数学知识篇(上)(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-24 00:28:42

点击下载

作者:王月霞

出版社:远方出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

数学知识篇(上)

数学知识篇(上)试读:

前言

人类社会已经进入一个崭新的新世纪,科学技术正以人类意想不到的发展速度深刻地影响并改变着人类社会的生产、生活和未来。《科普知识百科全书》结合当前最新的知识理论,根据青少年的成长和发展特点,向青少年即全面又具有重点的介绍了宇宙、太空、地理、数、理、化、交通、能源、微生物、人体、动物、植物等多方面、多领域、多学科、大角度、大范围的基础知识。内容较为丰富,全书涉及近100个领域,几乎涵盖了近1000个知识主题,展示了近10000多个知识点,字数为800多万字,书中内容专业性强,同时又易于理解和掌握,每个知识点阐述的方法本着从自然到科学、原理、论述到社会发展的包罗万象,非常适合青少年阅读需求。该书是丰富青少年阅历,培养青少年的想象力、创造力,加强他们的探索兴趣和对未来的向往憧憬,热爱科学的难得教材,是青少年生活、工作必备的大型工具书。

本书在内容安排上,注意难易结合,强调内容的差异特点,照顾广大读者的理解力,真正使读者能够开卷有益,在语言上简明易懂,又富有生动的文学色彩,在特殊学科的内容中附有大量图片来帮助理解,具有增加知识,增长文采的特点,可以说该书在当今众多书刊中是不可多得的好书。

该书编撰得到了各部门专家、学者的高度重视。从该书的框架结构到内容选择;从知识主题的阐述到分门别类的归集;从编写中的问题争议到书稿最后的审议,专家、学者都提供了很宝贵的修改意见,使本书具有很高的权威性、知识性和普及性。

本书采用分级管理、分工负责的办法编写,在编写的过程中得到了国家图书馆、中国科学院图书馆、中国社会科学院图书馆、北京师范大学图书馆的大力支持和帮助,在此一并表示真诚的谢意!在本书编写过程中,我们参考了相关领域的最新研究成果,谨向他们表示衷心的感谢!

由于编写时间仓促,加之水平有限,尽管我们尽了最大努力,书中仍难免有不妥之处,敬请广大读者批评指正。本书编委会2006年1月

数学的产生和发展

数学的产生

数学最初是从结绳记事开始的。大约在三百万年前,人类还处于茹毛饮血的原始时代,以采集野果、围猎野兽为生。这种活动常常是集体进行的,所得的“产品”也平均分配。这样,古人便渐渐产生了数量的概念。他们学会了在捕获一头野兽后用一个石子、一根木条来代表;或者用在绳子上打结的方法来记事、记数。这样,在原始社会人们的眼光中,一个绳结就代表一头野兽,两个结代表两头……,或者一个大结代表一头大兽,一个小结代表一头小兽……。数量的观念就是在这些过程中逐渐发展起来的。随着捕获手段的提高,所获的野兽越多,绳子的结越多,需要的数目也越大。

在距今大约五六千年以前,沿非洲的尼罗河出现了一个伟大的文明社会——埃及。埃及人较早地学会了农业生产。尼罗河每年7月定期泛滥,淹没大片农地,11月洪水逐渐退落。埃及人通过长期观察,注意到当天狼星和太阳同时出没的时候,正是洪水将至的预兆。还发现,这种现象大约365天重复一次。这样,埃及人就选择在洪水泛滥之后留下的肥沃淤泥上下种,待6月洪水来临之前收割,以获得好的收成。这是通过天文观测进行农业生产的结果,其中也包含了数学知识的应用。另一方面,古埃及的农业制度,是把同样大小的正方形土地分配给每一个人的,租用的人每年把他的收成提取一部分给土地所有者——国王。如果洪水冲毁了他们所分得的土地,他可以向国王报告,国王便派人前来调查并测量损失的那一部分,这样,他交的租就会相应减少。这种对于土地的测量,导致了几何学的诞生。实际上,几何学的原意就是“土地测量”。

数学正是从打结记数和土地测量开始的。

与埃及同时,世界上还有几个同样伟大的文明社会,如亚洲西部的巴比伦,南部的印度和东部的中国,它们分别创造了自己的文字,同时也产生了各自的记数法和最初的数学知识。在距今大约两千多年以前生活在欧洲东南部的希腊人,继承了这些数学知识,并将数学发展成为一门系统的理论科学。古希腊文明被毁灭后,阿拉伯人保存和继承了他们的文化,后来又传回欧洲,使得数学重新繁荣起来,并最终导致了近代数学的创立。

数的出现

原始社会,人类在狩猎、种植、捕鱼、采集等活动中,要与野里、鱼、木棒、石头等打交道,久而久之,人们便有了多少、数量的认识。这种对数的认识往往与实物联系在一起,如用“月亮”代表“1”,用“眼睛”、“耳朵”、“鸟的翅膀”代表“2”。这是由于只有一个月亮,人有两只眼睛两只耳朵、鸟有两只翅膀的缘故。原始人还认识到一个苹果和一头羊各是一个个体,三棵树和三把石斧都是三个体的堆等,这就是最初的数的概念。

最早用来计数的是手指、脚趾,或小石子、小木棍等。表示1,2,3,4个物体,就分别伸出1,2,3,4手指,遇到5个物体便伸出一只手,10个物体伸出两只手。当数目很多时,就用小石子来计数,10颗小石子一堆就用大一些的一颗石子来代表。中国古代用的是木、竹或骨子制成的小棍,称为算筹。但是,大多数的原始人遇到大一些的数目,往往无法区分。

用手指、脚趾、石子、小木棍等来计数,难以长时间记录一个数字。因此,古人发明了打绳结来记数的方法,或者在兽皮、树木、石头上刻划记数。这些记号,慢慢就变成了最早的数字符号(数码)。

现在通用的数码是印度——阿拉伯数码,用十进位制来表示数。用0,1,2,……,9十个数码可表示任一数,低一位的数满10后就进到高一位上去。这种十进制,现在看来简单而平常,可它却是人类经过长期努力才演变成的。如在古埃及,数码记号是这样的:

1 10 100 1000 10000 10000 100000 100000

一个数中若某位数超过1时,就要将它的符号重复写若干次。写更大的数则是一大串符号了,这样运算当然十分困难。古希腊人也需要27个字母互相组合,才能表示100以内的数目,非常不便。

除了十进制以外,还有五进制、二进制、三进制、七进制、八进制、十一进制、十二进制、二十进制、六十进制等。经过长期实际生活的应用,十进制于占了上风。

数的概念和数码、进位制的出现和发展,都是人类长期实践活动的结果。

泥版的故事

19世纪前期,人们在亚洲西部伊拉克境内发现了50万块泥版,上面密密麻麻地刻有奇怪的符号。这些符号是古巴比伦人所用的文字,现在人们称它为“楔形文字”。科学家经过研究,弄清了泥版上所记载的,是古巴比伦人已获得的知识,其中包括了大量的数学知识。

古代人最初用石块、绳结,后来又用手指来记数。一个指头代表1,两个指头代表2,……,当数到10时,就得重新开始,巴比伦人由此产生了逢十进一概念。又因为,一年中月亮有12次圆缺,一只手又有5个指头,12×5=60。这样,他们又有了隔60进一的记数法。他们用▼表示1,<表示10,从1到9是把▼写相应的次数,从10到50是把<和▼结合起来写相应的次数。例如35写成<<<。这种记数的方法,影响了后人,产生了现在我们所用的十进制和六十进制。例如,时间分为1小时=60分,1分=60秒。

