科学名家讲座:世界航天科技知识百科·太空科技与未来太空卷(txt+pdf+epub+mobi电子书下载)


发布时间:2020-05-16 10:34:46

点击下载

作者:金诚致

出版社:哈尔滨出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

科学名家讲座:世界航天科技知识百科·太空科技与未来太空卷

科学名家讲座:世界航天科技知识百科·太空科技与未来太空卷试读:

前言

航天是进入、探索、开发和利用太空以及地球以外天体各种活动的总称,其目的是积极为人类生存活动服务。航天技术则是为航天活动提供技术手段和保障条件的综合性工程技术。

把人类活动领域从陆地、海洋、空中扩展到太空一直是我们梦寐以求的目标。1957年10月4日,前苏联成功地发射了世界上第一颗人造地球卫星,标志着人类进入了航天时代。

1961年4月12日,前苏联航天员加加林乘“东方”号飞船实现了人类首次太空飞行。在20世纪60年代,前苏联和美国掌握了人在太空中生活、工作,并完成各种科学实验以及航天器的交会对接和航天员出舱活动等载人航天的基本技术。

在此期间,美国还实施了举世闻名的“阿波罗”飞船的载人登月计划。1969年7月16日,美国航天员乘“阿波罗”飞船,实现了人类第一次在月面上着陆。

在掌握了载人航天的基本技术之后,前苏联和美国都决定在近地轨道建立载人航天活动的基地,即载人空间站。在空间站上,可利用空间的微重力,高真空等特殊环境进行各种科学、技术和应用试验,并探索载人航天的商业应用的广阔前景。

进入20世纪90年代,一些国家对建立月球基地产生了浓厚的兴趣。建立月球基地具有重大的经济和科学价值。月球上具有丰富的自然资源,可建立天文观测台和多学科实验室,还可利用月球资源建立月球工厂,和向火星等其它星球发射载人飞行器或探测器等。可以说,开发月球将成为空间站计划之后的伟大发展目标。

我国自1970年4月24日第一颗人造地球卫星发射成功后,航天科技也取得了长足进展,先后发射了“神舟”号试验飞船,这是我国航天史上的又一个里程碑,它标志着我国载人航天技术有了重大突破,使我国成为世界上掌握这一高技术的第三个国家。

2003年10月15日,我国自行研制的“神舟”五号载人飞船,在酒泉卫星发射中心由“长征—2F”型运载火箭成功发射升空。我国第一个探索太空的宇航员杨利伟实现了中华民族的千年梦想。2008年9月25日,我国自行研制的“神舟”七号载人飞船又成功实现了中国历史上宇航员第一次的太空漫步,使中国成为第三个有能力把航天员送上太空并进行太空行走的国家。

从神舟七号开始,中国开始进入载人航天的二期工程。在这一阶段里,将陆续实现航天员出舱行走、空间交会对接等科学目标。这些航天事业的成就标志着我国在卫星回收、卫星测控、一箭多星、高能低温燃料火箭以及在飞船技术等方面已跃居世界先进水平,我国的卫星发射和航天事业的发展令世界各国人民所瞩目。

发展载人航天是当今各国综合国力的直接体现,对我国人民具有非常长远的利益。各发达国家在发展战略上都将增强综合国力作为首要目标,其核心就是航天高科技的发展。

毫无疑问,在地球资源日渐枯竭的未来,对太空资源的开发和利用就日渐重要了。而载人航天技术显然在其中占有重要地位。现在已知浩瀚的太空是拥有丰富资源的巨大宝库,可以想象如果说前三次工业革命给人类带来了巨大的财富,那么这次由太空技术引发的“新工业革命”最终将改变整个人类社会的现有模式。那么,中国要想在未来世界中占据一席之地,就离不开航天科技技术。因此,了解和学习航天知识,是科学普及的重要内容。

为此,我们综合了国内外的最新研究成果,特地编辑了《航天科技知识百科》图书,主要包括火箭卫星、航天飞行、外星探测、太空生存、航天员、太空科技与未来太空等内容,具有很强的系统性、知识性和现代性,是我们广大读者学习航天科技知识的最佳读本,也是各级图书馆收藏陈列的最佳版本。

太空科技篇

航天系统

航天系统又称航天工程系统。由航天器、航天运输系统、航天器发射场、航天测控网、应用系统组成、完成特定航天任务的工程系统,是现代典型的复杂大系统。

航天系统执行的特定任务和获取信息的方式,决定它的工作原理、组成和结构。获取来自太空信息的方式有两种,一是通过无线电信道传输到地面接收站点,二是通过专用的返回舱采集信息。

航天器载人的航天系统,称为载人航天系统;航天器不载人的航天系统,称为无人航天系统。执行军用航天任务的航天系统,称为军用航天系统;执行民用航天任务的航天系统,称为民用航天系统。民用航天系统包括用于科学研究的航天系统和直接为国民经济服务的航天系统。军用航天系统和直接为国民经济服务的航天系统属于应用航天系统。应用航天系统种类繁多,如:卫星通信系统、卫星导航定位系统、卫星气象观测系统、卫星侦察系统等。

空间技术

空间技术是探索、开发和利用宇宙空间的技术,又称为太空技术和航天技术。目的是利用空间飞行器作为手段来研究发生在空间的物理、化学和生物等自然现象。

但对“天”目前专家们有两种理解:一是把地球大气层以外的无限遥远空间称之为“天”;另一是把地球大气层外、太阳系以内的有限空间叫做“天”。若按前一种理解,空间技术和航天技术完全是一回事;若按后一种理解,人们把地球大气层以外、太阳系以内的空间活动称之为航天,超出太阳系以外的空间活动称之为航宇。这样,空间技术则应涵盖航天技术和航宇技术。但由于在相当长的时间内,人类主要还是在太阳系内从事活动,因此,当今把航天技术和空间技术视为同义词已得到公认。

我国的航天专家将空间技术的主要特点概括为两个方面:

首先空间技术是一门高度综合性的科学技术,是很多现代科学和技术成就的综合集成。它主要依赖于电子技术、自动化技术、遥感技术和计算机技术等众多先进技术的发展。因此,一个国家空间技术的成就,最能体现其科学技术的水平,是衡量其科技实力的重要标志。

其次,空间技术是一门快速的、大范围的、在宏观尺度上最能发挥作用的科学技术。比如,通信卫星可以大面积覆盖地面以至全球;气象卫星可以进行全球天气预报;侦察卫星可以及时监视广大地区的军事活动等。

空间技术区别于一般常规技术的这两大特点,使其对一个国爱的实力和进步起到意想不到的战略性作用:在经济上能产生很高的经济和社会效益,普遍认为,开发利用外层空间资源,其投资效益能达到1:10以上;在军事上最能显示一个国家的军事实力,一个国家只要占有空间优势,就掌握了军事战略上的主动权;在政治上对提高一个国家在国际活动中的地位影响深远。一项重大空间成就,往往成为国际谈判的重大筹码;在科学技术上还能带动电子、自动化、遥感、生物等学科的发展,并形成包括卫星气象学、卫星海洋学、空间生物学和空间材料工艺学等一群新的边缘科学。

