航空航天科学知识(txt+pdf+epub+mobi电子书下载)


发布时间:2020-05-22 09:43:29

点击下载

作者:张娟

出版社:辽海出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

航空航天科学知识

航空航天科学知识试读:

前言

知识的伟大在于它的博大和精深,人类的伟大表现在不断的探索和发现已知和未知的世界,这是人类进步的巨大动力。

在过去漫长的岁月中,人类的发展经历了轰轰烈烈的变迁:从原始人的茹毛饮血到色彩斑谰的现代生活;从古代社会的结绳计数到现代社会垄断人类生活的互联网;从古代的四大发明到上世纪中叶的月球着陆,火箭升天。人类几乎在任何领域都取得了令人惊叹的成就。技术更新,知识爆炸,信息扩张……一系列代表着人类社会巨大进步的词汇,充斥着我们的社会,使每个人都感到在巨大的社会进步面前人类自身的局限。作为人类社会充满生机和活力的群体——青少年朋友,在对现有书本知识学习的基础上,更充满着对一切现代科学技术和信息技术的无限渴望。

人类的智慧在我们生存的这个蔚蓝色的星球上正放射出耀眼光芒,同时也带来了一系列不容我们忽视的问题。引导二十一世纪的青少年朋友了解人类最新文明成果,以及由此带来的人类必须面对的问题,将是一件十分必要的工作。

为此,我们组织多位经验丰富的学者精心策划、编写了这部《青少年科普知识阅读手册》。

本套丛书分海洋、航空航天、环境、交通运输、军事、能源、生命、生物、信息、宇宙等十册。收录词条约五千个。涉及知识面广阔且精微。所包含的内容:从超级火山、巨型海啸、深海乌贼、聪明剑鱼……到地核风暴、冰期奥秘、动物情感、植物智慧……;从登陆火星、探访水星,到穿越极地,潜入深海……既有独特的自然奇观,又有奇异的人文现象;既有对人类创造物的神奇记述,又有人类在探索和改造自然过程中面对的无奈、局限,以及人类对自然所造成的伤害,自然对人类的警告……这是一次精彩的自然与社会的探索历程,是每一位热爱科学、热爱自然的青少年朋友与大自然的一次真诚对话,它将使青少年朋友自觉地意识到,在这个美丽的星球上,人类不是主宰,而是与一切生灵息息相关的一部分,当人与大自然真正达到完美的境界,这个美丽的星球才是完美的、永恒的。

这样一套科普知识阅读词典,摆脱了以往那种令人望而生畏的枯燥乏味、晦涩难懂、呆板平直、味如嚼蜡的叙述方式,拆除了青少年朋友全方位学习和掌握各类知识所筑起的一道道壁障。采用词典的编纂方式,更便于检索和查询。

本书中,凡是青少年感兴趣的一切自然和社会奥秘几乎无所不有,无所不容。真正做到了庞而不杂,广而不糙。

我们用青少年朋友乐于接受的方式,以细腻生动的笔触、简洁明了的叙述、深入浅出的将各个方面的知识呈现出来,营造出一个适应青少年的阅读氛围,将最适时的信息传达给广大的青少年朋友。这是本套丛书的一大特点,相信每一位拥有本套丛书的青少年朋友对此都会有所体会。

科普读物从来不拒绝科学性、知识性、艺术性三者的完美统一,它强化生动性与现实感;不仅要让青少年朋友欣赏科学世界的无穷韵律,更关注技术对现实生活的改变,以及人类所面对的问题和挑战。本丛书的出发点正是用科学的眼光追寻青少年心中对这个已知和未知世界的热情和关注。

本套丛书的编辑对知识的尊重还主要表现在不断追随科学和人类发展的步伐以及青少年对知识的新的渴求。希望广大青少年通过阅读这套丛书,激发学科学的热情,以及探索宇宙奥秘的兴趣,帮助他们认识自然界的客观规律,了解人类社会,插上科学的翅膀,去探索科学的奥秘,勇攀科学的高峰。

愿今天的青少年朋友,都成为明日的科学探索之星,愿人类所居住的这个美丽星球更加美丽、和谐。2008年9月10日

A

A-10攻击机

A-10系美国制造,该攻击机的外形与常见的战斗机不同,它有两台装在后机身侧上方的涡轮风扇发动机,两个很大的垂直尾翼,外形很容易与其他飞机区别开来。

A-10的速度较慢,与一般的螺旋桨飞机相当,这是由其担负的作战任务所决定的。因为对地攻击作战不需要太大的速度,亚音速飞行更有利于提高命中精度。当然,速度低也有不利的一面,就是生存能力差。但设计者已为它采取了保护措施。A-10的主要部位和飞行员座舱周围都装上了钛合金保护装甲,厚度从127毫米到381毫米不等,装甲内还有多层尼龙防碎片衬垫,可以抗住23毫米口径高炮的打击。A-10不像别的飞机那样对跑道的要求很苛刻,它可以在一些简易的机场上起飞、降落。其全身共有11个武器挂架,可挂炸弹、导弹等武器。在它的机头下方还装有1门30毫米的七管速射机炮。这门炮使用的贫铀穿甲弹威力特别强,一般的坦克装甲都休想抵御得了。

A-10攻击机的威力在海湾战争中得到了证实。战争期间,美军共使用A-10飞机136架,出动8077架次,且执行的都是最危险的任务。据统计,A-10攻击机在4天的支援地面作战中,共摧毁伊军坦克987辆、火炮926门、装甲车1355辆。战后,A-10因其出众的反坦克能力,被誉为“坦克的克星”。

AS565“黑豹”直升机

AS565“黑豹”直升机是欧洲直升机法国公司生产的军用型直升机。主要型别有:武装型、反坦克型、高速运输型、反舰反潜型。该原型机于1987年9月15日创造了2项直升机世界纪录:载重2774吨,2.54秒爬升3000米;6.14秒爬升6000米。武器装备有:机身两侧的外挂架各携带1个22枚68毫米火箭弹及1个19枚70毫米火箭弹的发射装置,可执行3小时的近距离支援任务。该直升机可以执行海岸巡逻、监视、搜索和救援、缉毒、部队运输等任务。

AH-64A“阿帕奇”直升机

“阿帕奇”攻击直升机具有20世纪80年代的先进技术水平,是当今世界上技术最先进、火力最强、防护力最好、价格最昂贵的直升机,主要用于反坦克。

早在1972年11月,美国陆军提出了一个“先进攻击直升机计划”,要求研制一种具有突出反坦克能力的全天候攻击直升机。这个计划提出后,经过90天的方案竞争,美国陆军于1973年6月选中了贝尔直升机公司和休斯直升机公司的方案,并要求两家公司拜研制两架试飞原型机和一架地面试验机。1976年12月,美国陆军对两家公司的直升机进行了对比试飞,最后选中了休斯直升机公司的YAH-64。1977年1月,休斯直升机公司开始了为期59个月的第二阶段研制工作,主要内容是:再造3架YAH-64试验原理样讥;继续对机体进行研究与改进;进一步对机载电子—光学设备、火控系统、导航电子设备等作飞行试验;选定目标截获和识别瞄准具及驾驶员夜视传感器。第二阶段的工作到1981年结束,累计飞行3000个小时。该机于1981年12月开始正式投产,陆军航空兵编号为AH-64,取名“阿帕奇”。单机售价为826万美元。