巴比伦人还掌握了许多计算方法,并且编制各种数表帮助计算。从那些泥版上,人们发现巴比伦人已有了乘法表、倒数表、平方和立方表、平方根和立方根表。他们还运用了代数概念。

巴比伦泥版上还有这样的问题:兄弟10人分1米那的银子(米那及后面的赛克尔都是古代的重量单位,其中1米那=60赛克尔),已知他们分得的银子数成等差数列,而且第八个人的银子为6赛克尔,求每人所得的银子数量。从这样一些例子中,科学家认识到了巴比伦已知道等差数列、等比数列的概念。

巴比伦人也具备了初步的几何知识。他们会把不规则形状的田地分割为长方形、三角形和梯形来计算面积,也能计算简单的体积。他们非常熟悉等分圆周的方法,求得圆周与直径的比π≈3,还使用了勾股定理。

他们的成就对后来数学的发展产生了巨大的影响。

金字塔和纸草书

闻史世界的埃及金字塔,几百年来不仅以它宏伟高大的气势,吸引了无数旅游观光者,而且由于它设计的别致,建造的精巧,吸引了世界各地的科学家。据对最大的胡夫金字塔的测算,发现它原高146.5米(现因损坏还高137米),基底正方形每边长233米(现为227米)。但是,各底边长度的误差仅仅是1.6厘米,只是全长的;基底直角的误差只有12″,仅为直角的。此外,金字塔的四个面正向着东南西北,底面正方形两边与正北的偏差,也分别只有2′30″和5′30″。

这么高大的金字塔,建造精度如此之高,这使得科学家深信,古埃及人已掌握了丰富的知识。当科学家破译了古埃及人流传下来草片上的文字后,这一猜想得到了证实。

原来,在尼罗河三角洲盛产一种形状如芦苇的水生植物——纸莎草,古埃及人把这种草从纵面剖成小条,拼排整齐,连接成片,压榨晒干,用来写字,在纸莎草上写的字,叫纸草书。如今将这种纸草书的一部分整理出来。

1822年,一位名叫高博良的法国人弄清了它们的含义,使人们知道,古埃及人已学会用数学来管理国家和宗教事务,确定付给劳役者的报酬,求谷仓的容积和田地的面积,按土地面积估计应该征收的地税,计算修造房屋和防御工程所需要的砖块数;计算酿造一定量酒所需的谷物数量;等等。换成数学的语言就是,古埃及人已经掌握了加减乘除运算、分数的运算;他们解决了一元一次方程和一类相当于二元二次方程组的特殊问题。纸草书上还有关于等差数列和等比数列的问题。他们计算矩形、三角形和梯形的面积,长方体、圆柱体、棱台的体积等结果,与现代计算值相近。更令人惊奇的是,他们用公式A=(d为直径)来计算圆面积,这相当于取π值为3.1605,这是非常了不起的。

由于具有了这样的数学知识,古埃及人建成金字塔就不足为怪了。

佛掌上的“明珠”

印度是个信奉佛教的国度,古印度人对古代数学的贡献,犹如印度佛掌上明珠那样耀眼、令人注目。

在公元前3世纪,印度出现了数的记号。在公元200年到1200年之间,古印度人就知道了数字符号和0符号的应用,这些符号在某些情况下与现在的数字很相似。此后,印度数学引进十进位制的数字和确立数字的位值制,大在简化了数的运算,并使记数法更加明确。如古巴比伦的小记▼即可以表示1,也可以表示,而在印度人那里,符号1只能表示1单位,若表示十、百等,须在1的后面写上相应个数的0,现代人就是这样来记数的。

印度人很早就会用负数来表示欠债和反方向运动。他们还接受了无理数概念,在实际计算中把适用于有理数的运算步骤用到无理数中去。他们还解出了一次方程和二次方程。

印度数学在几何方面没有取得大的进展,但对三角学贡献很多。这是古印度人热衷于研究天文学的副产品。如在他们计算中已经用了三种三角量:一种相当于现在的正弦,一种相当于余弦,另一种是正矢,等于1-cosa,现在已不采用。他们已经知道三角量之间的某些关22系式。如sinα+cosα=1,cos(90°-α)=sinα等,还利用半角表达式计算某些特殊角的三角值。

数学之桥

阿拉伯人对古代数学的贡献,早现在人们最熟悉的1、2、……9、0十个数字,称为阿拉伯数字。但是,在数学发展过程中,阿拉伯人主要是吸收、保存了希腊和印度的数学,并将它传给欧洲,架起了一座“数学之桥”。

在算术上,阿拉伯人采用和改进了印度的数字记号和进位

记法,也采用了印度的无理数运算,但放弃了负数的运算。代数这门学科的名称就是由阿拉伯人发明的。阿拉伯人还解出一些一次、二次方程,甚至三次方程,并且用几何图形来解释它们的解法。如对2于方程x+10x=39,他们的几何解法如下:作一个正方形,假定它的边长为未知数x,然后在经四边上,向外作x=与的矩形。将整个图形扩充成边长为x+5的正方形,整个大正方形面积,等于边长为x的正方形面积与边为的四个正方形面积及边长各为x、的四个矩形2面积之和。所以大正方形面积是,即x+10x+25。因为2x+10x=39,所以大正方形面积等于39+25即是64。因此,大正方形边长等于8,而x就是。阿拉伯人还用圆锥曲线相交来解三次方程,这是一大进步。

阿拉伯人还获得了较精确的圆周率,得到了2π=6.283185307195865,π已计算到17位。此外,他们在三角形上引进了正切和余切,给出了平面三角形的正弦定律的证明。平面三角和球面三角的比较完整的理论也是他们提出的。

阿拉伯数学作为“数字之桥”,还在于翻译并著述了大量数字文献,这些著作传到欧洲后,数字从此进入了新的发展时期。

数学的摇篮

巴比伦人和古埃及人积累了许多数学知识,但他们只能回答“怎么做”,却无法回答“为什么”要这么做的道理。古希腊人从阿拉伯人那里学到了这些经验,进行了精细的思考和严密的推理,才逐渐产生了现代意义上的数学科学。

第一个对数学诞生作出巨大贡献的是泰勒斯。他曾利用太阳影子计算了金字塔的高度,实际上就是利用了相似三角形的性质。他弄清了:直角彼此相等;等腰三角形的底角相等;圆被任一直径平分;如果两个三角形有一边及这边上的两个角对应相等,那么这两个三角形全等;而且证明了这些知识。这些知识现在看起来很简单,但在当时是非常了不起的。

在仄勒斯之后,以毕达哥拉斯为首的后批学者对数学作出了贡献。他们最出色的成就之一是发现了“勾股定理”,在西方被称为“华达哥拉斯定理”。正是用了这一定理,后来导致了无理数的发现,引起了第一次数学危机。

稍晚于毕达哥拉斯的芝诺,提出了四条著名的悖论,对以后数学概念的发展产生了重要的影响。

经过泰勒斯到芝诺等人的努力,古希腊的数学有了全新的发展。欧几里德吸取其中的精华,写成了《几何原本》这本在数学史上最有名的著作。今天人们所学的平面几何学知识,都来源于这本书。