空间技术的开创和发展是人类开拓宇宙空间的壮丽事业。空间技术自20世纪50年代崛起以来,以其辉煌的成就对国际政治、军事产生的影响和对人类经济、文明作出的贡献举世瞩目。几十年来,空间技术取得了重大的成就,其中各类卫星大显神通。

航天测控网

航天测控网是对运载火箭和航天器进行跟踪、测量和控制的专用网络系统。一般由航天指挥控制中心和若干测控站(含测量船、测量飞机、跟踪与数据中继卫星)及测控通信系统组成。

航天测控网具有对运载火箭和航天器进行跟踪测量、遥测、遥控、数传等功能。工作内容主要包括:跟踪测量航天器,确定其运行轨道;接收、处理航天器的遥测数据(含平台和有效载荷遥测、图象信息等),监视其工作状况;依据航天器的工作状态和任务,控制航天器的姿态、运行轨道;接收和分发有效载荷数据;实时提供航天器的遥测信息、运行轨道和姿态等数据,接收故障仿真数据,并形成故障处理对策;与载人航天器上的航天员进行通信联络。航天测控网的主要技术指标包括测量精度、测控覆盖率、天地数据传输速率、多任务支持能力等。

系统特点

规模适当,布局合理,以较少的投入获得了较大的效益。这是航天测控网的鲜明特色。

为满足载人航天的基本要求,航天测控网建立了网络管理中心,对测控网进行集中监控,并负责测控资源的动态优化配置,实现了对陆上、海上所有13个测控站的联网和统一管理调度。

航天测控网可对火箭、各种轨道卫星和载人飞船等航天器提供高精度测控支持服务,实现了“飞向太空、返回地面、同步定点、一网多星、国际兼容、飞船回收”六大历史性跨越。

航天测控网不仅轨道测算精度高,而且具备天地话音、电视图像和高速数据传输等能力。测控中心的专家组可根据各测控站传来的信息,研究决策并直接向航天器发送指令,实现了对航天器的“透明”控制,大大强化了监控能力,特别是提高了在应急情况下的测控能力。能充分利用有限的国土跨度和其他资源,通过优化测控站、船布局,确保航天器在上升段、变轨段、返回制动段、分离段等关键飞行段落的测控支持。

工作原理

统一S波段(USB)航天测控网是指使用S波段的微波统一测控系统。这里的微波统一测控系统是指利用公共射频信道,将航天器的跟踪测轨、遥测、遥控和天地通信等功能合成一体的无线电测控系统。

微波统一系统的基本工作原理是:将各种信息先分别调制在不同频率的副载波上,然后相加共同调制到一个载波上发出;在接收端先对载波解调,然后用不同频率的滤波器将各副载波分开:解调各副载信号使得到发送时的原始信息。微波统一测控系统一般由天线跟踪/角测量系统、发射系统、接收系统、遥测终端、遥控终端、测距/测速终端、时/频终端、监控系统、远程监控或数据传输设备以及其它附属设备组成。

统一S波段(USB)航天测控网最早是在20世纪60年代美国在执行阿波罗登月计划时首先使用的。60年代初,美国在执行水星号和双子星号载人航天任务时,由于使用了多种频段的设备分别进行不同的工作,结果飞船上天线多、重量大、可靠性差,而且地球上也相应设置了十分复杂的设备。为了改变这种情况,美国国家航空航天局提出采用统一S波段(2000~4000兆赫)系统作为阿波罗登月计划的地面保障系统,并在60年代中期建成了以统一S波段为主体的跟踪测控网,从而使航天测控从单一功能分散体制改进为综合多功能体制。

主要内容

进行陆地测控。航天测控的基本组成是遍布全球的陆地测控站。为确保对航天器轨道的有效覆盖并获得足够的测量精度,通常利用在地理上合理分布的若干航天测控站组成航天测控网。因此根据测控区域的要求,陆地测控站分布范围很广,航天测控网可以建在本国境内,也可以建在全球任何适于测控的地方。

地面测控是一件非常重要、非常精细和非常复杂的工作。卫星的地面测控由测控中心和分布在各地的测控台、站(测量船和飞机)进行。在卫星与运载火箭分离的一刹那,测控中心要根据各台站实时测得的数据,算出卫星的位置、速度和姿态参数,判断卫星是否入轨。入轨后,测控中心要立即算出其初轨根(参)数,并根据各测控台站发来的遥测数据,判断卫星上各种仪器工作是否正常,以便采取对策。这些工作必须在几分钟内完成。

卫星在整个工作过程中,测控中心和各测控台站还有许多繁重的工作要做。其一是不断地对其速度姿态参数进行跟踪测量,不断地精化其轨道根数;其二是对星上仪器的工作状态进行测量、分析和处理;其三是接收卫星发回的科学探测数据;其四是由于受大气阻力、地球形状和日月等天体的影响,卫星轨道会发生振动而离开设计的轨道,因此要不断地对卫星实施轨道修正和管理。

对于返回式卫星,在返回的前一圈,测控中心必须计算出是否符合返回条件。如果符合,还必须精确地计算出落地的时间及落点的经纬度。这些计算难度很大,精度要求很高,因为失之毫厘,将差之千里。返回决定作出后,测控中心应立即作出返回控制方案,包括向卫星发送各种控制指令的时间、条件等。

卫星进入返回圈后,测控中心命令有关测控台站发送调整姿态、反推火箭点火、抛掉仪器舱等一系列遥控指令。在返回的过程中,各测控台站仍需对其进行跟踪测量,并将数据送至测控中心。由此可见,为使卫星正常地工作,必须有一个庞大的地面测控系统日以继夜地紧张工作。

卫星测控中心是这个系统的核心。计算大厅是测控中心的主要建筑之一,那里聚集着众多的大型计算机。除了看得见的硬件外,还有许多看不见的软件——对卫星进行管理的程序系统,包括管理程序、信息收发程序、数据处理程序、轨道计算程序、遥测遥控程序和模拟程序等。这些硬件和软件,既有计算功能,又有控制功能,它们是测控系统的大脑。测控中心还有它的神经网络,即通信系统,它通过大量的载波电路、专向无线电线路、各向都开通的高速率数据传输设备,把卫星发射场、回收场以及各测控台站等四面八方联系起来。

航天测控站的任务是直接对航天器进行跟踪测量、遥测、遥控和通信等,它将接收到的测量、遥测信息传送给

航天控制中心

,根据航天控制中心的指示与航天器通信,并配合控制中心完成对航天器的控制。

陆地测控站通常由跟踪测量设备、遥测设备、遥控设备、计算机、通信设备、监控显示设备和时间统一设备组成。随着无线电技术的发展,测控设备也在不断发展,独立的跟踪测量设备、遥测设备和遥控设备已逐步被共用一路载波信道的统一测控系统所代替。

