正比于这两点的温度差,导线中两点之间电流也许应正比于这两点之间的某种驱电力。他把这种驱电力称为电动力,即今天的电势差。

开始,欧姆使用伏打电堆作电源,但它容易极化,电动势很不稳定,给实验研究工作带来很大困难。1821年,塞贝克发明温差电池。欧姆接受波根道夫的建议采用了温差电池。但他还面临着另一个电流强度的测量问题。开始,欧姆曾设想用电流的热效应,通过热胀冷欧姆设计的实验装置缩的方法测量电流强度,但很难获得精确的测量结果。

后来,他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,设计了电流扭秤:用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置;再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,他发现磁针的偏转角与导线中的电流成正比。他将实验结果于1826年发表。

1827年,欧姆在原来的基础上又作了数学处理和理论加工,在定义电流强度和电势差等概念的基础上,欧姆得到一个更加完满的公式:S=r·E,其中S表示导线的电流强度,r为电导率,E为导线两端的电势差。该公式发表在《用数学推导伽伐尼电路》一文中。欧姆的这部著作,是19世纪德国的第一部数学物理论著。

安培定律

1820年9月11日,法国科学院召开会议,主题是由物理学家阿拉果报告奥斯特关于电流能够产生磁场的新发现。演示实验让大家目睹了电流作用磁针的现象。法国科学家们受到极大震动,他们一向认为电和磁没有联系的观念在事实面前被击得粉碎。

安培是一位易于接受科学事实的科学家,他在讨论过程中提出既然电流能够像磁石一样吸引小磁针,那么由此可以推断,导线中的电流也能够相互作用。这一见解引起了与会的毕奥和阿拉果的极大兴趣。会议结束后,他们一起找到安培,约好在科学院大门口见面。安培计

安培刚到科学院门口不久,脑海中浮现出两条平行导线中电流的作用问题。正想得入神,略微抬头,突然发现前边有一块黑板,于是从口袋掏出一支粉笔在黑板上计算起来。这一切被等在科学院门口的毕奥和阿拉果看在眼里。他们远远看见,安培正在用一支粉笔在一辆马车的后车身上写着,马车在不停地走着,安培跟在后面不停地写着。当他们跑到跟前时,已看见车身上写得密密麻麻,此时,马车走得越来越快,安培就跟着跑了起来。后来,马车一转弯就不见了,这时安培才发现,原来那是一辆马车的后车身。安培懊丧地站在路中央,看着马车带着他那块“黑板”载着他那密密麻麻的计算公式,渐渐地消失了。

科学院会议结束之后,奥斯特的新发现不停地在安培的脑海里盘旋,他已经完全被这个新发现迷住了。于是,他一头扎进实验室没日没夜地忙活起来了。在实验室,安培用不同的电源和导线反复进行实验。有时候,他把导线折成方框后通上电流,有时又把导线对折再通电流,有时候,他还把导线做成螺旋形或圆形通以电流。

在大量实验事实的基础上,安培通过精心研究,在不到一个月的时间里,就向科学院提交了三篇有关的研究论文,报告了他一生中最伟大的发现:不仅电流对磁针有作用,而且两个电流之间也有相互作用。在两根平行的通电导体中,如果电流的方向相同,它们就互相吸引;电流的方向相反,它们就互相排斥。

沿着这个研究道路,安培继续探索,在后来的研究中又取得了大量成果。1822年,他发现了电流之间相互作用的规律——安培定律。同时,确定了判断电流磁场方向的安培定则和判断磁场对电流作用力方向的左手定则。

电磁感应

1820年,丹麦科学家奥斯特发现通电导线能引起旁边的磁针转动。当时正从事电和磁研究的法拉第根据自己做的大量实验以及大胆的直觉立刻联想到:既然电流能产生磁,那么为什么磁不能产生电流呢?1822年,他在笔记本中写下了一个崭新的研究课题——“把磁转变成电”。

为了实现这一科学闪念,法拉第付出了10年的辛勤劳动。最初,他试图用强磁铁靠近闭合导线或用强电流使邻近的闭合导线中产生稳定的电流,但都一次次地失败了。

假如根据奥斯特的看法,被推动的电荷对磁铁产生作用,也就说“产生磁”,那么被推动的磁铁也应该产生电。他按照自己的设想设计了实验装置,他的装置类似于我们今天的变压器:在一边接上一个伏打电池(法拉第称为A)和一个中断电流的开关;在另一边(称为B)接上一个电流显示器(即当有电流时,显示出偏转的一个磁针)。接通A的电流时,B电路上的测量仪显示短暂的偏转,然后,指针立即又回到0位。当A路中的电流被中断时,也出现一偏转(但向另一个方向偏转)。法拉第本来希望,在整个电流动过程中,在A和B电路中都有电流产生,然而磁针则准确无误地表明:只在“开”和“关”的时刻有效应存在。后来,法拉第很快发现,永久磁铁也可以用于感应。