继欧几里德之后,阿基米德开创了希腊数学发展的新时期,人们称之为亚历山大时期,阿基米德在数学方面的工作,远远超越了他那个时代,被后人称为“数学之神”。他设计过一种大数体系,即使整个宇宙都填满了细小的砂粒,也可以毫不费力地把砂子的粒数数出来。他通过作边数越来越多的内接正多边形、外切正多边形,算得了圆周率的值在之间。他得到了求面积和求体积的公式,还发明了以他名字命名的螺钱。

在阿基米德之后,古希腊的数学更加侧重于应用。在天文学发展的促进下,希帕恰斯、梅尼劳斯、托勒密创立了三角学。尼可马修斯写出了第一本专门的数论曲籍——《算术入门》,丢番图则系统地研究了各种方程,特别是各种不定方程。这们,初等数学的各个分支——算术、数论、代数、几何、三角全部建立了起来,这意味着,由巴比伦人、古埃及人孕育的数学“婴儿”,终于在古希腊的摇篮中诞生了。

十进制和二进制的故乡

中国是世界文明古国之一,中国数学在人类文化发展的初期,远远领先于巴比伦和埃及。

中国早在五六千年前,就有了数学符号,到三千多年前的商朝,刻在甲骨或陶器上数字,已十分常见。这时,自然数计数都采用了十进位制。甲骨文中就有从一到十到百、千、万的十三个记数单位。

在运算过程中用的是算筹。算筹就是一些用木、竹制作的匀称的小棍,算筹纵横布置,就可以表示任何一个自然数。据考证,至少在公元前8世纪到前5世纪的春秋时代,我国算筹记法已经完备,而印度正式使用0这一符号是在公元876年以后。只有表示0的方法使用后,十进制才算完备。因此,中国是名副其实的十进制故乡。

中国还是现代电子计算机二进位制的发源地。二进位制中,只有0和1两个符号,0仍表示零,1仍代表“一”。但“二”就没有单独数码代表,因此得“逢二进一”,这样便可以表示一切自然数。例如:

计算机创始人莱布尼兹从中国的《易经》发现六十四卦,是从0至63的二进制写法。所谓太极生两仪是初分阴阳,两仪生四象,是将阴阳两仪再各分为阴阳两部,得阴中阴、阴中阳 阳中阴、阳中阳。3四象生八卦,是再将四象各分为阴阳两部。分三次,共得2=8段,称为八卦,卦名在第⑤行。--叫做阴爻,——叫做最爻。每卦有三爻,如果把阴爻看做0阳爻看做1,最下爻是个位,那么这八卦就可翻译成:000、001、010、011、100、101、110、111。这正好是按二进制写成的十进制数

0、1、2、3、4、5、6、7.

从八卦中任取两个,叠成有六爻的重卦,也就是按以上的二分法,继续再分三次,得六十四卦,每卦是一个6位数的二进位制数,按自然顺序是

000000、000001、000010、000011、……111111.这恰是十进位制下的

0、1、2、3、……63.

著名数学家的故事

几何学的奠基人

两三千年前,古埃及人生活在尼罗河两岸,生产力很发达,大片大片的土地被开发。但是,人类无法与大自然抗争,当时的人们对洪水束手无策。每年,当夏秋季节尼罗河泛滥时期,河两岸的田地就有不少被洪水淹没或因河床改道,好端端的一块农田就会被吞没一块。每到这时,就会有几个聪明的埃及人拿着木棍绳子又比又量,准确地计算法老租给人们土地面积的变化。渐渐地,埃及人积累了不少计算面积的公式。如:

矩形:A=ab(其中A是面积,a是长,b是宽。)

三角形:A=ah/2(其中a是边长,h是高。)

另外,还能计算出梯形面积。而当时计算圆形面积的公式(8d/9)2,和如今的计算公式极为相近。

但是,当时的人们还没有把这些公式命名为几何学。

到了公元前320年,有一位叫作欧德谟的学者,根据埃及人的经验,写了一本《几何学的发展史》。这部书只有残篇传到了现在。又过了大约20年,古希腊出了一位叫欧几里得的人,他根据前人的经验,经过自己的计算推理,写出了一本共13篇的《原本》(又称《几何原本》)。这是人类第一次出现的“几何”概念。

欧几里得在《原本》这本书里,首先给出的是定义和公理。比如,他的点、线、面的概念:

点是只有位置没有大小的;

线是只有长度没有宽度的;

面是只有长度和宽度的;

平行线是同一平面内无限延长后永不相交的两条直线;

……

这些定义和现今的几何定义极为相似。

欧几里得还按照逻辑原理,推论出十分严谨美妙的五条公理(又称“公设”)。其中有:

从一点到另一任意点作直线是可能的;

所有的直角都相等;

a=b,b=c,则a=c;

若a=b,则a+c=b+c;《原本》中还有关于圆的性质的讨论。如弦、切线、割线、圆心角等等。讨论了圆的内接和外接图形。其中,有一个命题是在一个圆内作正15边形。

据说,当时的天文学一直认为地球赤道面与地球绕日公转面的交角是24°,即是圆周的1/15。于是,欧几里得运用自己的智慧,作出了正15边形,这在当时是一个难度十分大的命题。《原本》13篇中共有467个命题。这些命题和推理所建立起来的几何学体系是相当严谨和完整的,以至于连20世纪最伟大的科学家爱因斯坦都这样说:一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为科学家的。

从《原本》的出现到现在,这部书出版过一千次以上,几乎世界上所有的杰出数学家,都是读着《原本》成长起来的。两千多年来,《原本》就像一尊坚固的宝塔,其坚固程度没有人能撼动它。因此,后人,尤其是科学界都把《原本》看作是一部经典奇书,而欧几里得的名字,也同《原本》一道流传千古。

欧几里得大约生于公元前330年,死于公元前275年。可惜的是,他一生的经历久已失传。

数学竞赛判真伪

1500年的某天,意大利北部的布里西亚,一户人家生了一个男孩,取名叫丰坦那。不久,意大利与法国发生战争,法军攻陷了布里西亚地区,大肆屠杀意大利人。丰坦那的父亲死于战祸,小丰坦那的头部和下颚也受了重伤。好在他的母亲是一位聪明而勇敢的妇女,她见儿子受伤,又没有医生看病治疗,她就想到了狗用舌头舔愈伤口的情景。于是,她也学着这个方法,用自己的舌头治好了儿子的伤口。谁知痊愈后的小丰坦那却得了一个口吃的毛病,说话不连贯,人们就给他取个外号叫塔尔塔利亚(意译为口吃者)。久而久之,塔尔塔利亚就成了他的名字,丰坦那的名字也被人忘记了。

因为父亲死于战乱,塔尔塔利亚的家境十分贫寒,母亲无力送他上学读书。但是,塔尔塔利亚从小求知欲极强,母亲就在他父亲坟墓的石板上教他认字、算题。由于他天资聪明,意志坚强,竟独自学会了拉丁文和希腊文,对数学的钻研成绩更为突出。经过长期自学,成人后,他终于取得了成功,先后在他的家乡布里西亚和威尼斯等地从事教学工作。塔尔塔利亚专门喜欢解各种数学难题,在这方面不少数学爱好者败在他的手下。

1530年的一天,有一位叫科拉的数学教师向塔尔塔利亚提出两道数学难题进行挑战:

1.一个数的立方加上它的平方的3倍等于5,求这个数。实际上是32一个一元三次方程,即:x+3x=5

2.三个数,第二个数比第一个数多2,第三个数比第二个数多2,三个数的乘积是1000,求这三个数各是多少。实际上这也是一个一元三次方程,即:x(x+2)(x+2+2)=1000,展开后是32x+6x+8x=1000