由于数据处理和控制指令生成主要由航天控制中心完成,故航天测控站的计算机以小型或微型计算机为主,履行数据录取、信息交换和测控设备的自动化监控等任务。选择陆地测控站站址的要求是:遮蔽角小,电磁环境良好,通信和交通方便。美国在全球各地有数十个固定和机动的测控站。俄罗斯的测控站也非常多,主要分布在原苏联境内,其中拜科努尔发射场就有4个测控站,其它地方的太空跟踪系统和测控站也不下20个。

目前,陆地测控站正在向高功能、国际联网测控和综合利用方向发展。但由于受到地理、经济、政治等条件的限制,一个国家不可能通过在全球各地建立测控站的方式来满足所有的航天测控需求,即使目前最大的陆地测控网,也只能覆盖大约15%的测控范围。为此,各国发展了其它的测控方式,以弥补陆地测控站无力触及的测控盲区。

进行海洋测控。世界上第一艘航天远洋测量船是美国的“阿诺德将军号”,1962年下水。第二年,不甘落后的前苏联也造出了“德斯纳号”。海上测量船是对航天器及运载火箭进行跟踪测量和控制的专用船。它是航天测控网的海上机动测量站,可以根据航天器及运载火箭的飞行轨道和测控要求配置在适当海域位置。其任务是在航天控制中心的指挥下跟踪测量航天器的运行轨迹,接收遥测信息,发送遥控指令,与航天员通信以及营救返回溅落在海上的航天员;还可用来跟踪测量试验弹道导弹的飞行轨迹,接收弹头遥测信息,测量弹头海上落点坐标,打捞数据舱等。

航天测量船可按需要建成设备完善、功能较全的综合测量船和设备较少、功能单一的遥测船。它们除具有船舶结构,控制、导航、动力等系统外,还装有相应的测控系统。综合测量船测控系统一般由无线电跟踪测量系统、光学跟踪测量系统、遥测系统、遥控系统、再入物理现象观测系统、声呐系统、数据处理系统、指挥控制中心、船位船姿测量系统、通信系统、时间统一系统、电磁辐射报警系统和辅助设备等组成。

目前,美国现役的测量船有“红石”号、“靶场哨兵”号和“观察岛”号3艘;俄罗斯现役的测量船有“加加林”号、“柯玛洛夫”号、“克雷洛夫”号等21艘,其中,“加加林”号满载排水量5.35万吨,是世界上吨位最大的测量船。为适应航天技术发展的需要,美、俄等国正不断为测量船增添性能更可靠、精度和自动化程度更高的测控设备。中国是继美、俄、法之后第四个拥有航天远洋测量船的国家,远望一号和远望二号都是在1977年下水的。虽然时间上比其它3个国家晚了十几年,但在测量和控制的技术水平上却毫不逊色。

1990年,中国首次为国外公司发射了“亚洲一号”卫星,当时,休斯公司要求中方必须在卫星发射后半小时内向美方专家提供卫星的初轨根数。结果,远望号只用了8分钟就完成了发现、锁定目标并发出初轨根数的一系列工作,而且,测出的初轨精度比休斯公司所要求的准确了好几倍。海上测控有许多困难,其中之一就是在船动、测控仪器动、目标也动的状况下,如何保证测量精度?

中国的测控人员在这方面摸索出了一整套的解决方案。比如选择测量海况较为平静的海域;在天线上安装陀螺稳定装置,在船体上配装减摇鳍以有效地消除和减少船摇;在数学方法上,他们则考虑了各种动态因素,能够精确地计算出测量时的雷达中心位置。在测量精度上,远望号航天远洋测量船完全可以和国外的陆上航天测量站相媲美。

进行飞机测控。测量飞机是航天测控网中的空中机动测控站,可部署在适宜的空域,配合和补充陆上测控站和海上测量船的工作,加强测控能力。测量机上装载天线,遥测接收、记录、时统、通信、数据处理等设备及控制台;有的在靠近机头的外侧有专用舱,以安装光学跟踪系统。测量飞机的作用灵活而多样,具体来说在弹道式导弹和运载火箭的主动段,可接收、记录和转发遥测数据,弥补地面遥测站因火焰衰减收不到某些关键数据的缺陷;装备光学跟踪和摄影系统的飞机可对多级火箭进行跟踪和拍摄各级间分离的照片;在航天器再入段,可有效地接收遥测数据并经通信卫星转发;装备紫外光、可见光和红外光谱测量仪的飞机可测量导弹再入体的光辐射特性;在载人航天器的入轨段和再入段,可保障天地间的双向话音通信,接收和记录遥测数据,并实时转发给地面接收站,必要时给航天器发送遥控指令。测量飞机的发展趋势是选用更高性能的运输飞机,并用相控阵天线取代抛物面天线,对多目标进行跟踪和数据采集,提高其测控能力。

进行卫星测控。天基测控卫星主要是利用通信卫星和跟踪与数据中继卫星系统,跟踪与数据中继卫星系统是一种可跟踪地球轨道飞行器并将数据传回地面站的空间中继站,该系统主要用于实时中继传输各类低轨航天器用户的信息。

卫星在太空中“站的高、看的远”,具有其它测控方式无可比拟的优势,天基测控卫星的使用大大拓展了航天测控网的覆盖范围。工作在地球静止轨道上的通信卫星和跟踪与数据中继卫星组成星座,便可覆盖地球上除南、北极点附近盲区以外的全球所有区域;如果与极地轨道的卫星相配合,即可实现全球覆盖。

美国的第一代天基测控网由7颗跟踪与数据中继卫星组成,可同时覆盖25颗中、低轨道卫星,数据传输速率可达300Mb/s,可为12种航天器提供服务。目前正在部署的第二代天基测控网功能更加先进,一颗跟踪与数据中继卫星可同时接收5个航天器传来的信号,并同时向一个对象发送信号,可以实时传输各类航天器的数据信息,传输速率将增至1.2Gb/s~2Gb/s,实现对中、低轨道的全部覆盖。

目前,美国、欧盟和日本都在发展新一代跟踪与数据中继卫星系统,数据传输码速率越来越高,通信频段正向着Ka频段和光学频段发展。随着新一代测控卫星陆续投入使用和性能的提高,天基测控将成为未来航天测控的重要发展方向。

相关类别

航天测控网依照测控对象,大体上可以分为三类。

卫星测控网:为各种应用卫星和科学试验卫星服务;

载人航天测控网:为载人航天器服务。配有与航天员通话和传递电视图像的设备。

深空网:为探测月球和其他天体的探测器服务。要对深空目标进行跟踪测量,要在全球按经度均匀分布3个测控站。

统一测控系统:利用公共射频信道,将航天器的跟踪测轨、遥测、遥控和天地通信等功能合成一体的无线电测控系统。

甚长基线干涉天文测量网:由多个相距遥远的射电望远镜组成的一个观测网,每两个射电望远镜之间距离长达几千千米,乃至上万千米。

中国甚长基线干涉天文测量网:由位于上海天文台佘山站的25米口径射电望远镜,国家天文台乌鲁木齐天文站的25米口径射电望远镜,国家天文台密云站的50米口径射电望远镜,国家天文台云南天文台的40米口径射电望远镜和位于上海天文台相关处理中心组成。