AH-64A“阿帕奇”直升机短翼下有4个外挂点,可挂16枚激光制导的“海尔法”反坦克导弹,射程达7000米;还可携带口径30毫米的反坦克炮和800发炮弹,射程为2500米。如选装70毫米火箭弹,每个悬挂点可挂载1个19枚联装火箭发射器或8枚“陶”式反坦克导弹。该机不仅具有强大的火力、很高的飞行性能和战场生存能力,而且可在昼夜复杂的气象条件下远距离搜索、识别和攻击目标。

AH-64“阿帕奇”直升机能抗住12.7毫米枪弹的打击,而且它机身上95%的表面任何一个部位被1发23毫米爆破弹击中后,仍能飞行30分钟。“阿帕奇”直升机采用4桨叶全铰接式旋翼系统,机身为传统的“半硬壳式蒙皮—隔框—长衍”结构,装有2台功率为1265千瓦(1719马力)的涡轮轴发动机,机身长15.54米,机高3.52米,最大速度293千米/小时,最大航程482千米,续航时间1小时50分。

AH-64“阿帕奇”式直升机的强大威力

1991年10月6日,除第101空中突击师全部到达沙特外,驻欧洲的装备AH-64“阿帕奇”式直升机的第12航空旅也同时抵达。到10月初,美军在海湾的防御部署已基本完成,拥有固定翼攻击机和AH-64“阿帕奇”直升机的海军第3陆战队航空联队,已经既可支援地面部队作战,又可用战斗机帮助保持重要海岸地区的空中优势了。

1991年10月24日7时,第101空中突击师在第18空降军第18航空旅的支援下,以AH-64“阿帕奇”和AH-1“眼镜蛇”直升机作掩护,出动了60架UH-60“黑鹰”运输直升机和40架CH-47“支奴干”运输直升机,开始运载第1旅出击。

第一批搭载直升机的500名士兵从“坎贝尔”旅的战术集结地域乘直升机起飞。漫天遍野的直升机就像是一群大黄蜂,嗡嗡叫着快速向沙漠深处飞去。它们排成6路纵队,在天空中形成6条黑色的走廊,远远看去,场面极为壮观。

AH-64“阿帕奇”武装直升机一马当先冲在最前面,它上面装有威力很大的反坦克导弹,以距地15米的高度低空飞行。而担任运输任务的直升机,则有的上面装载着士兵,有的下面吊装着大炮或运输车辆。它们整齐有序的飞行,就像是在国内进行一次规模宏大的阅兵式。

AH-1“眼镜蛇”武装直升机

AH-1“眼镜蛇”武装直升机是一种反坦克直升机,其主要任务是在白天、夜间以及恶劣气候条件下,提供近距离火力支援和协调火力支援。另外,这种直升机还可以为突击运输直升机执行武装护航、指示目标、反装甲作战、反直升机作战、对付有威胁的固定翼飞机、侦察等任务。

AH-1“眼镜蛇”直升机自20世纪60年代中期诞生以来,已经发展成了一种系列化的武装直升机家族。在海湾战争期间,美军在海湾战场上共部署近百架AH-1“眼镜蛇”武装直升机,其中有

AH-1W“超眼镜蛇”

AH-1J“海眼镜蛇”

、AH-1T“改进的海眼镜蛇”和AH-1F。这种直升机的飞行速度较快,续航时间较长,尤其是它的反装甲武器,更使其成为对付坦克、装甲车的有力杀手,AH-1“眼镜蛇”武装直升机上装备有“狱火”和“陶”式反坦克导弹、“响尾蛇”空对空导弹、70毫米和127毫米火箭及20毫米机关炮。AH-1W“超眼镜蛇”

AH-1W“超眼镜蛇”是贝尔直升机公司于1980年在AH-1T“改进的海眼镜蛇”武装直升机的基础上,进一步改进出的一种最新型武装直升机。AH-1W可执行反坦克、护航、多种火力支援、武装突击、目标搜索和目标识别等多种任务,是一种具有耐高温高原性能、全天候昼夜作战能力和一定的空战、自卫能力的直升机。该机装有2台功率为1211千瓦(1648马力)的涡轮轴式发动机,机身长13.87米,机高4.32米,巡航速度282千米/小时,实用升限4270米,航程600千米。除装有先进的电子设备外,还要携带多种武器系统。其武器装备除1门20毫米3管机炮外,短翼下的4个外挂点还可挂载8枚“海尔法”或8枚“陶”式导弹,2枚“响尾蛇”或“响尾蛇反辐射”导弹。AH-1J“海眼镜蛇”

AH-1J“海眼镜蛇”是这个家族中较老的一名成员,是AH-1G的改进型,最初是为海军陆战队研制的,本来它已经转入了后备役,但由于战争期间地中海和太平洋地区不断地要求紧急支援,美国海军陆战队不得不再次启用两个后备役AH-1J“海眼镜蛇”飞行中队以补充并加强西南亚的AH-1W直升机部队的力量。在美军向海湾地区部署军队时,共部署了24架后备役的AH-1J“海眼镜蛇”。虽然这种已经服役20多年的“眼镜蛇”不具备反装甲或防空作战能力,但它却可为直升机突击作战提供战斗护航和武装侦察,美国海军陆战队共装备过67架。该机与AH-1G的区别是装有2台组合式涡轮轴式发动机,单台功率为1341千瓦(1825马力),另外,该机还装有海上电子系统和设备。该机的机身长13.59米,机高4.15米,最大速度333千米/小时,航程620千米,其武器为1门20毫米3管机炮,短翼下的4个外挂点可挂70毫米火箭发射器或机枪吊舱。

AH-1T“海眼镜蛇”

AH-1T“改进的海眼镜蛇”是为美国海军陆战队研制的AH-1J双发型的改进型。它的特征是:加长了的机身采用贝尔214的动部件,及加大了功率的T400-WV-402涡轮轴发动机和能传递全部额定功率的传动装置。发动机的单台功率为1468千瓦(1997马力),机身长14.68米,机高4.32米,最大速度277千米/小时,航程574千米。这种武装直升机共生产了57架,其中的42架后来改装成了AH-1W“超眼镜蛇”。该机的机炮与AH-1J相同,但它短翼下的外挂点可挂装70毫米火箭弹发射器或“油—汽”爆炸武器、曳光弹投放器、榴弹投掷器和带降落伞的曳光弹,此外,还可选装“陶”式或“海尔法”空对地导弹。

伊军进攻海吉夫的战斗打响后,AH-1T“眼镜蛇”武装直升机给进攻中的伊军坦克造成了重大伤亡,将伊拉克部队赶回到了科威特。

AH-1F武装直升机

AH-1F武装直升机是AH-1S“休伊眼镜蛇”的完全改进型。AH-1S“休伊眼镜蛇”是贝尔直升机公司根据美国陆军1975年提出的直升机现代化计划,在AH-1G/Q“休伊眼镜蛇”基础上加以改进,装有“陶”式反坦克导弹,换装大功率发动机等后而发展起来的一种专用武装直升机。该机的改进项目较多,除原先几种改进型的改进项目外,还增装了新的火控分系统(包括激光测距和跟踪器、弹道计算机、低速传感器、平视仪)、大气数据系统、多普勒导航系统、敌我识别应答器、红外干扰机、热金属和发动机火舌红外抑制器、闭合回路加油系统、新的保密话音通信装置及新复合材料桨叶。此外,AH-1S还采用了多种隐身技术,其座舱为7块平板,降低了光的反射。