当时,人类还没有找到三次方程的解法。塔尔塔利亚于是全身心地投入进去,废寝忘食地解这两道题。不久,居然让他解开了,并因此找到了解开一元三次方程的办法。于是,塔尔塔利亚向外公开宣称,他已经知道了一元三次方程的解法,但不能公开自己的步骤,他要保密。此时,有一位叫菲俄的人也宣称,他也找到了解开一元三次方程的办法,并宣称,他的方法是得到了当时著名数学家波伦那大学教授费罗的真传。

他们二人谁真谁假?谁优谁劣?于是,1535年2月22日,在意大利有名的米兰大教堂里,举行了一次仅有塔尔塔利亚和菲俄参加的数学竞赛。竞赛内容专门限于一元三次方程。他们各自给对方出30道题,谁解得对解得快谁就得胜。两个小时之后,塔尔塔利亚解完了全部30道题,而菲俄却一道题也解不出来。竞赛结果,塔尔塔利亚大获全胜。

原来,一元三次方程的问题是1404年被人引起来的。当时意大33利著名数学家巴巧利说:“x+mx=n,x+n=mx之不可解,正像化圆为方问题一样。”谁知此问题提出不久,就被费罗解出了。1510年,他将方法透露给了他的学生菲俄。于是,当塔尔塔利亚宣称他找到一元三次方程解法时,便出现了要举行竞赛的事情。

初时,塔尔塔利亚面对出名的学者未免心虚,因为他的方法还不完善。据说在竞赛之前的10天,即2月12日深夜,塔尔塔利亚一夜未睡,直至黎明。他头脑昏昏,走出室外,伸伸懒腰,吸吸新鲜空气。顿时,他的思路豁然开朗,多日的深思熟虑,终于取得了结果。因此,才在竞赛中大获全胜。

为了使自己的成果更完善,塔尔塔利亚又艰苦努力了6年,才在1541年真正找到一元三次方程的解法。很多人请求他把这种方法公布出来,但却遭到他的拒绝。原来,塔尔塔利亚准备在译完欧几里得和阿基米德的著作之后,再把自己的发明发现写成一本专著,以便流传后世。

在这之前60几年,米兰有一位学者卡当,对一元三次方程的问题十分感兴趣,苦苦央求塔尔塔利亚把解法告诉他,并起誓发愿,决不泄密。1539年,塔尔塔利亚被卡当的至诚之心所动,就把此法传授给他。

卡当是意大利的数学家,后来又开业行医,也常常为人占卜,曾受雇于教皇当过占星术士。没过多久,卡当背信弃义,写成了一部叫《大术》的书。此书1545年在纽伦堡出版发行。在书中,卡当公布了一元三次方程的解法,声称这是他的发明。当时人们信以为真,便把三次方程的求根公式称为“卡当公式”。

在《大术》一书中,卡当说:“大约在30年前,波伦那的费罗教授发现了这一法则,并传授给了威尼斯的菲俄,菲俄曾与塔尔塔利亚进行过公开竞赛。塔尔塔利亚也发现了这一方法,他在我的恳求下,把三次方程的解法告诉了我,但是没有给出证明。借助塔尔塔利亚的帮助,我找到了几种证明方法,它是非常困难的。”

卡当的背信弃义激怒了塔尔塔利亚,他向卡当宣战,要求进行公开竞赛。双方各拟31道试题,限期15天完成。卡当临阵怯场,只派了他的一个高徒应战。结果,塔尔塔利亚在7天之内就解出了大部分试题,而卡当的高徒仅做对一题,其余全是错的。接着,二人又进行了一场激烈的争鸣和辩论。就这样,人们才明白事情的真相,塔尔塔利亚才被人们知道,他才是一元三次方程求根公式的真正发明人。

塔尔塔利亚经过这场风波之后,准备心平气和地把自己的成果写成一部数学专著,可是他已经心力憔悴,1557年,他没有实现自己的愿望就与世长辞了。

代数之父

16世纪末,法国在同西班牙的战争中,西班牙依仗着密码,在法国境内秘密地自由通讯,交通情报,结果使法军连连败退。法国国王请来当时很有名望的数学大师韦达进行帮助,韦达借助数学知识,成功地破译了一份西班牙的数百字的密码,从而使法国只用两年时间就打败了西班牙,韦达在这次战争中立了大功。但是,西班国王菲力普二世向教皇控告说,法国人在对付西班牙时采用了魔术。于是,西班牙宗教裁判所,以韦达背叛上帝的罪名进行缺席判决,要将韦达处以焚烧的极刑。当然,宗教的野蛮刑法未能实现,韦达于1603年12月13日在巴黎逝世,终年63岁。韦达死后,人们誉他为“代数之父”。

韦达于1540年生在法国的丰特内,本名叫佛兰西斯·韦埃特。韦达是他的拉丁名字。他的专业是学律师的,曾任过布列塔尼议会议员、那瓦尔的亨利亲王的枢密顾问官。他对天文学、数学有着浓厚的兴趣,经常利用业余时间研究数学。1584年到1589年,由于他在政治上处于反对派地位,被免去了官职。从此,他便专心致力于数学的研究。

在从政期间,韦达研究丢番图、塔尔塔利亚、卡尔丹诺、邦别利、斯提文等人的著作。他从这些名家,特别是从丢番图那里,获得了使用字母的想法。

在韦达之前的一些大学者,包括欧几里得、亚里斯多德在内,虽曾用字母代替过特定的数,但他们的用法不是经常的、系统的。韦达是第一个有意识地、系统地使用字母代替数进行数学运算的人。他不仅用字母表示未知量和未知量的乘幂,而且还用来表示一般系数。通常,他用辅音字母表示已知量,用元音字母表示未知量。他的做法是划时代的,从而奠定了代数学的基础,对代数的国际通用语言的形成起到了极为重要的作用。

1591年,韦达出版了他的代数学专著《分析方法入门》,这是历史上第一部符号代数学。它明确了“类的算术”和“数的算术”的区别,即代数与算术的分界线。

据载,韦达还以他精湛的数学知识,为国家赢得了荣誉。

当时,比利时有一位数学家,名叫罗梅纽斯,深受国王推崇,国民也深感自豪和骄傲。一次,比利时的大使向法国国王亨利四世夸口道:“你们法国还没有一个数学家能解开我国数学家罗梅纽斯的一个关于45次方程的求根问题。”原来,这道45次方程是罗梅纽斯于1573年在他的《数学思想》一书提出来的。

面对比利时的挑战,亨利四世决定在国内挑选数学家来解开此题,以长国威。谁知找了不少数学教授都找不到答案,国王心里十分烦闷,如同丧权辱国一般。

一天,国王将此题给韦达看,韦达说:“一个相当简单的问题,我马上就能给出正确答案。”因为韦达看出,这个方程是依赖于sin45θ与sinθ之间的关系,所以几分钟内就求出了两个根。国王见了答案,高兴地说道:“韦达是我国乃至全世界最伟大的数学家。”接着便赏给韦达500法郎。

韦达生前写出不少著作,但多数没有出版发行。有一部《论方程的整理与修改》,是在他去世12年后才出版的。在书中,韦达把5次以内的多项式系数表示成其根的对称函数。他还提出了4个定理,清楚地说明了方程的根与其各项系数之间的关系——即韦达定理。此定理至今仍在使用。他还为一元三次方程、四次方提供了可靠的解法,为后来利用高等函数求解高次代数方程开辟了新的道路。