1931年10月17日这天,法拉第终于实现了重大的突破。他在直径为1.9厘米、长为21.6厘米的空心纸筒上绕了8层螺旋线,把8层线圈并联后再接到检流计上。当他把磁铁棒迅速地插入螺线管时,检流计的指针就偏转了,然后又迅速地拉出来,指针在相反的方向上发生了偏转。每次把磁棒插入或拉出时,这效应会重复,因而电的波动只是当磁铁靠近时才产生。这就是一个原始的发电机,它通过磁体的机械运动而产生电流。关于法拉第电磁感应实验原理的

此后,法拉第又继续进行大量的实草图验,以探讨电磁感应产生的条件。1831年11月24日法拉第写了一篇论文,他把可以产生感应电流的情况概括成五类,正确地指出了感应电流与源电流的变化有关,而不与源电流本身有关。法拉第将这一现象与导体上的感应电作了类比,把它命名为“电磁感应”。1832年,法拉第采用了笛卡儿发明的磁力线这个概念来解释“电磁感应”现象。他认为:感应电流是导体切割磁力线产生的,电流方向由切割磁力线的方向决定。这就是我们今天还常用到的“左/右手定律”。

阴极射线

阴极射线和X射线、

放射性

、电子都有关联,它们是由不同时期众多科学家各自研究发现的。

19世纪中叶,随着电学知识的积累和真空技术的提高,科学家们又开始注意被遗忘很久的真空放电现象。

1838年,法拉第首先做了低气压气体的放电实验。他将一根玻璃管内的空气抽去,将两根黄铜棒插到玻璃管里面作为电极。当通电的时候,法拉第发现,在两根黄铜分开的瞬间,出现了一种独特的放电现象:从负极发出一束光线,而正极却是暗的。加大两极之间的距离,则从正极向负极发出一束紫红色的光。距离越大,光束越长,且向负极移动,光束和负极之间总有一段暗区,而且长度几乎不变。这个暗区后来被称为法拉第暗区。

普吕克尔对法拉第观察到的这一现象进行了进一步研究。普吕克尔是波恩大学的物理学教授,他对磁与气体放电间的关系产生了极大的兴趣。在他的身边有一位极有才华的仪器制造者盖斯勒,这对他的工作很有帮助。

盖斯勒精于玻璃吹制,他制作了许多形状不同、性能优越的真空管供普吕克尔研究使用,这就是后来称为的“盖斯勒管”。1855年,他根据普吕克尔的设计,利用托里拆利的真空原理制造出水银真空泵,使人们获得了更高的真空度,低气压气体放电的研究也随之进入真空放电的研究阶段。可以说,盖斯勒不是一位科学家,但他对阴极射线的发现作出过重要贡献。

1857年,普吕克尔用盖斯勒管做了一系列真空放电实验。他发现管内的气压越低,法拉第暗区越大。如果把磁铁靠近盖斯勒管,则从阴极发出的光束就会跟随磁场的“力线”。最重要的是普吕克尔还发现,从阴极发出的射线打到管壁上会发出荧光,而且荧光斑能被磁场力偏转。

普吕克尔的学生希托夫也长时间从普吕克尔事真空放电的研究。1869年,他发现如果在阴极和玻璃管壁之间放置各种形状的物体,那么物体的影子就会清晰地映照在管壁上。根据一系列实验,希托夫推测从阴极发出的是一种沿直线传播的射线。

德国物理学家哥尔德茨坦进一步证实了阴极射线是直线运动。从1871年起,哥尔德茨坦用多种材料制成形状、大小不同的平面阴极,发现由阴极发出的射线完全不同于白炽灯丝发出的光那样向四面八方散射,而是从阴极表面平行射出,并且这种发射方式与阴极的材料无关。他还发现了阴极射线的其他性能,比如把某些材料,如银盐放到管内,射线就会使它们发生化学变化。哥尔德茨坦把这种射线称为“阴极射线”。

电磁波

由法拉第发现、麦克斯韦完成的电磁理论,因为未经一系列的科学实验证明,始终处于预想阶段。是赫兹把天才的预想变成世人公认的真理,使假说变成了现实。

促使赫兹去验证麦克斯韦预言的正确性是一次偶然的发现引起的。他在做一次放电实验时,发现在附近的线圈上迸发出小火花。赫兹马上联想到,这是电谐振的结果,就像声学实验中,相同的音又会产生共振一样。赫兹受到启发,由此开始了捕捉电磁波的系统实验。赫兹捕捉电磁波所用的实验仪器

1886年,赫兹在恩师赫尔姆霍茨的指导和帮助下,制成了一套完备的实验仪器。他将两个用空气隔开的金属小球调到一定的位置,接上高压交流电,使电荷交替地涌入,由于两球之间的电压很高,间隙中的电场很强,空气分子被电离,从而形成一个导电通路。通电时,两个本来不相连的小球间却发出吱吱的响声,并有蓝色的电火花一闪一闪地跳过,这说明小球间产生了电场,那么按照麦克斯韦的方程,电场再激发磁场,磁场再激发电场,连续扩散开去,便有电磁波传递。为了能接收到电磁波,赫兹又在离金属球4米远的地方用一根导线弯成环形,线的两端之间有一个空气隙,做成了一个能探测电磁波的检波线圈。当火花发生器通电后,检波器的空气隙里果然出现了蓝光闪闪的小火花。可见火花发生器的电流能产生辐射,它的能量能跨越空间,从发生器送到接收器。这就说明发射球和接收环之间有电磁波在运动了。

赫兹后来又通过反复实验证明了电磁波具有光一样的反射性能。此后,他还悉心研究了电磁波的折射、干涉、偏振和衍射等现象,并且算出了速度为每秒30万千米,麦克斯韦于24年前所作的预言完全得到了证实!