A-6“入侵者”攻击机

美国A-6“入侵者”攻击机是并列双座、双发的高亚音速舰载攻击机,擅长低空和夜间攻击,1963年开始服役。机长16.69米,机高4.93米,翼展16.15米(机翼折叠后为7.72米);空重12132千克,最大起飞重量28.58吨;机内载油量7.23吨,外挂燃油4558千克;海平面平飞速度1037千米/小时,巡航速度763千米/小时;实用升限12925米,最大爬升率39米/秒;航程1627千米;有5个外挂架,每个挂1633千克,最大外挂载荷8165千克,可装载28颗226.8千克炸弹或3颗907千克炸弹和2个1135升副油箱,还可携带“响尾蛇”空对空导弹进行自卫,因而俯冲攻击目标的破坏能力很强;装有2台发动机,单台推力41.4千牛;装备有多功能导航和攻击雷达、导航和攻击计算机,攻击效果摄像机、惯性和多普勒导航设备、多功能显示器、前视红外装置、激光照示器及一整套通信系统和仪表。A-6“入侵者”攻击机具有水平攻击,俯冲攻击、跃升攻击、上仰攻击和甩损攻击等多种攻击方式。在1991年的海湾战争中,有48架A-6E和30架EA-6B参战。

A-7“海盗”攻击机

A-7是美国凌·特姆科·沃特公司研制的亚音速攻击机。首批A-7攻击机1968年开始交付使用,共生产459架,是美国海军和空军都在使用的攻击机。该机主要执行轻型攻击、近距支援和阻击等战术任务。在1991年的海湾战争中,主要遂行浅近遮断攻击任务。机长14.06米,机高4.9米,翼展11.8米,外翼折叠后为7.24米;空重8.68吨,最大起飞重量19.05吨;最大平飞速度1100千米/小时,巡航速度769~855千米/小时;实用升限14780米,活动半径约600~900千米;装有2门20毫米航炮、1门20毫米6管炮,机外有8个挂架,可选挂导弹、电视和激光制导炸弹、普通炸弹、火箭弹等,最大载弹量为8346千克;电子设备有1台导航/武器投放电子计算机、多普勒雷达及显示器等。

A-7攻击机有A、B、C、D、E、H、K等型号。其中A-7E是海军舰载攻击机的主要改型,装有红外线探测器和平视装置,提高了夜间活动能力。它的进气口位于机头雷达下方,后掠式机翼有明显的下反角,水平尾翼上端切去一角,以减小机高,便于在航空母舰上停放。

A-12隐身舰载攻击机

美国A-12隐身舰载攻击机又称“复仇者”2型,采用三角机翼外形,尾翼呈直线形状,没有垂直尾翼,仅为F/A-18雷达反射截面积的20%;机长11.58米,翼展约20.2米,双翼可折叠到10.5米;起飞重量50吨;采用了先进的数字式航空电子设备和先进的发动机;可携带12吨有效负载飞行1500海里;它可携带激光制导导弹、高速反辐射导弹、“鱼叉”反舰导弹、“小牛”空对地导弹、“快速打击”水雷和“捕手”反潜鱼雷等;可以打击地面目标和海上舰只,摧毁岸上活动目标,完成布设水雷、反潜、反空袭作战、海上侦察、电子干扰及其他多种任务。A-12能否装备航空母舰,并取代A-6,目前仍是个未知数。

岸舰导弹

岸舰导弹是从岸上发射攻击水面舰船的导弹,又称岸防导弹,是海军岸防兵的主要武器之一。岸舰导弹由弹体、战斗部、动力装置和制导装置等组成。它与地面指挥控制、探测跟踪、发射系统等构成岸舰导弹武器系统。岸舰导弹配置在沿海重要地段上,通常分为固定式岸舰导弹和机动式岸舰导弹两种。前者配置在坚固的永备工事内,采用固定发射,有固定的射击区域,阵地分散隐蔽,生存能力较强,能连续作战;后者由车辆装载,可机动发射。其射程为数十至数百千米,飞行速度多为高亚音速。与海岸炮相比,岸舰导弹射程较远,命中精度较高,破坏威力较大。

“阿波罗”登月工程

阿波罗载人登月工程是美国国家航空和航天局在20世纪六七十年代组织实施的载人登月工程,或称“阿波罗计划”。“阿波罗”登月工程曾经有过三个登月方案,美国宇航局专家对它们进行了反复论证。第一种是用大型火箭直接把飞船发射至月球轨道的“直接登月法”;第二种是飞船分段送入

地球

轨道,再逐一对接后飞向月球的“

地球轨道

交会法”;第三种是将飞船送入地球轨道,并推向月球的“月球轨道交会法”。

第一种方案,所需技术简单方便,容易控制,但需昂贵复杂的特大功率火箭。

第二种方案,虽分段发射不需大型火箭,但总发射费用并不低,而且交会次数过多,不易控制。

第三种方案为宇航局工程师约翰·霍博特所提出。霍博特的设想为,用大型火箭把载有3名宇航员的飞船送入地球轨道,当火箭脱离后,让飞船依靠惯性飞入月球轨道。进入月轨后,2名宇航员进入登月舱,然后登月舱脱离飞船指令舱。登月舱用制动火箭减速在月面降落。返回时,启动登月舱的上升发动机,飞上月球轨道,与飞船指令舱会合,宇航员返入指令舱后,便抛弃登月舱,开动指令舱火箭,脱离月球轨道而进入地球轨道。再入大气层时,将指令舱后的服务舱抛弃,仅剩指令舱溅落在太平洋上。

“阿里安”号运载火箭

它是由欧洲空间局11个成员国联合研制的商用运载火箭。1973年开始研制,1982年开始商业性飞行。“阿里安”号火箭有多种型别,到1984年10月底只有1型和3型投入使用。“阿里安”1型是三级液体火箭,全长47.4米,直径3.8米,起飞重量207吨,起飞推力2440千牛(248.8吨力),采用惯性制导系统。

第一级装有4台维金5型发动机,是由法国“钻石”号运载火箭第一级所用的维金2型发动机改进而成的。推进剂是四氧化二氮和偏二甲肼。底部安装4个稳定尾翼。

第二级用一台维金4型发动机,推进剂和第一级的相同,真空推力717千牛(73吨力)。第二级的直径2.6米。

第三级装有一台HM-7液氧液氢发动机,真空推力约59千牛(6吨力)。整流罩位于火箭的最前端,长约8.5米,直径3.2米。火箭的运载能力为1700千克(地球静止卫星过渡轨道),或4500千克(低轨道)。“阿里安”3型是四级火箭,1984年8月开始首次商业性飞行。它是在1型的基础上改进而成的。主要的改进是:增加助推器,改善各级发动机的性能和加长推进剂贮箱。3型火箭全长49.2米,起飞重量237吨,起飞推力约3900千牛(397吨力)。第一级发动机通过提高燃烧室压力使推力增加约9%。在第一级外面捆绑2个固体火箭助推器作为助推级或零级,每个助推器长7.6米,直径1.07米,平均推力660千牛(67吨力)。第二级发动机和1型第二级的相同,推力增大到787千牛(80吨力)。第三级加长了1.3米,增加了2.5吨推进剂。发动机推力增加到63千牛(6.4吨力)。3型火箭一次可以发射两颗卫星。运载能力为2580千克。