另外,韦达利用欧几里得的《几何原本》第一个提出了无穷等比级数的求和公式,发现了正切定律、正弦差公式、纯角球面三角形的余弦定理等。韦达利用代数法分析几何问题的思想,正是后来的数学家笛卡尔解析几何思想的出发点。笛卡尔说他是继承韦达的事业。

直到1646年,韦达死后的40多年之后,他的全部著作才由荷兰数学家范·施库腾等人整理成书,名为《韦达全集》。

解析几何的问世

1617年,荷兰奥伦治公爵的军队里来了一名22岁的博士生,他就是伟大的数学家笛卡尔。

一天,部队开到布雷达城,无所事事的笛卡尔漫步在大街上,忽然看见一群人围在一起议论纷纷,原来在一堵墙上贴着一张几何难题的悬赏启事。启事上说,谁能够解开此题谁就能获得本城最优秀的数学家称号。笛卡尔出于好奇心抄下题目,回到军营,专心致志地研究这道几何难题。经过潜心钻研,两天后,他终于求得了答案,由此使他数学天才初露锋芒。

荷兰多特学院院长毕克曼十分赏识笛卡尔的才华,劝他说:“你有深厚的数学基础,才思敏捷,很适合数学研究。离开军队吧,我相信你将来会成功的。”

笛卡尔没有离开军队,但仍然迷恋数学,尤其想碰一碰古希腊几何三大问题。说起这三大问题,还有一个很古老的传说:

大约是2300多年前,古希腊的第罗斯岛上,一场可怕的瘟疫正在蔓延,人们生活在死亡的恐怖之中。他们来到神庙前祈求:“万能的神啊,请赐予我们平安吧!”谁知神庙里的主人欺骗这些可怜的人们说:“我忠实的信徒们,神在保佑着你们,只要你们把上供的正方体祭坛,在不改变原来形状的情况下,把它的体积增大到原来的两倍,神就会高兴,就能免除你们的灾难。”

濒于死亡的人们听后立即去改造神的祭坛,他们把祭坛的每边棱长扩充到原来的两倍。但神庙的主人看后说:“这哪里是原来的两倍,这是原来的八倍了。神不高兴啊!”

人们听后赶忙拆了重建,他们把体积改成了原来的两倍,可形状却是一个长方体。神庙的主人训斥道:“该死的信徒们,你们怎么把祭坛的形状改变了呢,这不是戏弄神吗?当心还有更大的瘟疫!”

惊慌失措的人们急忙去找著名的学者柏拉图,把希望寄托在这位大智者的身上。谁知柏拉图和他的学生们无论怎么用直尺和圆规去画,也同样找不到正确的办法,于是,立方倍积问题便成了一道几何难题。

后来,希腊人又碰到了把一个已知角分成三等分和化圆为方问题(即求一个正方形,使它的面积等于一个已知圆的面积)。

从此,立方倍积、三等分角、化圆为方这三个问题一直困扰着世世代代的数学家,不少人为此呕心沥血,穷毕生精力也找不到答案。这样一直延续了2000年。

笛卡尔认真总结前人的大量经验教训后猜想,古希腊三大几何难题,采用尺和规作图的办法。是不是本来就作不出呢?应该另找一条道路才是。

1621年,笛卡尔退出军界,与数学家迈多治等朋友来到巴黎,潜心研究数学问题。1628年,他又移居资产阶级革命已经成功的荷兰,进行长达20年的研究。这是他一生最辉煌的时期。

一天,疲惫不堪的笛卡尔躺在床上,望着天花板思考着数学问题。突然,他眼前一亮,原来,天花板上有一只蜘蛛正忙碌地编织着蛛网。那纵横交错的直线和四周的圆线相交叉一下子启发了他。困扰他多年的“形”和“数”问题,终于找到了答案。他兴奋地爬了起来,迫不及待地把灵感描绘出来。他发现了这样的规律,如果在平面上画出两条交叉的直线,假定这两条直线互成直角,那么就出现四个90度的直角。在这四个角的任一个点上设个位置,就可以建立起点的坐标系。

这个发现的基本概念简单到近乎一目了然,但却是数学上的伟大发现。它就是建立了平面上点的作为坐标的数(x、y)之间一对应关系。进一步构成了平面上点与平面上曲线之间的一对应关系。从而把数学的两大形态——形与数结合了起来。不仅如此,笛卡尔还用代数方程描述几何图形,用几何图形表示代数方程的计算结果。于是,创造出了用代数方法解几何问题的一门崭新学科——解析几何。

解析几何的诞生,改变了从古希腊以来,延续两千年的代数与几何分离的趋向,从而推动了数学的巨大发展。虽然,笛卡尔在有生之年没有解开古希腊三大几何问题,但他开创的解析几何却给后人提供了一把钥匙。

解析几何的重大贡献,还在于它提供了当时科学发展迫切需要的数学工具。17世纪资本主义迅速发展,天文和航海等科学技术对数学提出了新的要求。例如,要确定船只在海上的位置,就要确定经纬度;要改善枪炮的性能,就要精确地掌握抛射体的运行规律。所有这些,涉及到的已不是常量而是变量。

和牛顿比肩的数学家

1684年,《学术学报》上发表了德国数学家莱布尼茨的一篇文章,宣布他发现一种微分法,即“一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算”,1686年,他又发表了类似的文章,讨论“潜在的几何与分析不可分和无限”等。一年以后,物理学家牛顿出版了他的巨著《自然哲学之数学原理》,也谈到了他研究的求极大与极小的问题。实际上,他们俩人都发现了微积分的数学原理。于是,就有关创立微积分的优先权问题,发生了一场激烈的争论。遗憾的是,由于人们不明真相,使30多岁的莱布尼茨长期蒙受冤屈。1699年,瑞士数学家法蒂奥德迪利给皇家学会写文章,说莱布尼茨的思想获自牛顿。接着,不少科学家接踵而至,都说莱布尼茨不是发明者。萨维尔天文学教授凯尔,则指控莱布尼茨是剽切者。为此,莱布尼茨参与了争论,辩白自己的冤枉。但没有人相信他。1716年11月14日,莱布尼茨含冤逝世,朝廷竟不闻不问,教士们也借口说莱布尼茨是“无信仰者”而不予理睬。

直到莱布尼茨死后,英国皇家学会为牛顿和莱布尼茨发现微积分的优先权问题,专门成立了调查评判委员会。经过长期调查,终于弄清事实,委员会在《通讯》上宣布,牛顿的“流数术”和莱布尼茨的“无穷小算法”只是名词不同,实质上是一回事,他俩都是微积分的发明人。

原来事情是这样的,1676年,牛顿在写给莱布尼茨的信中,宣布了他的二项式定理,提出了根据流的方程求流数的问题。但在他们交换的信件中,牛顿却隐瞒了确定极大值和极小值的方法,以及作切线的方法等。而莱布尼茨在给牛顿的回信中写道,他也发现了一种同样的方法,并诉说了他的方法。这个方法与牛顿的方法几乎没有什么两样。二者的区别是:牛顿主要是在力学研究的基础上,运用几何方法研究微积分;而莱布尼茨主要是在研究曲线和切线的面积问题上,运用分析学方法引进微积分概念,得出运算法则。牛顿是在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高出一筹。但莱布尼茨的表达式采用的数学符号,既简洁又准确地揭示出微分、积分的实质,远远优于牛顿。因此,他们二人发明微积分各有千秋。