重要作用

2005年7月4日,美国宇航局的“深度撞击”号彗星探测器,与“坦普尔1号”彗星进行了一次史无前例的碰撞,在距地球1.3亿公里、相对飞行速度达到每小时36000公里的条件下,“深度撞击”号准确地命中了“坦普尔1号”彗星。

在成功实施这次撞击前,科研人员已经精确计算出探测器和“坦普尔1号”彗星的运行轨道,控制探测器按既定轨道飞行;及时检测飞行参数以确定是否需要修正其轨道;发出指令修正并改变探测器轨道;准确地在预定轨道位置释放撞击器。这一切说明,对彗星探测器的精确测控是完成这次撞击实验的重头戏。

至今,人类已先后将5000多颗卫星、飞船、航天飞机和空间站等航天器送入太空。然而,太空并未因此变得杂乱无序,一个神奇的力量引导着这些航天器始终按照自己的轨道飞行,偶尔偏离轨道,也能很快“迷途知返”;一旦发生了故障,就能得到及时抢救和精心照料;即使意外失控陨落,人们也能及早预知,防患于未然。这个神奇的力量,来自于庞大的航天测控网。航天控制中心

航天控制中心是航天器飞行的指挥控制机构,又称航天测控中心。它是航天测控和数据采集网的信息收集、交换、处理和控制中枢。

航天控制中心的任务是:实时指挥和控制航天测控站;收集、处理和发送各种测量数据;监视航天器的轨道和姿态及其设备的工作状态、航天员的生理状态,实时发送控制指令;确定轨道要素,发布轨道预报。

航天控制中心包含有:

数据处理系统

由多台大型高速计算机和软件系统组成,实时处理和事后处理各台站汇集来的数据。软件系统包括管理程序、信息和数据处理程序等。计算机通过软件控制和管理整个测控系统和航天器;

通信系统

由载波和无线电通信设备、数据传输设备组成,具有可靠性和高速性,保证控制中心与各测控站、发射场、回收区之间的通信联系和数据传输;

指挥监控系统

由各种监控台、屏幕显示器、绘图仪和电视等设备组成。通过文字、指示器、曲线和图像直观显示各测控站的设备工作状态、航天器运行情况、航天器上设备工作状态、执行指令情况和航天员生理状况,使指挥控制人员能实时下达指挥命令和发出控制指令;

时间统一系统

由高精密时钟、标准时频信号源和相应接口设备组成,为航天控制中心的各设备提供标准时间和频率。通过与短波和长波标准时频信号的比对,使整个航天测控和数据采集网用统一的标准时间工作。

跨出地球的摇篮

经过80多年的发展,目前的飞机已达到了很高的水平。在很多国家,乘飞机去旅游已是家常便饭。目前飞得最快的飞机(美国3R-71A)时速可达3529.56千米,这是声速的3.3倍。最大的飞行高度达37650米(前苏联米格25机1977年8月31日纪录);一次直线飞行的最大距离为20168.78千米,相当于地球半圈多。在空中逗留的最长时间达64天22小时19分5秒……然而不管什么飞机,都离不开空气,它们无法在真空中飞行,也摆脱不了地球重力的桎梏。所以,人类是不能指望靠飞机来跨出地球这只“摇篮”的。

那么人类能否跨出摇篮呢?应当怎样才可跨出摇篮呢?首先指出这条道路的是俄国的一位中学教师齐奥尔科夫斯基。他在9岁时因病失聪,所以几乎没有上过什么学校,完全靠自己努力学完了中学及大学的一些数理课程。而后,他在一个偏僻的乡村中学充任数学教师,同时开始研究气球、飞机等原理。他在41岁时写了一篇很长的论文来阐述他的主张——依靠火箭的动力作宇宙航行。经过五年的周折,这篇著名论文(利用喷气工具研究宇宙空间)才得以在1903年(正是莱特飞机上天的那一年)正式发表。后来他连续发表了许多重要的论文,继续论证其可能性。他在极为艰苦的条件下设计过许多火箭,导出了火箭理论中著名的“齐奥年科夫斯基公式”。他一生共写出的论著计730多篇(部),他曾建议,利用火箭来建立太空航行站,在上面设立天文台,并使它成为飞向其他星球的跳板。他还说:“在最初阶段,首先应当建造一个人造的地球卫星。”这些见解是何等正确,并已为实践所证实,他不愧为征服宇宙的先驱理论家。俄国人自豪地把他称作“宇宙航行之父”,为他专门造了纪念碑。在他逝世后,就以他的名言作为他的墓志铭:“地球是人类的摇篮,但是人不能永远生活在摇篮里。开始他将小心翼翼地穿出大气层然后便去征服太阳系。”

但是齐奥尔科夫斯基仅仅停留在理论研究上(他没有经费做试验)。人类要飞出去,更重要的是干!真正的突破应归功于美国的火箭工程师戈达德。

戈达德从小就迷上了科学幻想小说。1899年17岁时,他被英国作家威尔斯的《宇宙战争》深深地吸引住了,立志要飞出地球到宇宙太空去邀游。他并没有停留在幻想上,在成为工程师后,就开始设计实际的火箭发动机1914年他取得了两项专利。后来他到克拉克大学执教,同时准备把火箭试验付诸实施。

1926年初春,他偕同妻子来到马萨诸塞州的姑妈家,姑妈有个很大的农场,正好供他发射火箭用。3月16日,春寒料峭,在一片雪地中,他架起了世界上第一枚液体燃料火箭,它长约1.2米,直径约15厘米。他的妻子不愧为有心人,在他点火之前,为他留下了这有历史意义的珍贵镜头。

戈达德点燃了火箭,它顺利腾空而起,飞上了12.3米的高度,在2.5秒钟后落在56米远的雪地中。虽然距离还没有足球场长,但毕竟是航天史上的第一页!可惜观众仅有他妻子一人。

后来的发展很有喜剧性。戈达德一次接一次地试验,火箭越做越大。消息传得很快,引起了人们的关注和议论,可是戈达德得到的却是嘲笑和攻讦。纽约时报甚至专门发表社论,说他妄想飞到月球上去,是个十足的白痴,还说他的研究一开始就彻底错了。更令人恼火的是,有人甚至叫来了消防队和警察,以安全为由命令他不准再搞试验。美国政府也不支持他,颇有讽刺意义的是,后来为了使用他的200多项专利,美国政府不得不付上100多万美元巨款。

然而戈达德排除了万难,继续他的试验。到20世纪30年代初,他的火箭已能升到2.4千米的高空,飞行的速度已超过了声速——当时还没有任何飞行器可以达到声速的一半。

在欧洲大陆上,德国科学家奥伯特虽然理论上不及齐奥尔科夫斯基,制作上落后于戈达德,但他既能完善火箭理论,又参加了V—2火箭的研制,因而后人公认他与前两人一样,是现代航天学的三个奠基人之一。

上天的“梯子”