“阿波罗”号飞船

“阿波罗”号飞船是美国实施载人登月工程中使用的飞船。“阿波罗”11号飞船于1969年7月20~21日首次实现人类登上月球的理想。此后,美国又相继6次发射“阿波罗”号飞船,其中5次成功,总共有12名航天员登上月球。飞船由指挥舱、服务舱和登月舱3个部分组成,其中指挥舱是全飞船的控制中心,也是航天员飞行中生活和工作的座舱;服务舱采用轻金属蜂窝结构,周围分为6个隔舱,容纳主发动机、推进剂贮箱和增压、姿态控制、电气等系统。前端与指挥舱对接,后端有推进系统主发动机喷管;登月舱由下降级和上升级组成。“阿波罗”15号的登月飞行,将着陆点选择在“雨海”以西的山脉峡谷中。在3天月面停留中,宇航员斯科特和欧文驾驶“月球流浪者”号四轮月球车,对山脉、峡谷和火山口进行了考察,还开设了“邮局”为集邮爱好者的月亮实寄封加盖邮戳。“阿波罗”15号还发射了小型人造月球卫星。在进入地球轨道前,欧文在舱外花了40分钟时间,从即将抛弃的服务舱中回收了长达9千米的月球资料的胶卷。“阿波罗”16、17号是最后两次载人登月,于1972年中相继进行。4名宇航员在月面累计停留了6天之久,安装了两座核动力科学实验站,并带回了205千克月面标本。

宏伟的“阿波罗”工程随着“阿波罗”17号飞船的返回宣告结束。整个工程历时11年,耗资255亿美元,有2万家企业,200余所大学和80多个科研机构参与,总人数超过30万。

“阿波罗”4号空难

1967年1月27日下午,3位宇航员在当地时间13点进入离地66米高的“阿波罗”4号飞船座舱。倒数计时进入读秒时突然中断,飞船座舱冒出浓烟大火。现场救护工作虽然非常及时,但是大火最终还是把4号飞船烧得只剩下了外壳。40岁的格里索姆,36岁的怀德和31岁的查菲,都不幸葬身火海。事故发生后,由15人组成的调查组,经过2个月的调查表明,事故直接原因是电线绝缘不良引起短路,导致纯氧密封舱燃起大火。同时也暴露了飞船应急救生系统不完善的设计缺陷。为此,死难者家属上诉法院,要求飞船制造厂商赔偿1000万美元,成为诉讼史上第一宗太空事故赔偿案。

“艾萨”号

“艾萨”号是第一代太阳同步轨道气象业务应用卫星,从1966年至1969年,先后发射了9颗,轨道倾角约102度,轨道高度约1400千米,云图的星下点分辨率为4千米。

B

边条

边条是指附加于机身或机翼机身结合处的小翼面,包括机身边条和机翼边条两种。机身边条位于机身左右两侧,宽度相等;而机翼边条则是位于机翼机身结合处近似三角形的小翼面。采用边条翼结构可以减少阻力,改善飞机的操作性。

“伴星”

伴星是中国航天工程设计人员为“神舟七号”卫星而制造的摄影装备。据香港《大公报》报道,这颗“伴星”的任务是用CCD立体相机近距离为在轨飞行的“神七”拍照。届时我们将获得首张中国航天器在轨飞行的三维立体外景照片,该照片以太空为背景,展现“神七”高速运行的独特景致,将成为中华民族飞天壮举的永久性历史见证。“神七”仅仅是带了一个机器“摄影师”上太空吗?当然不是。在此之前,中国已经成功地发射了数颗小卫星,小卫星技术臻于成熟,“神七”携带“伴星”上太空意义更非同小可。

首先,是小卫星投放手段的变化。以前中国的小卫星都是靠运载火箭发射入轨的;而这次是将小卫星安放在“神七”留轨舱的最前端,当飞船进入预定轨道后既可按指令自动弹出飞船,也可由航天员手动“择机”释放,投放方式更灵活,“择机”释放就是可以根据需要想什么时候释放就什么时候释放。

其次,“伴星”可以作为侦察卫星使用。香港媒体透露,“神七”携带的这颗“伴星”上,装有与“嫦娥一号”类似的CCD立体相机,可以拍摄出高清晰度的地表图像。“伴星”由“神七”择机释放入轨对感兴趣的地表进入拍照侦察。

第三,“伴星”能够成为一种非常可怕的太空武器。它既可以由飞船择机释放,去执行攻击敌太空目标的任务;又是我飞船最得力、最忠实的“保镖”——当敌方对我飞船发起攻击时,我飞船可以适时释放“伴星”,用所携带的武器摧毁敌攻击武器或与之同归于尽。

“暴风雪”号航天飞机

“暴风雪”号是前苏联制造的航天飞行器。机身全长40米,高16米,机身直径56米,翼展24米,有效载荷货舱直径47米,长183米,可将30吨载荷送入低轨道,能运回20吨货物,比美国的航天飞机货舱稍大一点儿。乘员舱容积70立方米,可供2~4名宇航员使用,另有6个座位供乘员使用,其中除机长、驾驶员外,还有卫星修理人员2名,机械手操作员1名,科研人员2~3名。全机起飞总重105吨,着陆重量82吨。“暴风雪”号航天飞机的飞行程序是:航天飞机首先被推力为3550吨的“能源”号运载火箭推到亚轨道速度之前,第一级液体火箭发动机脱离,被抛到前苏联领土之内,然后,到160千米高度时,启动自身的发动机,将航天飞机助推到轨道速度,这时,主发动机和大型燃料箱把航天飞机送到可能进入轨道的高度后,即脱离航天飞机作为第二级溅落在海面上。同时再次启动机上发动机,使“暴风雪”号到达高度为260千米的圆表轨道,返航着陆情况与美国航天飞机一样。着陆速度为340千米/小时,地面滑跑距离1100~2000米。“暴风雪”号带着着陆伞,当速度减到时速50千米时,就会弹出制动着陆伞。

C

CH-47D“支奴干”运输直升机

第101空中突击师的CH-47D“支奴干”运输直升机,是CH-47系列的最新改型,1984年2月2S日首次装备并达到初始作战能力。CH-47D“支奴干”运输直升机包含了13项重大改进,在最大重量为22680千克的条件下,它的有用载荷为10334千克,比CH-47A“支奴干”的有效载荷多了1倍多。该机能执行各种战斗与支援任务,包括运送部队、火炮装置和战场补给。该机是美国陆军M198新型牵引车牵引的155毫米榴弹炮的主要运输工具,它还是美国陆军直升机中唯一能用机身下的中央吊钩吊运11225千克重的D5型履带式推上机的直升机。该机装有2台功率为2794千瓦(3801马力)的涡轮轴式发动机,采用两副纵列反向旋转的3片桨叶旋翼,两副旋翼由协调轴驱动,可保证每一台发动机都能驱动两副旋翼。驾驶舱可坐2名驾驶员,并有两套操纵装置。其主舱内可乘坐33~55名武装士兵,或载24副担架及两名护士,或装载车辆及货物。为了便于运输特别长的货物和用降落伞投放货物或装备,其后货舱门跳板可以全部或部分打开。该机有3个外部吊钩,中吊钩可吊运11793千克重的货物,前后吊钩可各吊运7711千克的货物,前后两个吊钩共同使用时,可吊运10433千克重的货物。该机的机身长15.54米,机宽3.78米,机高5.68米,最大速度291千米/小时,任务半径55.5千米,转场航程2059千米。

“嫦娥二号”卫星

“嫦娥一号”卫星总设计师和总指挥叶培建2008年2月21号透露,“嫦娥二号”卫星将于2009年前后发射。“嫦娥二号”是“嫦娥一号”卫星的姐妹星,同样由长三甲火箭发射。但是“嫦娥二号”卫星上搭载的CCD照相机的分辨率将更高,其他探测设备也将有所改进,所探测到的有关月球的数据将更加翔实。“嫦娥二号”卫星的飞行程序和“嫦娥一号”相似,关键是它的工作轨道是200千米,航天科技人员准备把它降到100千米,应该在2009年前后发射“嫦娥二号”。