莱布尼茨1646年6月21日出生于德国东部的莱比锡城。他的父亲是哲学教授,但在他6岁时父亲就过早去世了。然而,父亲留下的大量藏书却为莱布尼茨提供了丰富的知识源泉。

莱布尼茨8岁入学,少年时就可以用多种语言表达思想。15岁时考入有名的莱比锡大学,开始对数学发生兴趣。1666年,莱布尼茨转入纽伦堡的何尔道夫大学。这一年他发表了第一篇数学论文《论组合的艺术》,显示了他的数学才华。这篇论文,正是近代数学的一个分支“数理逻辑”的先声,他也因此成为数理逻辑的创始人。

大学毕业后,莱布尼茨获得法学博士学位,投身外交界。1672年3月他作为大使出访法国巴黎,为期4年。在巴黎工作之余钻研数学,结识了荷兰数学家惠更斯。并利用业余时间攻读笛卡尔、费尔马、帕斯卡等人的原著。为他步入数学王国的殿堂打下了坚实的基础。

1676年,莱布尼茨到汉诺威,在那里他博览群书,创立了微积分的基本概念和运算方法,成就了他一生最伟大的发明。

莱布尼茨陆续创立了一些表示微积分的符号:dx表示微分,即拉丁文“differentia”的第一个字母,意为“分细”。∫表示积分,即拉丁文“summa”的第一个字母“s”拉长,意为“求和”。他创立的这些符号,为数学语言的规范化和独立化起到了极为重要的推动作用。这些符号一直用到今天。

此外,莱布尼茨还提出了使用“函数”一词,首次引进了“常量”,“变量”和“参变量”,确立了“坐标”、“纵坐标”的名称。他对变分法的建立及在微分方程、微分几何、某些特殊曲线(如悬链曲线)的研究上都做出了重大贡献。

双目失明者创造的“欧拉时代”

1707年4月15日,瑞士巴塞尔城附近的里恩村,有一位叫保尔·欧拉的牧师家里诞生了一个男孩,这就是后世称其为“百科全书式的数学家”欧拉。

小欧拉自幼聪颖,7岁那年,父亲把他送到巴塞尔神学校去学习神学。起初,他对上帝创世深信不疑。一次,他问老师:“天上有多少颗星?”老师答不出来,只是说:“天上的星星都是上帝亲手嵌上去的。”于是,小欧拉问:“既然上帝亲手制作了星星,为什么记不住它们的数目呢?”他对上帝的信仰开始动摇,也不专心听课了。不久,学校开除了他。

父亲保尔通数学,见儿子不愿学神学,就开始向他传授数学知识。小欧拉如鱼得水,立刻入了迷。

1719年,欧拉12岁。父亲为了考一考儿子的能力,正赶上家里要修羊圈。于是,他给出了一个固定长度,让欧拉围成一个面积最大的方形羊圈。欧拉想来想去,把它围成了一个正方形。于是,小欧拉“巧围羊圈”的故事不胫而走,被巴塞尔大学的著名数学教授伯努利约翰知道了。这位教授竟亲自出城,找到欧拉的父亲,说要保举小欧拉去大学学数学。老欧拉却说:“教授,我希望他将来是一位神学家,而不是数学家。”约翰说:“可你知道吗,这孩子是个数学天才。如果你固执己见,会葬送这孩子的前程。”

在约翰教授的劝说下,老欧拉终于点头了,13岁的小欧拉被巴塞尔大学破格收录了。欧拉不负老师厚望,入学后勤奋好学,广闻博览,又善于独立思考,不久就可以与那些年龄大的同学比肩。他的老师约翰则根据他的特点因材施教,循循善诱,每周六的下午都挤出时间为他个别辅导,使他的学业突飞猛进。17岁时,欧拉便成为巴塞尔大学第一位最年轻的硕士。1726年,欧拉发表了讨论船桅最佳位置选择的论文,荣获巴黎科学院的奖金。

1727年,欧拉由丹尼尔推荐,受俄罗斯女王叶卡特琳娜的聘请,来到彼得堡科学院任院长,做丹尼尔的助手。1733年,丹尼尔回国,欧拉接替丹尼尔的工作,成为数学教授及彼得堡科学院的学部领导人。由于当时俄国统治集团长期陷入权力之争,无心科学事业,科学院的生存岌岌可危。1733年至1741年,欧拉的工作条件相当艰苦。他的许多不朽著作,都是在“膝上坐着孩子,肩上趴着猫”的情况下写出来的。欧拉还担负着许多社会责任,如承担菲诺运河的改造方案,宫廷排水设施的设计审定,为俄国学校编写教材,帮助政府绘制地图,制定度量衡标准,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析……由于他长期疲劳工作,又长期观测太阳,使他的视力迅速衰退。1735年,年仅28岁的欧拉右眼失明了。就在这时,有关“七桥问题”传入彼得堡科学院,欧拉出于对数学的热爱,又潜心研究起“七桥问题”。“七桥问题”是古希腊人留下的一道难题。18世纪初,波罗的海沿岸的古城哥尼斯堡(今加里宁格勒),普雷格尔河横贯市区。这条河在市区内分成两个支流,把奈发夫岛截成两段并把两岛环抱起来,形成了一个美妙的“8”字。有好事者根据古人的“七桥问题”,就在这里建起了七座桥,把两个小岛和两岸连接起来。(见图一)

于是,这个问题直观地摆在游人面前:一个人怎样才能一次走过七座桥,而且每座桥只经过一次,最后又回到出发点。

从此,无论是稚气未退的少年还是白发苍苍的老者,都想试一试自己的智力。他们在这七座桥上穿来走去,但都没有一个人能成功过。因此,这七座桥便很快地名扬欧洲,又把来一批批游客。但是,又有多少年过去了,还是没人成功。

这时,29岁的独眼青年欧拉也来到了哥尼斯堡,他在桥上走了几次之后,想道:“千百万人的无数次失败,是不是说明这样的走法根本就不存在呢?”

猜想是需要证明的。于是,欧拉埋头对这个猜想进行证明。他先用“穷举法”,即把所有可能的走法列成表格,逐一检查哪种走法能行得通。结果他发现这是一件相当繁琐的事情,要列出7×6×5×4×3×2=5040条路线来!这太困难。另外,他又想到,如果存在更多的桥,或一个城市有更多的街道,那可如何列呀?

于是,他换了一种思维方式,想到了莱布尼茨的“位置几何学”。经过细心推想,他把两个小岛和两岸陆地看成A、B、C、D四个点,而把7座桥看成是7条线,就画成了一幅图:

由于此图有点像蝉,所以后人称之为“欧拉金蝉”。通过这个图形,欧拉严谨地证明:不可能不重复地一次走遍这7座桥。

很明显,“七桥问题”是一个几何图形问题。但是,在此之前的传统几何学却把它排除在外,因为人们所熟知的几何理论,都是与“量”(长短、大小等)有关,而这个问题居然与“量”无关。“七桥问题”提出了一个新的几何学的分支——“拓扑学”。欧拉一举证明了“七桥问题”一时引起人们的敬慕和惊叹,求教的人络绎不绝。后人称他为“拓扑学的鼻祖”。接着,欧拉又继续研究,他的几何学超出了欧几里得的范围,从而奠定了“网络论”几何学科的基石。

1741年,欧拉不能忍受俄国统治者的昏庸腐败,离开了生活14年的彼得堡,踏上了普鲁士国土。1759年,他成为柏林科学院的领导人,为普鲁士王国解决了大量的社会实际问题。如社会保险、运河水力、造币规划等。他成功地将数学应用到各种实际的科学和技术领域。

1762年,俄国的叶卡特琳娜二世继位。在这位有为的女王敦请下,欧拉重返彼得堡,继续他的研究和工作。1766年,欧拉的左眼又失明了,使他完全成了一个盲人。但他仍以顽强的毅力,采用口述,由别人记录的方法,坚持他的研究。

1777年,更大的不幸降临,欧拉的家里不慎失火,他的著述几乎全都变为灰烬。这对于70岁高龄的欧拉来说,是一个致命的打击。然而,欧拉却以惊人的毅力,重新开始他的著述。他的头脑里如一卷百科全书,他不停地口述,助手为其记录,居然把他葬身火海的著作全都重新写了出来,而且还进行了一次订正!