《圣经》中有个故事,说人类为了上天,正在努力地建造一座高耸人云的“通天塔”。上帝为了阻止人类上天,以保住天庭的纯洁,就设法让人类各国都用自己独特的语言。这样,建塔人因语言不通而无法合作,在不断的误会和争吵中,通天塔的工程从此成为画饼……

但是进入20世纪后,在科学家不断努力下,这座“通天塔”终于逐步建立起来了。1936年,为了侵略和扩张,希特勒德国建立了一个秘密的火箭实验室。两年后,他们就制造出了可以准确命中18千米外目标的“A4”火箭。1944年,纳粹把它改名为“V一2”,意思是“复仇武器”。这是现代大型火箭的雏型。它全长14米,直径1.65米,要三个人才可合抱。底部尾翼展开1.95米。重13吨,其中弹头内炸药约1吨。射程可达320千米,命中精度±5千米,飞行速度接近每秒1610米。德国人一共生产了6000枚。从1944年9月6日开始,他们向英国及荷兰等地先后发射了4700枚,其中1230枚击中伦敦,导致2511人死亡,5869人重伤,更造成了严重的心理影响。当然,此时大局已定,V—2未能挽回法西斯覆灭的命运。

然而对于科学而言,V—2工程为研制大型火箭培养和造就了一批专家,制造了许多设备,积累了研究和管理的宝贵经验,这些都成了美、苏的最大战利品——前苏联着重搜集设备、图纸和原材料,美国则把大批专家和技术工人运回美国。

火箭飞行不需依赖空气,它是靠尾部喷出气体所产生的反作用力前进的。空气反而成了它的大敌:会增加阻力,降低速度,并使它表面产生高温,甚至燃毁。所以要飞向宇宙,首先要解决火箭的耐高温问题,同时也应尽量缩短在大气中飞行的时间,因此大凡发射都是取垂直向上的姿势。

从牛顿时代,人们已经知道了“宇宙速度”。要叫火箭发射后不再落地,永远绕地球转动,V—2火箭的速度还远远不够,它至少要达到第一宇宙速度要求的7.9千米/秒。这个速度是声速的23倍。以这个速度,从南京到上海只需要39秒钟。科学家算出,要达到如此的速度,燃料的重量至少是空火箭的39倍。换句话说,如果一支火箭总重量为1吨,那么其中必须装975千克燃料,占97.5%,而火箭壳、燃料箱及其它一切装备一共只能有25千克。谁也没有本事造出这样的火箭。因为即使是碰不起的鸡蛋,1000千克中的蛋壳重量也重达110千克。何况为了飞得更远,最好能制成比例更小(如不是1:39而是1:50或更多)的火箭。

出路在哪儿?齐奥尔科夫斯基为我们找到了解决的办法——利用多级火箭!简单地说来,就是把燃料箱做成好几段,用完一段就丢一段,这可使燃料所占的比例大为减小,从而腾出比例来装载科学研究用的各种仪器设备。例如有一支三级火箭,它的第三级装着一个1吨重的负载物——人造卫星或宇宙飞船,那级火箭本身也重1吨,燃料为它们的3倍——6吨,那么,这第三级总重为8吨。再把这8吨看作第二级火箭的负载,也按1:8的比例,那么二、三两级总重为64吨。以此类推,再加上第一级,整个火箭重为64×8=512吨。这里,燃料总重438吨,占总重的85.5%。这个比例虽仍然很大,但比一级火箭要低得多了。

现在各国大多均采用这种三级火箭的方式:开始第一级点火,把飞船加速到一定速度,等它燃料烧完,这一级就自动脱离,同时第二级自动点火,使较轻的二级继续加速,最后它也完成自己的使命而脱离坠下,最后第三级火箭就可把较轻的人造卫星或宇宙飞船加快到所需的速度,并把它送入轨道。

现代火箭真是一个庞然大物。以美国火箭“土星5号”为例,它可把100多吨重的人造卫星或空间站送入绕地球的轨道,或者把近50吨的飞船送上月球。震惊世界的“阿波罗”登月飞船,“旅行者”行星探测器,均是由它一一送上天的。“土星5号”火箭本体长85.7米,如果连同顶上的“阿波罗”飞船,则高达110.6米,与南京的金陵饭店相当。它的底部最大直径为13米,20个人手挽手也无法合围。它的主要部件不下200万个,整个火箭的总重量为2930吨,可与一列满载的列车相比拟。它的第一级高达42米,尾翼展开有18米,其重量约为2600吨,占总重的3/4。5台强大的发动机可以产生300多万千克的推动力,总功率达17560万马力,相当于50万辆大卡车的总和。其消耗也大得惊人:所装的2200吨燃料,可供12500辆卡车开1小时,可只能供它烧2分半钟。2分半钟后它自动脱下,这时火箭已升到60千米的高空,并达到了2.7千米/秒的速度。火箭第二级长25米,装有34万加仑(154万升)液态燃料,燃烧8分钟后,将末级火箭送到177千米高空,并加速到6.7千米/秒,然后脱下,同时长17米的第三级继续点火,把卫星或飞船送入预定的轨道。

建立月球基地的构思

美国在结束“阿波罗”登月飞行后,想建立第一个月球基地。设想把有降落支架的运货舱和配备雷达的着陆器送上月球。用此着陆器也能作载人飞行,每一次着陆器飞行可载6名宇航员。只要有运货舱和着陆器,就能在月球上建立基地。月球基地居住试验不超过12人,在预制的掩蔽房内住3~6个月。

美国通用动力和康维公司的一个小组认为,目前航天飞机只有24.5吨载重能力,返回飞行载荷限定在14.5吨,因此航天飞机不能使用。倘若能带15吨燃料,就有可能在空间建立一个临时供燃站,从站上给飞往月球的着陆器加燃,不需要运货舱返回地球。遗憾的是,航天飞机运货舱内无燃料储藏空间,特别是低密度燃料的氢。因此,康维司工作组建议,用航天飞机结构的特殊压舱物箱内装上水,运到轨道上的加工厂,把水电解为氢和氧,储存起采,供着陆器飞行加燃用。该公司工作组推测,依此方法,有44%的航天飞机可供利用。轨道加燃费用比在月球上生产燃料便宜。

美宇航局也注意到从月岩中提取氧的方法。研究表明,在运货舱内建起的一个小型化学加工厂,利用月球阳光能源,每天可生产约100千克的液氧。高温下,月岩与甲烷起反应,产生一氧化碳和氢。在另外设想中,用低温反应堆,一氧化碳与氢反应,还原为甲烷和水,然后,使水电解为氢和氧,把氧储存起来,而氢再循环进入系统。