“超军旗”舰载轻型攻击机

法国“超军旗”舰载机是法国海军航母上服役的唯一固定翼攻击机,主要承担对舰队实施空中掩护,保护舰队不受敌海军舰只攻击以及打击地面目标、照相侦察等任务。该机是20世纪50年代最流行的后掠翼型飞机,采用了下垂式前缘和双缝襟翼,虽使飞机重量增大,但却使其着舰速度减至230千米/小时。1978年,首批“超军旗”交付法国海军使用。机身长14.30米,机高3.86米,翼展9.6米(折叠后为7.8米);最大起飞重量12吨,机内燃油3.2千升,外挂副油箱(机翼下2个1100升的副油箱,机身下1个600升副油箱)2.8千升;最大平飞速度1060千米/小时,低空速度1204千米/小时;实用升限1.37万米;1台不加力涡喷发动机,推力49千牛。武器为2门30毫米航炮,每门带弹125发;机身、机翼下共有5个挂架,可挂当量1.5万吨级的核航弹、400千克和250千克炸弹和火箭发射巢等;装有惯性导航/攻击系统和大气数据计算机、先进的平视显示器和数字自动武器投射系统。在1982年的英阿马岛冲突中,阿根廷海军使用携带“飞鱼”空舰导弹的“超军旗”攻击机,曾一举击伤英国数艘舰艇,其中包括先进的“谢菲尔德”号驱逐舰,从此使其名声大振。

侧滑角

侧滑角是指飞机的轴线与飞机的飞行速度方向在水平面内的夹角。侧滑角是确定飞机飞行姿态的重要参数。

长时间留空无人机

为对目标进行长时间监视,弥补无人侦察机留空时间短、对同一目标反复侦察时所需航次多等不足,长时间留空无人机便应运而生。如美国洛克希德公司的微波动力无人机,可在高空飞行60天以上。目前,国外的长时间留空无人机最大续航时间可达1年,可对目标进行连续不断地侦察、监视。

“长征”2号E型火箭

“长征”2号E型火箭是以两级液体助推火箭为芯级,周围捆绑4枚长液体助推火箭的大型运载火箭。起飞重量460吨,起飞推力600吨,可将8.8吨有效载荷送入200~400千米圆轨道,再加一个第三级火箭,还可把2.5~4吨重的有效载荷送入35.786千米的地球同步轨道。它的4枚助推火箭,每个长3.35米,直径2.25米。整个火箭长49.7米,芯级直径3.35米。芯级一级发动机为4机并联,加上4个助推火箭,总推力875吨。二级发动机采用高膨胀比的大喷管。它适合于发射低高度、圆轨道卫星,如果再配置“液氢—液氧”推进剂上面级,构成长征2E/HD号,其发射能力和技术水平与“阿丽亚娜”火箭相当。

由于有了巨大的运载发射能力,中国已成为第三个掌握氢氧火箭技术的国家,第三个掌握卫星回收技术的国家,第三个独立承担国际商业发射的国家,第四个掌握“一箭三星”技术的国家,第五个独立研制和发射地球静止轨道卫星的国家,第五个掌握运载火箭捆绑技术的国家。

“超山猫”直升机

该机采用最新技术的双发高性能并具有全天候飞行能力,是专门为满足海军要求在小型船只上起落、重量轻的反潜和反海面舰只直升机而设计的。该机装有深水声纳和可对海面进行360°搜索的雷达,增加了有效载荷,提高了续航能力,加装了强大的火力系统。“超山猫”可装备4枚“海鸥”、2枚“企鹅”反舰导弹或4枚“毒刺”导弹。座舱两侧挂2个挂架,每个挂架挂2挺7.62毫米机枪;或配装2个M159C挂架时,每个挂架可挂装19枚70毫米的火箭。

D

地球

在茫茫宇宙中,地球是个很不起眼,但又得天独厚的星球。行星际探测的结果表明,地球是太阳系中唯一适宜于生命存在的天体,只有它处于太阳系的“生态圈”内,如果想寻找其他智慧生物居住的星球,必须飞出太阳系,至少在4.2万光年的范围里是不会找到的。

20世纪50年代后。科学技术发展非常迅速,为大地测量开辟了多种途径,高精度的微波测距,激光测距,特别是人造卫星上天,再加上电子计算机的运用和国际间的合作,使人们可以精确地测量地球的大小和形状了。通过实测和分析,终于得到确切的数据:地球的平均赤道半径为6378.14千米,极半径为6356.76千米,赤道周长和子午线方向的周长分别为40075千米和39941千米。测量还发现,北极地区约高出18.9米,南极地区则低下去24~30米。所以有人说,地球像一个倒放着的大鸭梨。其实地球确切地说,是个三轴椭球体。

在地球引力作用下,大量气体聚集在地球周围,形成数千千米的大气层。探空火箭在3000千米高空仍发现有稀薄大气,有人认为,大气层的上界可能延伸到离地面6400千米左右。据科学家估算,大气质量约6000万亿吨,差不多占地球总质量的百万分之一,其中包括:氮78%、氧21%、氩0.93%、二氧化碳0.03%、氖0.0018%,此外还有水汽和尘埃等。地球轨道

地球轨道是地球绕太阳公转的路线,形状为一非常接近圆形的椭圆。太阳位于椭圆的两个焦点之一。公转轨道最靠近太阳的一点称近日点,距太阳约14710万千米,地球于每年7月经过该点。远日点约15210万千米。日地平均距离为14960万千米,即1个天文单位。轨道全长约为94000万千米。

第一颗人造卫星——“人造地球卫星-1”号

1957年10月4日,在前苏联哈萨克共和国威海附近的拜科努尔宇宙飞行器发射场上,矗立着一枚高大的两级液体燃料运载火箭。

这颗世上首先进入太空的卫星是沿椭圆轨道绕地球运行的。其轨道近地点为228.5千米,远地点为946.1千米;轨道倾角(轨道平面与地球赤道面的夹角)为65度;运行周期(绕地球一圈的时间)为96.17分钟。“人造地球卫星-1”呈圆球形,其直径为58厘米,星体结构材料是铝合金的。卫星周围均布四根弹簧鞭状天线伸向后方,其中一对天线长240厘米,另一对长290厘米,其无线电频率为20.005兆赫和40.002兆赫。卫星内装有两台功率为1000毫瓦的无线电发射机、化学电池、测量星内温度与压力的感应元件、磁强计和辐射计数器等,整个卫星仅有83.6千克重。

第一枚液体燃料火箭

1926年3月16日,在大雪覆盖的美国马萨诸塞州奥本郊外的沃德农场,戈达德检查了发射架,把一枚长3.04米,重5.5千克的小型液体燃料火箭安装到发射架上。他和助手特别仔细地检查了火箭顶端长0.6米的火箭发动机,又依次检查了发射架下部的两个液氧和煤油贮存箱,还有燃料阀门和输送管道。当准备工作全部就绪后,下午2点30分,正式点火发射。这是戈达德研制的液体燃料火箭,它耗费了这位注定要载入史册的科学家20多年的心血。一声巨响,火箭发动机尾部喷射出熊熊火焰,火箭离开发射架向空中飞去。火箭飞行了2.5秒,上升高度为12米,坠落后离发射架56.12米。世界上第一枚液体燃料火箭就这样发射成功。

1930年7月15日,戈达德在第一个飞越大西洋的飞行员林白的帮助下,从著名慈善家古根海姆那里筹得资金,把试验基地迁到新墨西哥州罗斯韦尔东北的梅斯卡勒罗农场。同年12月30日,又一枚戈达德火箭试验成功,发射高度610米,飞行距离300米,速度达到每小时800千米。