1783年9月18日,欧拉走过了76年的历程与世长辞。他死后,数学家们把他的著作编成全集出版,竟达72卷之多。

在欧拉的著作中,“无限小分析”方法是从欧拉开始的;变分学基础是欧拉方程;拓扑学中有欧拉数;刚体力学有欧拉角;复变函数中有欧拉函数;数论中有欧拉定理……后人称欧拉为“数学分析的化身”。在世界数学发展史上,人们把18世纪称为“欧拉时代”。

命运多舛的数学之星

1832年5月30清晨,在法国同提勒的一个湖边,有位农民发现一个受了枪伤的青年躺在地上。这位好心的农民立刻找来村民,把这个青年抬进了医院。可惜,由于他伤势过重,流血过多,第二天就死去了。过后,人们才知道,这位青年不满20岁,是因为与人决斗而死的。不久,人们又知道,这位青年精通数学,留下了虽然是薄薄60页的书稿,但却有着十分重要的科学价值。又过了数年,数学界、物理学界和化学界的学者们猛然发现,这位早亡的不满20岁的青年创立了一个数学上的新分支——群论。这一理论可以使人们深入地探讨各种不同的学科,诸如算术、结晶学、粒子物理以及鲁比克魔方的翻法……能应用于数、理、化各个领域,因此,法国人把他誉为“法兰西科学之光”。这位19岁的青年就是埃瓦里特·伽罗华。

伽罗华1811年10月26日出生于巴黎近郊的布拉伦镇。父亲是一位热衷民主共和的政治家,母亲是一位受过良好教育的法官的女儿。12岁时,他考入一所著名的皇家中学。在中学里,迷上了令同学们生厌的数学,之后便一发不可收,课内课外阅读了大量数学书籍。其中,他居然用了一周时间,一口气读完了勒让德的经典著作《几何原理》。

有一天,主持课外数学讲座的理查老师,为了刹一刹课外活动小组个别学生的傲气,故意给学生们留了一道数学难题让他们课后去做。伽罗华整整做了一个通宵,终于在第二天凌晨把这道题做完了。他敲开理查老师的家门,理查披着睡衣走出房间,听说伽罗华来交作业,就冷谈地说:“留下来我看看吧,恐怕你们这些人还没有谁能完成这个题目!”

伽罗华走了后,理查又忙别的事情去了。直到这天晚上,他才无意中拿起了伽罗华的作业随便看上一眼。谁知不看则已,一看便不能释手,最后竟大呼起来:“奇才,奇才!”

原来,理查是从数学大师高斯的著作思考题中找出了一道怪题,此类题就是造诣很高的成年数学专门人才,也得费很大劲才能做出来。谁知伽罗华居然做出了几个不同解法。他被这少年的超人智慧折服了,他暗下决心,一定要下大力气培养他。

当理查问伽罗华做此题的感受时,伽罗华平静地说:“高斯提出的问题我已经考虑好久了。其中的习题有的我已经做了好几遍了。”当伽罗华讲述他理解此题的经过和思路时,讲到精采处,理查情不自禁地鼓起掌来。他对其他教师说:“伽罗华最适宜在数学的尖端领域中做研究工作。”之后,他帮助伽罗华撰写了第一篇数学论文《循环连分数定理》,并推荐在《纯粹与应用数学年鉴》上发表。

16岁时,伽罗华考入巴黎师范大学。入学半年,他向法国科学院提交了有关群论的第一篇论文。不久,他又以超人的才气完成了几篇数学研究文章,以应征巴黎科学院的数学特别奖。谁知命运对他极不公正,使他连遭厄运。

当科学院第一次审查会开始时,法国数学家柯西是一位心胸狭隘的人。当他打开公文包时,耸耸肩,却说:“非常遗憾,伽罗华的论文不知怎么丢失了。”于是审查会不得不草草收场。伽逻华还曾向法国科学院寄过几篇数学论文,经手的人是常务秘书傅立叶。傅立叶也是一位大数学家。岂知事不凑巧,傅立叶接到手稿后不久去世了,人们在他的遗物中也没有找到伽罗华的手稿。

1831年1月17日,科学院第三次审查伽罗华的论文。主持人是大数学家泊松。泊松出于傲慢与偏见,认为伽罗华只是一个普通高校的普通大学生,难有什么创见,因此没有认真听伽罗华的论文宣读,便草率地下了一个结论:“完全不能理喻。”

尽管命运如此不公,但伽罗华仍继续他的数学研究。他涉足了方程论、群论、可积函数等众多领域,创立了“伽罗华理论”,为群论打下了坚实的基础。除此之外,他还在数学中建立了许多概念,他的研究成果在大量的、各种各样的数学研究中得到广泛应用。在他的著作基础上,产生了许多全新的数学分支……

伽罗华还是一个倾向民主共和的积极分子。为了纪念法国人民攻占巴士底狱,他参加了反对复辟王朝的群众游行示威,并因此被逮捕,在狱中被关押8个月。

就在他出狱不久,为了一桩至今仍是谜团的恋爱纠纷,被迫接受决斗,因而惨死枪下。

也许他知道此次决斗凶多吉少,于是他留下了遗言给他的同伴。信中写道:“我请求大家不要责备我不是为自己的祖国而献出生命……苍天作证,我曾经用尽办法试图拒绝决斗,只是出于迫不得已才接受了挑战。”

他还在自己留下的60页数学手稿中留下了字条:“这个论据需要补充,现在没有时间。”

伽罗华英年早逝,无疑是数学界的一大损失。一些大学者们认为,他的死,“至少使数学发展推迟了几十年。”

玻洛汉姆桥上的数学发现

爱尔兰的都柏林市有一座名叫玻洛汉姆的桥。至今,桥头仍立着一块石碑,碑文刻的是:“1843年10月16日,当威廉·哈密顿经过此桥时,他天才地发现了四元数的乘法基本公式。”人们经过这里,都要驻足观看碑文,缅怀哈密顿对科学的伟大贡献。

哈密顿,1805年生于爱尔兰首府都柏林。他的父亲是一位律师兼商人,母亲是名门小姐,父母都很有才华。但是,到他14岁时,双亲都不幸相继去世。从此,他的叔叔詹姆士·哈密顿成了他的监护人。詹姆士是一位精通多种语言的专家,哈密顿从小就受其影响,在语言上得到了早期发展。正是早期的语言发展,提高了他的逻辑思维能力,为他在数学的成就奠定了基础。