1984年10月30日,美宇航局和国立科学院以“21世纪月球基地和空间活动”为题联合召开了座谈会,与会者有300名科学家、工程师以及宇航员。在会上,就重新进行月球探索和开发月球资源广开言路,各抒己见,漫谈2005年在月球上建立一个美国人居住的月球基地。按1984年货币值计算,该基地的建立约需资金500~900亿美元,要用25年时间才能完成。这比用11年登上月球还多14午。白宫和航宇局支持并重视这次专家座谈会,期望专家们为美国重返月球提供需要的科学技术资料。航宁局局长贝格斯在座谈会上首先发言:“我深信今后25年内美国人将能回到月球上去,建立一个永久基地。它将成为开发含氧月岩工厂,并成为飞向太阳系内其他行星和天体的跳板,如火星及近地球小行星。”他又说:“空间站将是飞向月球的中途站。”总统科学顾问基沃斯讲:“空间站将是建立月球基地的一个中间转运站。月球基地是一个大胆设想,振奋人心的目标之一。”曾乘“阿波罗-17”宇宙飞船在月面逗留三天的宇航员哈里森·施米特参议员提出21世纪空间活动目标,请政府考虑从月球起飞的一次火星载人旅行。

美国科学家和政府官员相信美国会正式拟定重上月球探索计划。戈达德飞行中心地质学家保罗·洛温谈到,在对月球尚未掌握第一手科学资料时可进行国际合作。他设想由4~6名宇航员乘装备齐全的月行车,横渡月面上的英布伍姆盆地,用3~6个月时间行程4000千米。宇航员踏上月球后,可一路上勘查地质,设立营地,采集岩石,加以分析;他们将带有高分辨照相机及高灵敏度遥感器;用能钻几百米深的钻探机取样。这就可以获得广泛月面地质结构。另外,还有3名宇航员乘波音公司造的“月球漫游车”做短期月球观光旅游。为实现建立月球基地的设想,首先耗资520亿美元做月球基地侦探,寻找建月球基地点。

座谈会上,科学家们为月球基地建设和利用提出了一些构思,如建立月球天文台。因为地球受其大气和人为无线电波干扰,严重影响光学、远紫外、伽马射线、射电和微波的观测。他们认为月面是几个天文学领域最理想的地方,诸如射电天文学、微波天文学、红外和亚毫米天文学、光学天文学以及宇宙射线观测等。在近地轨道上运行的天文学卫星,包括1990年4月人轨的空间望远镜,因观测仪器的不稳定性,干扰一些掩星和干涉仪的测量,但月球挡住来自地球的射频放射,不受干扰。此外,月球上可建立大型观测阵,以超高分辨率和高灵敏度探测微弱光源。在月球真空环境里能有效地使用天文观测仪器。假若在月面上安放25米光学望远镜,能提供超过空间望远镜100倍的观测面积,分辨率高10倍。总之,月面天文台比天文学卫星和地球天文台具有不可比拟的优越性。

约翰逊空间中心一位专家提出要建立月球基地,首先应解决封闭生命保障系统,这样才能使人长时间停留在片面上,因为月球是极热和极冷(白天120℃,夜间-120℃)的空间环境。他谈到月球生保系统采用超临界水氧化技术。在氧化时,有机物和氧气能游离混合,可使生保系统在月球站设计上予以简化。还有几位科学家提议在月球开辟农场,利用月球含有许多种矿物质的土壤,在加压圆顶罩内种植作物,但需勤日氮。几位工程师赞成用SP~100空间核反应堆作为月球基地电站;有的工程师还谈及科用月面上钛铁矿热还原生产氧,可提供氧气。至于如何建造月球基地,专家们讨论了用月球土壤和水混合,或与其他液体混合构成基地结构混凝土。加利福尼亚设计院的卡里里提出一种新的“岩浆结构”,用聚焦日光熔化月球土壤,生产一种可雕成装置的柔韧材料。会上,专家们也讨论了用“月球灰质粘土结构成形法”。尽管在座谈会上,科学家们踊跃发表各自对建立月球基地的意见,但若变为现实则需惊人的经费。月球除恶劣的环境外,述有其他不利因素,譬如火箭火焰污染、处处坑洼、易扬起月球尘埃等,这些都会降低天文台观测仪器的灵敏度。月面是由电位能、等离子体以及电场包围的环境。因土壤粒子是带静电的,也可增加月面尘埃积累。为克服这些不利因素,倘需备有控制污染物和监视系统。随着电子人工智能机器人的迅速发展,只要美国肯花这笔巨款,在21世纪初有可能实现在月球上建立基地。但目前,月球基地仍是科学家们脑海里一幅梦幻图画,美国前总统布什在1989年7月20日纪念美国第一个人登上月球加20年大会上提出建立一个永久月球基地,指示国家研究委员会对重返月球和2019年把美国人送上火厘的计划进行研究。美航宇局在布什发出指示后就开始制定力争2001重上月球计划。据初步估计,建立月球基地耗资高达1000亿美元,到2025年利用这个基地费用将达2080亿美元截至1990年8月底,美国外债积累达6000亿美元,到90年代末期可能突破1万亿美元大关。在债台高筑情况下,恐怕布什重返月球计的划可望不可及。

日本建月球基地的设想

日本在21世纪初,想在月球上建立有10位日本人生活的基地,以进行科学研究和资源勘察旷从2013年起,日本可用3年时间建成可供10人居住的月球基地。基地中心部由三个圆柱体形装置组成居住舱。它的总居住面积约为100平方米。如果除去只有地球六分之一的重力外,在基地内可以舒适地生活。需要的能源由功率100瓦的月球原予炉和太阳电池供应。

在进行月球科学研究和资源勘察时,宇航员用推土机型月行车在月面工作。考虑月球上宇航员健康状况,月球绕地球一圈28天,宇航员需要从地球轮换。月球升降飞船在月球轨道上飞行,与来自地球的宇宙飞船对接。月球升降飞船、居住舱以及月球基地设备总重至少为240吨,用运载火箭分19次运到月面上组装。

建立月球基地后,宇航员们不需从地球运去建筑材料,而现场取材。原料棍凝土采用月岩内含有的石灰石,用液氧和液氢造的水与月面沙混合而成。建筑是积木式房屋,由边长3.5米、高5.6米的六角柱混凝土组装成巢式结构基地。用的混凝土要防护来自空间强烈的辐射线。日本川崎重工业公司在真空失重环境下,作了搅拌混凝土实验。在地面真空环境里试验强度不变的组件是成功的。

月球基地不可能很快建造起来。在建基地之前需要用无人探测器先行作深入调查。日本拟90年代末发射一颗绕月极轨道卫星,先用遥感勘察整个月虱、进而发射“钻探机”着陆月面作地质钻探,以了解月面生地质结构,获取详缙资料。到2000年,日本计划发射月球机器人,让机器人在月面上行走,选定月辣基地最适当地点。如果能按计划进行,21世纪用改进型的H-2可能发射第二艘载着日本人的宇宙飞船着陆月球。为此目的,还须专门研制新的宇宙飞行器,往返空间站与月球之间,因此将来把国际自由空间站作为中途转运站。日本建立月球基地需要国际合作,日本在建立未来月球基地时将提供高性能的智能机器人。

月球资源的利用

人们根据月岩样品及大量有关资料的研究与分析,确定了月球优先生产的产品原则,主要是充分利用月球资源,为扩建月球基地而生产必需的原材料,重点是制氧、金属冶炼、建筑材料的制备等。为了实现这一目的,人们已对月球上的加工厂的生产工艺流程及制备方法进行了多方面的详细研究。