“德尔塔”号运载火箭

“德尔塔”号运载火箭是1959年开始研制的美国中等运载能力的运载火箭。1960年5月开始发射的第一批12枚火箭是三级火箭。第一级由“雷神”中程导弹修改而成,第二、三级沿用“先锋”号运载火箭的第二、三级。火箭全长28米,重52吨,第一级直径2.44米,运载能力为220千克(480千米高的圆轨道)。此后,又增加固体火箭助推器和助推器的数量,加大发动机推力,加长第一级推进剂贮箱,扩大第二、三级直径等,使火箭的运载能力不断提高。火箭经过13次改型,如标准型、2914型、3914型等,到1982年演变为“德尔塔”3920/PAM-D型。这个型别的火箭由4级组成。助推级(又称零级)是捆绑在箭体下部四周的9台固体火箭助推器,每台推力378.6千牛(38.6吨力),第一级用液氧和RJ-1煤油推进剂,发动机推力提高到912千牛(93吨力)。第二级用四氧化二氮和混肼推进剂,推力43.6千牛(约4.45吨力)。第三级采用固体火箭发动机,靠旋转稳定,推力82.3千牛(8.4吨力)。火箭全长35.35米,直径2.44米,起飞重量193.2吨。运载能力提高到1312千克(过渡轨道)。到1982年年底,“德尔塔”号火箭共发射155次,其中失败11次,成功率达93%。用这个火箭发射的航天器包括“先驱者”号探测器、“泰罗斯”号卫星、“雨云”号卫星、地球资源卫星、“辛康”号卫星、“国际通信卫星”Ⅱ号和Ⅲ号等。

“大力神”号运载火箭

美国以“大力神”2型洲际导弹为基础研制的大型运载火箭,有3A、3B、3C、3D、3E、34D等多种型别,主要用于发射各种军用有效载荷。“大力神”3A和3B都是三级液体火箭,用“大力神”2型导弹的第一、二级作为前两级,起飞推力约1913千牛(195吨力)。3A的第三级叫过渡级,长4.9米,直径和前两级一样,都是3.05米,重约13吨。过渡级装2台推力各为35.6千牛(约3.63吨力)的发动机,工作时间约480秒。发动机可以多次起动,能使火箭在较大范围内机动变轨,将有效载荷送入不同的轨道。3级都用四氧化二氮和混肼50推进剂。制导系统利用“大力神”2型导弹的惯性制导系统。

3A于1964年开始发射军用卫星。1966年开始使用的3B用“阿金纳”火箭作为第三级,用无线电指令制导系统取代惯性系统。

3B主要用于发射军用侦察卫星。3C是在3A火箭的两侧各捆绑一台大型固体火箭助推器组成的。每个助推器长25.9米,直径3.05米,重200吨,通过由助推器旁侧的贮箱喷注四氧化二氮的方法来控制推力方向。3A和3B火箭重160~180吨,可将3.6~4.5吨重的载荷送入低地球轨道。

3C于1965年开始使用,主要用来发射军用通信卫星。火箭重635吨,起飞推力约10498千牛(1070吨力),能把13.4吨重的载荷送入低地球轨道或把1.6吨重的载荷送入地球静止卫星轨道。3C火箭去掉过渡级就变成3D火箭,用“半人马座”火箭取代3C的过渡级就变成3E火箭。3D重590吨,从1971年开始用来发射重型侦察卫星。3E重640吨,从1974年开始用来发射“太阳神”号探测器、“海盗”号探测器、“旅行者”号探测器等行星和行星际探测器,可把3.8吨重的载荷送往金星或火星。3C火箭通过增大芯级和固体火箭助推器的长度,并用惯性上面级取代过渡级,又演变为34D火箭。34D重780吨,从1982年开始用来发射重型军用卫星。“大力神”号运载火箭在118次成功的发射中已将150多颗卫星送入不同的轨道。

对接装置

对接装置是用于两个航天器在轨道上固定连接的装置。对接装置一般采用“销钉—锥孔”结构方式。

在空间交会中,一航天器主动靠近另一航天器进行对接,前者在对接中是主动的,它的对接装置采取“销钉”形式,中央有一导引杆;后者在对接中是被动的,它的对接装置采取“锥孔”形式。对接时导引杆使两航天器的对接装置精确对准,“销钉”插入“锥孔”,锁紧机构自动锁紧,完成对接。前苏联“联盟”号飞船与“礼炮”号航天站的对接和美国“阿波罗”计划中飞船的对接都采用这种对接装置。另一种方式是采用周向排列的导向装置和对接装置,可用于两个都能主动对接的航天器。在“阿波罗—联盟”号飞船联合飞行中首次采用这种对接装置。

“东方”号飞船

“东方”号飞船为前苏联最早的载人飞船系列,从1961年4月~1963年6月共发射6艘。“东方1号”飞船是世界上第一个载人进入外层空间的航天器。“东方”号飞船用于单艘和编队载人飞行。

飞船由球形密封座舱和圆柱形仪器舱组成,重约4.73吨。在轨道上飞行时与圆柱形的末级运载火箭连在一起,总长7.35米。“东方”号飞船由密封座舱(2400千克)和工作舱组成,质量约4730千克。球形座舱直径2.3米,能乘坐1名航天员,舱壁上有3个舷窗。舱外表面覆盖一层防热材料。座舱内有可供飞行10昼夜的生命保障系统、弹射座椅和无线电、光学、导航等仪器设备。“东方”号飞船在返回前抛掉末级运载火箭和仪器舱,座舱单独再入大气层。当座舱下降到离地面约7千米高度时,航天员弹出飞船座舱,然后用降落伞单独着陆。仪器舱位于座舱后面,舱内装有化学电池、返回反推火箭和其他辅助设备。“东方”号飞船既可自动控制,也可由航天员手控。飞船飞行轨道的近地点约为180千米,远地点为222~327千米,倾角约65°,周期约89分钟。

1961年4月12日,前苏联航天员Ⅰ.A.加加林乘坐“东方1号”飞船,绕地球飞行108分钟后,安全返回地面,开始了人类载人航天的新时代。1963年6月16日,世界第一个女航天员V.V.尼古拉耶娃—捷列什科娃乘坐“东方6号”进入太空。“东方”号飞船系列在空间进行了科学、医学和生物学研究以及技术试验后,都安全返回地面。

“东方红一号”卫星

“东方红一号”卫星是我国于1970年4月24日发射的第一颗人造地球卫星。按当时时间先后,中国是继前苏联、美国、法国、日本之后,世界上第五个用自制火箭发射国产卫星的国家。“东方红一号”卫星是中国的第一颗人造卫星,由以钱学森为首任院长的中国空间技术研究院研制,当时共做了五颗样星,结果第一颗卫星就发射成功。该院制定了“三星规划”:即东方红一号、返回式卫星和同步轨道通信卫星,而孙家栋则是当时“东方红一号”卫星的技术负责人。1967年,党鸿辛等人选择了一种以铜为基础的天线干膜,成功解决了在100℃~-100℃下超短波天线信号传递困难问题。“东方红一号”卫星因工程师在其上安装一台模拟演奏《东方红》乐曲的音乐仪器,并让地球上从电波中接收到这段音乐而命名。

东方快车

美国的下一步载人航天目标,是建造“东方快车”空天飞机和“自由”号永久空间站。目前正在研制一种叫X30的试验型样机,差不多像今天的DC9客机大小,是“东方快车”的1/3。最关键的技术是要解决制造大型组合式推进装置、轻型高强度耐高温材料、高超音速飞动结构外形和先进的控制系统。航天飞机能像普通飞机那样从地面水平起飞,以高超音速在大气层内飞行,并直接加速进入地球轨道飞行,完成任务后返回大气层,又像飞机那样水平着陆,完全达到能重复使用的目的。预计21世纪初能够进入轨道飞行。