12岁时,哈密顿读完了《几何原本》,接着,又读完了法国数学家克莱罗的《代数基础》。13岁时,从美国来了一位数学神童。于是,两位神童互相切磋,取长补短,使他在数学上的兴趣大增。17岁时,哈密顿就掌握了微积分,并学会了计算日食和月食的数理天文学。18岁时,他参加了都柏林三一学院的入学考试,在100多名考生中,他以第一名的成绩被录取。

1827年,22岁的哈密顿大学还没有毕业,就写成了《光线系统理论》的论文。这篇论文为几何光学的建立奠定了素材基础,并且引入了所谓光学的物征函数。后来,哈密顿又对该论文作了三个补充,从数学理论推演出,在双轴晶体中按某一特殊方向传播的光线,将产生折射光线的一个圆锥。这个论点后来被光学实验证实了。

当时学院里有一位很有影响的天文学教授叫布瑞克莱,他十分欣赏哈密顿的才华。1827年,布瑞克莱宣布辞去都柏林三一学院天文学教授的职位。他极力推荐,并说服校方,年仅22岁的哈密顿大学还没毕业,就成了布瑞克莱的继承人,成为天文学教授。与此同时,哈密顿又荣获了爱尔兰皇家天文学家的称号。

但是,哈密顿的志向不在天文学上,他全力以赴地钻研数学。1828年开始,他就着手研究四元数。四元数是实数、复数这个数系的发展,是超复数的一种,即属于四维矢量。用现代术语来说,它是一个线性代数的组成部分。

然而,经过十几年的苦心钻研,哈密顿仍然没有成功。1843年,已经是他研究四元数的15个年头了。这年的10月16日黄昏,哈密顿的妻子见丈夫整日埋头书堆,劳累不堪,于是费了好大劲才把他劝动,拉他外出散步。

当时秋高气爽,景色宜人。哈密顿在妻子的陪同下,漫步在皇家护城河畔的林荫道上。一阵阵秋风吹来,带着成熟的果香。哈密顿贪婪地呼吸着河畔清新的空气,不禁心旷神怡。他暂时忘了他醉心的数学题目,陶醉在大自然之中。

他们夫妻俩走上了玻洛汉姆桥,驻足桥上,望着暮色中的街景桥影,哈密顿的大脑思维突然再度活跃起来,闪光、跳荡、寻觅、联想……突然,他的思维大门一下子打开了,智慧的冲击波冲破了以往的障碍束缚,他一下子悟出了四元数运算的奥秘。他立刻掏出随身携带的笔记本,把他头脑中闪光的要点迅速记录下来。追求15年之久的四元数研究目标,终于在玻洛汉姆桥上找到了它的解法。哈密顿唯恐思路中断,急忙拉起他的夫人往家里跑去,这时,其他散步的男女老少都用奇异的目光看着这一对怪人。

回到家里,哈密顿把自己关进书房,一连几天不肯出来,甚至连饭都得让人送进去。最后,他终于从数百页演算纸里,抄清出了一篇极有价值的论文。

1843年11月,哈密顿在爱尔兰科学院宣布发现“四元数”,从而轰动了当时的数学界。四元数的发现,有力地推动了向量代数的发展。过去,复数理论只可用于平面向量,而空间向量问题则要用四元数向量部分来解决。哈密顿还把四元数引入微积分,定义了描述函数的数量或方向两个方面的变化的一系列概念。例如“梯度”、“旋量”等,成为研究物理学、工程学的重要计算工具。

10年之后,哈密顿写成了《四元数讲义》,并于1857年发表。当时著名的物理学家麦克斯韦正在研究电和磁,他苦于无法描述电磁运动及其变化规律。电和磁都是带有方向性的量。要弄清电磁运动的规律,必须首先从数学方法上找到解决的途径。麦克斯韦曾长期用复数向量处理,却一直得不到正确结果。当哈密顿四元数问世后,终于使麦克斯韦走出困境,使他的电磁研究获得了成功,并得出了“麦克斯韦方程组”,预言了电磁波的存在。

哈密顿深知四元数在科学上的重大意义。于是,在他生命的最后20多年中,一直倾注全力进行研究。他预感到,四元数的应用将在物理界引起巨大的变革。可惜的是,在这种变革没有到来之际的1865年9月2日,他因为慢性酒精中毒而离开了人间,终年60岁。

领一代风骚的“数学王子”

1777年4月30日,德国的布伦瑞克城一个引水站站长家里新生了一个男孩,他就是卡尔·弗里德里希·高斯,一位天才的数学家。

高斯从小聪明好学,对数学有着得天独厚的天赋。3岁时,每当父亲和其他大人们计算水的帐目时,他都在一旁聚精会神地听着看着,对枯燥的数字有无限的兴趣。有一次,当他的父亲哥布哈德刚刚算完一笔支出帐,就听小高斯说:“爸爸,这笔帐您算的不对!”

爸爸吃惊地看着3岁的小儿子,似信不信地把帐重算一遍。令他吃惊的是,自己算的帐真的错了!但他心里想:“这也许是一次巧合吧。”

后来,这种“巧合”越来越多,哥布哈德才知道他的儿子是个天才。由于生意场上的失意,老高斯渐渐地颓废下去,时常用酒打发时光,他就把算帐的工作全部推给了不足10岁的小高斯。而小高斯不管帐目多么繁琐复杂,都能运算自如,表现出超常的计算能力。

读小学时,小高斯特别迷恋算术课。一天,数学老师伯特纳夹着手杖来上算术课,他对同学们说道:“现在给你们出一道题,请计算出从1到40所有数字的总和。谁做好了,就把答案送到我的讲桌上来。”

于是,孩子们都埋头书桌,教室里鸦雀无声。伯特纳老师悠然自得地放下手杖,坐在讲桌前看着这些孩子们。

谁知他刚刚坐稳,就见小高斯拿着练习本向他走来,轻松愉快地说:“老师,我做好了。”

伯特纳心想,他做得这么快,错误一定不少。便说:“放下吧!”心里在想,等都交全了,我再教训这个毛草而神气十足的孩子。

过了许久,孩子们才把练习本全交上来,伯特纳特意拿起最先交的高斯的练习本。他看了一会儿便惊呆了!只见小高斯的练习本上整齐地排着20组加法:1+40,2+39,3+38,4+37,……,然后用一组乘法:41×20。得出了正确答案:820。无疑,这答案是正确的。老师望了一眼他想批评又批评不了的高斯,内心却受了很大震动。事实上,小高斯是在没有一点儿概念的情况下,发现了等差数列的规律及计算方法。

从此,伯特纳老师对小高斯刮目相看,并尽力地培养他。每当去汉堡时,都要买回各种数学课本给高斯看。这一切,使小高斯的数学才能大增。不久,小学还没毕业的高斯,其计算才能就引起了当地各界人士的注意。14岁时,高斯被引荐给当地最有名望的人物,布伦瑞克城的大公卡尔·费尔南多,费尔南多成了高斯的长期保护人。

在费尔南多大公在世的那些年里,高斯每年都可以领到薪俸。由于有了这笔钱,生活有了保障,高斯就全身心地投入到研究工作中去。

1801年,24岁的高斯出版了《算术研究》这一科学巨著,开创了近代数论,得到数学界的一致好评,奠定了他作为18世纪最伟大数学家的地位。

在这之前,高斯成果累累。11岁时,他发现二项式定理;17岁时提出最小二乘法;22岁时证明了代数方程根定理……人们一致赞誉他是当之无愧的“数学王子”。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载