科学家很早就开始了月球表面土壤提取氧的方法研究。他们利用“阿波罗”飞船取回的月球沙土进行实验,在1000℃的高温下,将月沙中的钛铁矿和氢接触生成水,再将水通过电解提取氧。研究表明,提取1吨氧,约需70吨的月球表土。考虑到胡球上生产的特殊情况,建议在月球基地建设的同时,应考虑配备一套小型的化学处理设备,利用太阳能作动力,每天大约可制备出100千克的液氧。具体流程是:利用月球岩石在高温下与甲烷发生反应,生成一氧化碳和氢。在温度校诋的第二个反应器中,一氧化碳再与更多的氢发生反应,还原成甲烷和水;然后使水冷凝,再电解成氧和氢,把氧储存起来供使用,而氢则送人系统中再循环使用。据预测,月球制氧设备,最初是为给月面上的航天员提供氧气之用,但他们需要的氧气并不多,一个12人规模的基地,每月也只需要350千克氧气。而一套制氧设备连续工作后,可生产出相当数量的氧气。因此,在月球基地建设时,应同时建造一个永久性的液氧库,以便供给航天器作为低温推进剂燃料使用。

十分有意义的是,在制氧过程中,经过化学处理后得到的“矿渣”,却都成了上等的副产品。这是因为它含有丰富的游离硅和可供冶炼的金属氧化物,只要采用适当的工业方法便可继续冶炼,炼制出工业上极有使用价值的金属钛。科学家们提出的制钛工艺流程是:将“矿渣”通过机械粉碎、磁选,提取出钛氧化物,在1273℃高温下加氢处理,生成氧化钛,再以硫酸置换出其中的铁,接着和碳混合,在700℃的温度下通人氯气,经过化学反应后生成四氯化钛,然后在2000℃高温下加热,投入镁以便脱氯,最终得到熔融态的钛。

铝的制造方法更为新颖,月面上的铝是由称之为斜长石的复杂结构所组成。科学家经过反复试验与研究,提出了一套炼铝的新工艺。具体做法是:将月岩粉碎,在1700℃下加热熔化,然后在水中冷却至100℃,制成多质的球,再经粉碎,在其中加入100℃的硫酸,即可浸出铝。用离心分离法和过滤法除去硅化物后,再将它在900℃的温度下进行热解反应,得到氧化铝和硫酸钠的混化物。随后洗去硫酸钠并进行干燥,再与碳混合加热的同时,加入氯气与之进行反应,生成了氯化铝,经过电解,获得最终产品——纯铝。

建筑业离不开玻璃,因此在月面上生产玻璃显得尤为重要。通常的玻璃由71%~73%的氧化硅,12%~14%的硫酸钢,12%~14%的氧化钙组成。月球土壤中含有40%~50%的氧化硅,在月面上制造玻璃是以氧化硅为主。其精制方法较为简单,在月球土壤中根据需要加入各种微量添加物,用硫酸溶解出一些无用的成分之后,在1500~1700℃的温度下熔化,然后经过压延冷却,即可制成月球玻璃。

现在月球资源开发利用从研究阶段进已人试生产阶段。试生产阶段规模不大,需要进一步扩大再生产,使月球生产活动逐步走向批量生产的轨道。从上所述,我们可以理解建立月球基地的经济意义。

遮不住的眼睛

人类生活在地球上,但长久以来,对地球的情况并不了解。

如地球是什么形状的?经过几千年的摸索和争论,才知道地球是球形的。如果有人进一步问它是标准的圆球吗?很长时间都无人能回答。人类发射的第四颗卫星,即只有1.5千克重的“先锋1”号,探知了地球呈梨形。

再如,我国的国土有多大?几千年来,在地面上的多次反复测量,仍然只能得出一个大致的数字。有了飞机以后,国土测量要容易一些,但也需要花10年时间,拍100万张照片。而利用卫星勘查我国国土,只要几天时间,拍500张照片。通过卫星照片曾发现过青藏高原上过去地图上没有标出的湖泊。

再如,什么地方的地下蕴藏着矿物和水源,地球的断层和板块的准确位置和走向,在有卫星以前,很难探测得很准确。而用人造地球卫星探测,相对地要容易得多。如苏联曾用卫星找到三个金刚石矿;美国卫星在撒哈拉大沙漠找到多处淡水资源;我国卫星发现,每年都发生滑坡的一段宝成铁路,原来是建在地球的一条断裂带上,改道后,就不再需要每年都进行抢修了。

再如,人们知道,亚马逊等原始森林在迅速缩小,沙化地面在不断扩大,地球环境受到严重污染。但在有人造地球卫星以前,很难掌握精确数字和整体情况,而卫星却能使这一切一目了然。

再如,地面上的几万个气象站,也很难将气象变化预报得很准确,因而使人把“天有不测风云”当作揭示规律的警语。其实不然,有了人造地球卫星以后,全球的气象变化,都在掌握之中。如气象卫星从没有漏报过一次太平洋的台风,使人们能从容地应付每一次台风袭击,大大地减少了台风造成的生命财产损失。1981年,我国长江上游连降大雨,河水猛涨,已超过警戒水位,防汛部门考虑是否动用荆江分洪工程分洪。如果分洪,将有40万人搬迁,60万亩良田被淹。但如不分洪,大雨继续,河水泛滥,造成的损失比这更大。在这举棋难定的时候,气象部门根据卫星气象云图分析,作出大雨即将停止的预报,这使防汛部门决心不分洪,避免了分洪带来的损失。

人们常说:“不识庐山真面目,只缘身在此山中。”反过来理解,如果跳出庐山,就会“旁观者清”了。气象卫星、地球资源探测卫星、大地测量卫星、照相侦察卫星和环境监测卫星等遥感类卫星,就是跳出地球,高居地球之上的眼睛。这只火眼金睛是遮不住的,地球上的各种情况和地面之上大气层变化,都逃不过这只“千里眼”。

遥感类卫星,还可用来评估农作物长势和预报产量,发现森林虫害和火灾,测算海洋水温和浮游生物分布;能探测鱼群走向,预报渔汛,监视火山喷发和地震灾害,以及进行考古和军事侦察等等。

模拟太空旅行

尽管早期的科学家用载人气球进行研究工作,但他们很快发现,研究工作也可以通过地面控制的气球来完成。由于成本和安全的原因,大多数科学家都在地面控制探索大气的气球。

20世纪50年代后期,军方开始考虑进行载人气球飞行。军队的飞行员需要了解当飞到30000米以上的高空时可能遇到的问题。当时,有人提出,一旦火箭发射成功就可以进行载人太空飞行计划,军方要对诸如降落伞、增压服及维持生命系统等高空设备进行测试,同时也想更多地了解航天医学的知识。

海军和空军都制定了载人气球飞行训练的计划。海军的计划叫“同温层-实验室”。1956年11月8日,由海军军官马尔科姆·罗斯和M·李·刘易斯驾驶的“同温层-实验室”1号气球升到22800米的高度,创造了新的纪录。尽管由于气阀失灵,使气球下降速度猛增,但这只茂大的气球最后减缓了下降速度并安全着陆。