地球静止环境业务卫星

美国第一代

地球静止轨道气象卫星

系列,英文缩写为GOES。这个卫星系列的第一颗卫星GOES-1在1975年10月16日发射,到1982年发射了6颗。地球静止环境业务卫星系列是世界气象组织从1978年开始的全球大气研究计划第一期全球试验的重要气象观测工具。卫星外形是一个圆柱体,高2.6米,直径1.9米,重294千克,工作寿命3年。卫星采用地球静止卫星轨道,位置保持精度:南北向优于1°,东西向优于0.5°。卫星靠自旋稳定,自旋速率为100转/分。卫星携带的气象遥感器是可见光、红外自旋扫描辐射计(VISSR)。仪器的望远镜口径为0.4米,两个波段为0.55~0.75微米(可见光)和10.5~12.5微米(红外),星下点分辨率分别为0.9和9千米。它拍摄的云图一帧有1820条扫描线,每帧的扫描时间为20分钟。对连续观测4帧以上的云图进行数据处理可获得风速和风向。测风速的精度优于3米/秒,这是地球静止轨道气象卫星的一个重要特点。仪器获得的原始云图数据以28兆比特/秒的速率传送到地面,经数据处理后每3小时通过卫星用1700兆赫频率向各地广播一次适用的云图资料。

这颗卫星还携有数据收集系统(DCS),可以收集1万个地面气象站、海洋自动浮标和无人值守地区的自动气象站所获得的温度、压力、湿度等环境资料,它的工作频率是401兆赫和468兆赫。卫星还携带有测量太阳粒子(质子、α粒子和电子)的空间环境监测器(SEM)。

从此系列的第四颗卫星开始,携带的气象遥感器改为可见光、红外自旋扫描辐射计的大气探测仪(VAS)。这种仪器有1个可见光通道和12个红外通道,除能拍摄云图外,还通过15微米(CO)波段探2测大气垂直温度分布和3.7微米(HO)波段探测不同高度的水汽含2量分布,从而获得大气三维结构的气象资料。探测大气垂直温度和水汽分布的星下点分辨率:晴朗地区为30千米,有云覆盖的地区为60~100千米。这样的分辨率已足以了解风暴的形成、发展和移动。地球静止轨道气象卫星

地球静止轨道气象卫星是美国第一代地球静止轨道气象卫星,第一颗是1957年10月16日发射的。卫星外形是一个圆柱体,高2.6米,直径1.9米,重294千克;工作寿命3年。卫星携带的气象遥感器是可见光和红外扫描辐射计,星下点分辨率:可见光为900米,红外为8千米。它拍摄的云图一帧有1280条扫描线,对连续观测四帧以上的云图进行数据处理,可获得风速和风向,风速的精度约3米/秒。卫星观测的原始云图数据可及时传送到地面,经数据处理后,再通过卫星每隔3小时向各地广播一次适用的云图资料,各地接收后便可以进行气象预报。这类卫星还携带数据收集系统,可以收集一万个地面气象站、海洋自动浮标和无人看守的自动气象站所获处的温度、压力、湿度等环境资料。它每半小时提供一张云图,每天由计算机处理出1200个以上风速和风向数据,广播400多种传真气象图。在美国,除海洋大气局外,还有200多个用户接收它的云图。它还为世界服务,从西起澳大利亚,东至西欧和非洲,有1200多个站接收它的资料。

地球资源卫星

地球资源卫星是1972年才开始发展起来的新型卫星,它是航天技术与遥感技术相结合的产物。美国于1972年7月3日发射了E2431号第一颗地球资源卫星,随后又连续发射了5颗陆地卫星和1颗海洋资源卫星。1975年11月26日,中国发射了第一颗返回式遥感卫星,到1990年,中国共发射了12颗返回式遥感卫星,回收成功率达100%,后来还发射了“资源1号”卫星。这些卫星都获得了大量地球资源勘探资料。苏联从1977年起发射了“流星”系列地球资源卫星和海洋勘测卫星。法国于1986年也发射了先进的“斯波特”商用地球资源卫星。

地球资源卫星对工农业生产和地质、水文、海洋、矿藏、环境监测、生态平衡和预防自然灾害都有巨大作用。比如用飞机进行航空测量中国领土一遍,需拍150万张照片,费时10年;而用地球资源卫星测绘,则只需约500张照片,几天就可完成。要把整个地球测量一遍,也只不过需要18天就可完成,一个星期就可拍摄和积累地面景物照片1万张。地球资源卫星可以寻找矿藏和油田,找水和查火,预报农作物病虫害和产量,查清牧草分布和浮游生物的分布与密度。目前,全世界有100多个国家和地区利用这种卫星的遥感资料,发现了许多重要的矿藏和水利资源。

电子侦察卫星

电子侦察卫星是专门用来侦测对方预警、防空、反导弹等雷达的位置及信号特征,也可测定对方军事通信和无线电台位置,为本国战略轰炸机、弹道导弹和巡航导弹执行突防和攻击任务提供数据,也可用以侦察对方军事演习时的指挥、通信信号,并予截获。截获的信号记录在磁带上或存储在计算机里,在卫星飞经本国上空时发送到地面接收站。电子侦察卫星通常运行于300~500千米,甚至1000~1400千米的近圆轨道。

电子侦察卫星按侦察任务分为雷达侦察型、无线电通信侦察型和弹道导弹试验侦察型三种。到1986年底,美国和前苏联已分别发射电子侦察卫星83颗和139颗,其中,最有代表性的是美国1985年1月24日用航天飞机发射的侦察卫星,它重13.6吨,星上载有两种直径为22.9米的天线,卫星上的大型天线可截获100兆赫到20千兆赫之间的所有频率。

“电子”号卫星

“电子”号卫星是前苏联科学卫星系列。1964年1~7月共发射4颗卫星,重400~544千克。一次同时把两颗“电子”号卫星送入不同轨道,以期在不同高度和不同空间范围内同时完成对地球辐射带等的环境测量。“电子”号卫星的主要任务是研究进入地球内、外辐射带的粒子和与其相关的各种空间物理现象。“电子”号卫星带有:高、低灵敏度的磁强计、低能粒子分析器、低能质子检测器、太阳X射线计数器、微流星探测器以及记录微粒辐射和研究宇宙辐射成分的仪器。各种探测仪器可由程序装置控制工作,也可由地面指令工作,“电子”号卫星获得了地球辐射带、磁场、带电粒子的特性、空间分布和能谱的大量数据。

电子战飞机

电子战飞机包括电子侦察飞机、电子干扰飞机和反雷达飞机,是一种专门用于对敌方雷达、电子制导系统和无线电通信设备进行电子侦察、电子干扰和攻击的飞机。从现已问世的电子战飞机来看,它们基本上都是由轰炸机、战斗轰炸机、运输机、攻击机等改装而成。

随着信息时代的到来,信息战已成为未来战争的主要形态。能否夺取制信息权将直接决定着战争的胜败。因此,在未来的信息化战争中,电子战飞机在战争舞台上仍将扮演主要角色。有鉴于此,目前世界各国都在不遗余力地发展高性能的电子战飞机。美国从20世纪80年代就开始研制一种代号为“极光”的隐身电子侦察机。机上装有先进的合成孔径雷达、实时数据传输设备、红外和电子侦察设备。还有不少国家根据局部战争的经验,正在研制大功率、多功能的专用电子战飞机。据悉,这些专用电子战飞机将载有大功率干扰机,可实施远距离、大范围的强电子干扰。飞机上既载有雷达干扰机,又载有通信干扰机,还有干扰物投放器和反雷达导弹,可根据战场需要,有选择地使用或同时使用。