尽管当时赫兹还无法解释这种现象,但他如实作了记录,并在当年发表的题为《论紫外光对放电现象的效应》中首次描述了这一发现。

电子

人类发现电子的过程是相当漫长的。早在1833年,在法拉第提出的电解定律中,就曾得出结论:电是以独立粒子的形式存在的。40年之后,科学家才对电流通过盐酸溶液时观察到的电解过程进行深入的分析。1874年,爱尔兰物理学家斯托尼继第一个由电解定律推出:原子所带的电量为一个基本电荷的整数倍。1891年他进一步提出用电子作为电的最小单位。

汤姆逊发现电子的工作开始于研究阴极射线的本性。阴极射线发现后,一些科学家认为阴极射线是带电粒子流,而另一些则说它是和光一样的电磁波,双方争执不下。

而汤姆逊则认为如果阴极射线是一种带电的粒子流,它经过电场和磁场时的运动方向就会改变,否则阴极射线便无疑是和光一样的电磁波。汤姆逊先是在一个15米长的真空管内,用旋转镜法测量阴极射线在低气压中的传播速度,得到的值为1.9×10米/秒,这个值远远低于光速。因此汤姆逊认为不能把阴极射线看作电磁波。

否定了阴极射线是电磁波,也不能说阴极射线是粒子流,汤姆逊接着进行阴极射线在电场和磁场中运动的实验。他对法国物理学家佩兰测定阴极射线电荷的实验做了重大的改进,在接收筒内他收集到了负电荷。他还发现阴极射线与负电荷流在磁场和电场的作用力下有着相同的运动路径。因此,汤姆逊断定阴极射线是由带负电荷的粒子流组成。

汤姆逊为了弄清楚这些带负电荷的粒子是什么,他巧妙地测出阴极射线粒子的电荷与质量的比值——荷质比。他用各种不同的金属材料做成阴极射线管的阴极,并给管内填充不同的气体,但测出的荷质比值始终不变。这个结果引起了汤姆逊的兴趣。

汤姆逊把阴极射线粒子的荷质比与电解定律求出的氢离子的荷质比进行比较,发现后者尚不到前者的千分之一。这个发现太重要了,因为如果阴极射线粒子的电荷与氢离子相同,那么阴极射线粒子的质量就远小于氢离子。由于氢离子已是当时知道的最轻的粒子,如果是这样,阴极射线粒子就是一种从未见过的新粒子。怎么测出阴极射线粒子的电荷呢?汤姆逊想到他的另一位学生汤汤姆逊检流计森德已测出一个气体离子的电荷值,他对这个实验略加改进,就测出阴极射线粒子的电荷量,这个值与氢离子的电荷值相等。

由此,汤姆逊得出了结论:阴极射线是一种粒子流,质量比氢离子小得多;这种粒子带有最小单位的电荷,但却是负的。所有的证据都证明这是一种人类从未知道的新粒子。借助斯托尼继的对电荷最小单位的命名,汤姆逊称阴极射线粒子为“电子”。

X射线

1895年11月8日傍晚,伦琴正在维尔茨堡大学的一个实验室做一项关于阴极射线的实验。他用黑纸将阴极射线管完全掩遮好,使之与外界相隔绝,然后把窗帘放下。当他打开高压电源,检查有没有光线从管中漏出的时候,突然发现有一道绿光从附近的一个板凳射出。他把高压电源关掉,光线也随着消失。板凳是不会发出光的,敏感的伦琴立刻点灯,发现板凳上摆着自己原来做实验时用的一块硬纸板,硬纸板上涂了一层荧光材料。

伦琴知道从阴极射线管中散出的阴极射线有效射程仅有2.5厘米,显然是不会跑出这么远的。那这是什么光使荧光材料闪光的呢!伦琴很快意识到有某种未知光线被发现了,并且这种光线能穿过黑纸包层,激发涂料的晶体发出荧医疗中运用X射线进行身体检查光。伦琴惊喜万分!他再次打开开关,用一本书挡在阴极射线管与硬纸板之间,发现硬纸板依然有光。他先后在阴极射线管与硬纸板之间放了木头、玻璃、硬橡胶等等,但都不能挡住这种光线。

伦琴在实验室里整整做了7个星期的实验,终于确定这是一种尚不为人类所知的新射线。由于对它的性质还不十分了解,所以定名为X射线。后来,科学界为了纪念它的发现者,将之称为“伦琴射线”。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载