与此同时,空军方面也开始实施代号为“人高”的系列高空气球飞行计划。“人高”号的密封舱是一个圆柱体,它的大小更接近最初的7名宇航员使用过的小型圆锥形“水星”号密封舱,而不像皮卡德夫妇发明的气球吊舱,它看上去与一个大的潜水氧气瓶或潜水艇的潜望镜相似。舱内只能容纳一人,驾驶员穿上部分增压服,坐在一个有网眼的尼龙座位上,四周是维持生命的装备和科学实验仪器。

这只聚乙烯气球由温仁研究股份有限公司制造。密封舱和降落伞可以通过驾驶员或地面控制脱离气球返回地面,密封舱还能装上程序,在飞行的第二天的黄昏脱离气球。

最大的宇宙航行博物馆

坐落在华盛顿市独立大街上的美国宇宙航行博物馆是目前世界上最大的宇宙航行博物馆(简称宇航博物馆)。在这座只有208米长,28米高的宇航博物馆里竟陈列着240架飞机、40个空间飞行器、50枚导弹和火箭的实物展品。既有“阿波罗”’登月飞船重返地面的指令舱和在月球表面着陆的登月舱,又有号称航天器之王的美国“天空实验室”;既有高21米的“丘辟特”火箭,又有新型“民兵了”固体洲际弹道导弹;既有莱特兄弟1903年设计制成的世界上第一架动力飞机,又有苏联第一颗人造地球卫星的复制品……。所有这些实物都给人以身临其境的特殊感觉,难怪人们都把美国的这个宇航博物馆称做人类宇航知识的一个最大宝库。

美国宇航博物馆分设23个展览厅。

架设在“飞行的里程碑”大厅里的一架单引擎灰色飞机特别引人注目。1927年,美国飞行员林伯赫驾驶这架飞机首次横渡大西洋。二层展厅所以把“梅塞施密特-09”和“马克-7”型喷火式战斗机放在非常醒目的位置上,那是因为它们在二次大战中都是有功之“臣”。在不列颠战役中,它们为英国击败德国空军立下了汗马功劳!“空中运输”大厅里还展出各式各样的民航机。现代民航机的先驱“波音-247”也在其中。参观者均可纵览全貌。看到这些,人们不禁觉得,宇航博物馆展出的是一架架飞机,却记载着一部活生生的航空发展史。

当你走进“太空”大厅时,就象进入广漠无垠、满天星斗的宇宙之中。从天花板到墙壁上挂满了五花八门的飞行器,能够给你留下深刻的真实感和立体感。矗立在大厅里的“天空实验室”招来了特别多的观众。由于参观的人络绎不绝,只好规定列队进出。参观者不管大人还是小孩,既可以看一看宇航员是如何操作使用实验室内的仪器仪表的,就连洗澡用的简单设备、锻炼身体用的模拟自行车以及测量人体功能的各种设施,也可以亲自动手试一试。此时此刻,似乎你也成为一名宇航员了。

在一块月岩切片的旁边,竖立着一块牌子,上面写着“请摸一摸月亮”的字样。噢,人们明白了,这是希望参观者“摸”的实物展品。月亮是地球的卫星,谁不想亲手摸一摸来自38万公里之远的亲“骨肉”呢!不知是因为摸的人太多还是由于这块切片本来就很平整的缘故,它光滑极了。

美国宇航博物馆自1976年7月至日开馆以来,每年都得接待大约1千万名贵客。

最大的天空实验室

1973年5月14日,美国国家宇航局把一只誉满全球的航天器——“天空实验室”送上了高435公里的近圆形地球轨道。天空实验室长36米,最大直径达6.7米,重约86吨,是迄今为止人类送上太空的最大航天器。

天空实验室主要由“土星”工作舱和“阿波罗”飞船两部分组成。土星工作舱的外面装有两组太阳能电池帆板:一组呈风扇形,专给实验室内的望远镜供电;另一组呈翼形,好似一对大翅膀,空间站所需电能主要由它供给。两组电池帆板的总面积约230平方米,比一个排球场还要大。

在天空实验室内,人们可以从事各种科学实验。因此,称它为轨道空间站,那是再合适不过的了。

非常不幸,“土星-5号”运载火箭发射后仅1分多钟,天空实验室就开始“感冒发烧”了。原来,空间站的轨道工作间在穿越大气层时受到了很大的损伤:翼形太阳能电池帆板,一个被完全扯掉,另一个被死死卡住;宇宙尘防护罩也突然脱落了。由于上述原因,空间站供电系统发生严重问题,轨道工作间的内部温度急剧上升。

在这危急之际,字航局决定,立即派出一个精干的宇航小组,奔赴天空实验室,救死扶伤。5月25日,“土星-IB”火箭把载有三名宇航员的阿波罗飞船送到天空实验室,首先承担起抢修空间站的特殊任务。两个星期后,空间站得救了,但只剩下一只“翅膀”了。宇航小组在圆满地完成了各项科学试验后,于6月22日胜利归来。

尔后,天空实验室又接待过两批“客人”,每批都是3名宇航员。前一批在空间站生活了59天,后一批住了84天,全由阿波罗飞船接送。1974年2月,最后一批宇航员返回地面以后,空间站不再接待客人,直到1979年7月11日,终于坠落在印度洋。跟所有的人造地球卫星一样,天空实验室在它“寿终正寝”的时候,也是要回到“娘家”——地球上来的。不过,它在回“娘家”的路上,要经过稠密的大气层,自然会落得个粉身碎骨的下场。据报道,最大的1块碎“尸”竟有2270千克重,坠落在离澳大利亚不远的洋面上。

在空间站里工作的三批宇航员拍摄了17万5千多张太阳照片、3万多张地面目标照片,录制了72公里长的磁带,还进行了30多项包括空间生物医学、空间材料加工在内的科学实验。宇航员还对周期长达7500年的科霍特克警星进行了详细的观察……。

射电望远镜的作用

一般的天文望远镜,只能观测到其他天体发出的可见光,因此叫做光学天文望远镜。它对电波无法接受。

所谓射电望远镜,实际上是用来测量从天空中各个方向发来的射电能量的一种天文仪器。它具有高定向性天线和相应的电子设备。因此有人说,射电望远镜与其称它为望远镜,倒不如说是雷达接收天线。现在世界上最大的射电望远镜,其直径有100米,面积有足球场那么大,真可谓庞然大物。

用一般望远镜只能看到可见光现象,而射电望远镜则可以观测到天体的射电现象。

由于射电望远镜的发明,使天文学有了飞速发展。它揭示了宇宙中许多奇妙现象。例如通过射电望远镜,人们发现了天鹅座A的射电星系,它每秒钟发出的射电能量要比太阳每秒钟发出的能量强1亿亿倍以上,是迄今发现的最大射电星系,而用光学望远镜对它却是一无所知。此外,用射电望远镜还发现了类星体、脉冲星、星际有机分子和微波背景辐射。可见射电望远镜的作用是很大的。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载