电传操纵系统

电传操纵是一种新型的飞机操纵系统,特点是把驾驶员的操纵指令转变为电信号来进行操纵。由微型驾驶杆、敏感元件、计算机、同服机构和舵机等部分组成。微型驾驶杆一般装在座舱的侧操纵台上,当驾驶员操纵它时,电传操作系统立刻将机械动作转变为电信号,经计算机计算放大后,通过舵机使舵面偏转。电传操纵系统的优点是结构简单,体积和重量小,易于安装和维修、操纵灵敏度高,无滞后现象。

多光谱扫描仪

多光谱扫描仪(MSS),有4个波段,分辨率80米。陆地卫星3号上的MSS增加一个热红外波段,分辨率为240米。第二代陆地卫星4~5号,从星体外形、结构、星载仪器到数据传输方式均有新的改进。星体采用多用途积木式结构,直径2.1米,长5.4米,轨道高度705千米,倾角99°,周期99分钟,每日绕地球18.5圈,覆盖周期16天。星上载一台多光谱扫描仪(MSS),一台新一代多光谱扫描仪TM有7个波段,分辨率除热红外波段120米外均为30米。卫星新增一个高增益天线,用于将遥感数据发送给

跟踪和数据中继卫星

,并由它转发给地面接收站,从而大大提高了数据传输速率和能力。1985年9月,陆地卫星系统的发射和管理由政府部门移交给地球观测卫星公司,实现了商业化。新的陆地卫星6~7号将把MSS的分辨率提高到60米,TM则新增一个分辨率为15米的全色波段。陆地卫星系列是20世纪70~80年代为世界各国提供航天遥感数据的主要遥感系统,对航天遥感的发展及其应用具有划时代的作用。

多功能无人机

多功能无人机将集侦察、校射、监视、战果评估、目标识别、无线电中继、对地攻击等多功能于一体,可在距敌较远时进行干扰、诱骗等软打击,也可在必要时对地面重要目标进行攻击。美国波音公司研制的“秃鹰”就是这样一种无人机。“秃鹰”是一种大高度、长续航时间的自主式无人机,可用于执行战略侦察、监视、目标探测、反潜战、指挥、控制、通信、大气监测、海关与边防巡逻等任务。该机采用全复合材料机体结构,具有很轻的大展弦比承载机翼。该机巡航速度每小时148千米,最大升限2.736万米,航程1.48万千米,续航时间120小时。其中升限和续航时间均创造了无人机的飞行记录。

“导航星”全球定位系统

“导航星”全球定位系统为美国国防

导航卫星

系列。“导航星”全球定位系统从1978年2月到1980年4月共发射6颗,取中高度圆轨道,采用双频伪随机噪声测距导航体制。主要任务是使海上舰船、空中飞机、地面用户及目标、近地空间飞行的导弹以及卫星和飞船实现各种天气条件下连续实施的高精度三维定位和速度测定,还可用于大地测量和高精度卫星授时等。全球定位系统有较高的军用价值,定位精度可达十几米左右,测速精度优于0.1米/秒,授时精度优于1微秒;民用时定位精度一般为100米左右。“导航星”系统(GPS)基本工作原理是计算卫星发射机和地球上接收机之间的距离。如果同时接收来自三颗卫星的信号,把接收每一信号的时间记录下来,利用已知的无线电传播速度,就能计算出接收机所在的位置,然后以每一卫星到接收机的距离为半径,以卫星为中心,作一个球体,这样,对三颗卫星可以作出三个球体,这三个球体的交点就是接收机的所在位置。不过,要作精确的计算,时间上必须严格同步,不然,一微秒的误差,会造成300米的定位误差。为此,利用一个导航卫星来授时,这样接收机同时接收来自四颗导航卫星的信号,也就是说至少要使四颗导航卫星同时出现在接收机的视场范围之内,使接收机能“看得见”,才能“听得到”。不论在地球哪一个角落,要求任何时刻都能同时收到四颗导航卫星的信号,才能精确地定位。“导航星”系统具有全球、全天候、连续、实时定位、精度高、抗干扰性强、不需要在国外设站、用户不需发射无线电信号、使用简单、不限制用户等优点,因此应用极其广泛,适于航空、航海、航天领域的飞行器和舰船,以及地面各种车辆和部队等,也非常适用于陆、海、空各军种作战需要,如“导航星”系统与武器系统相结合,会大大改善侦察敌情、目标定位、部队行军、弹药投放及联合军事行动等军事活动的效果。导航卫星

导航卫星是为地面、海洋、空中和太空用户导航定位的人造地球卫星。

1958年初,美国科学家在跟踪第一颗人造地球卫星时,无意中发现收到的无线电信号有多普勒效应,即卫星飞近地面接收机时,收到的无线电信号频率逐渐升高;卫星远离后,频率就变低。这一有趣的发现,揭开了人类利用人造地球卫星进行导航定位的新纪元。卫星定位导航,是由地面物体通过无线电信号沟通自己与卫星之间的距离,再用距离变化率计算出自己在地球或空间的位置,进而确定自己的航向。

这种设在天上的无线电导航台,就是现在的导航卫星,也可以说是当今的“罗盘”。目前已有不少国家利用人造地球卫星导航。这种导航方法的优点主要是:可以为全球船舶、飞机等指明方向,导航范围遍及世界各个角落;可全天候导航,在任何恶劣的气象条件下,昼夜均可利用卫星导航系统为船舶指明航向;导航精度远比磁罗盘高,误差只有几十米;操作自动化程度高,不必使用任何地图即可直接读出经、纬度;导航设备小,很适宜在舰船上安装使用。于是,卫星导航系统应运而生了。

动力系统

动力系统由火箭发动机和推进系统组成,如果是液体火箭发动机,还应有液体推进剂和输送系统。动力系统有火箭的“心脏”之称,它是使火箭实现飞行运动的原动力。

E

E-2C“鹰眼”舰载预警机

美国研制了3架原型机,最新的E-2C舰载预警机于1973年11月交付海军使用。E-2C的机长17.55米,机高5.59米,翼展24.56米;空重17256千克,最大起飞重量23544千克;最大平飞速度560千米/小时,巡航速度498千米/小时;实用升限9388米,最大航程2580千米;采用2台涡桨发动机,单机最大功率4.91兆瓦;机翼可以折叠。

该机外型奇特,除机身上方安装一个蘑菇状的天线罩外,在水平尾翼面上装有四片垂直翼面;这是为了避免天线罩产生的尾流对尾翼的干扰而采取的一种特殊的气动布局。天线罩内安装有警戒搜索雷达天线和敌我识别器天线,罩子直径7.32米、厚0.76米。机上雷达能够监控1250平方千米的空中目标。搜索雷达在8000米高度工作时,对目标探测距离分别为:低空轰炸机460千米,低空巡航导弹269千米,海面舰船360千米。能自动连续跟踪600个以上的空中目标,指挥引导己方40批飞机遂行战斗任务。

E-2C舰载预警机主要用于航空母舰战斗群的空中警戒,作为舰队的防空力量用于海面早期预警。E-2C预警机保护海上编队,能比舰载警戒雷达提供更多的预警时间。

EA-6B舰载电子战飞机

美国海军EA-6A舰载机上装设的干扰机,所能辐射的功率和覆盖频段都十分有限,已经越来越不能适应现代海战的需要了。为此,美国海军拨款,研制出一种专门用于电子战的舰载飞机EA-6B。该机于1971年1月开始装备部队。机长18.24米,机高4.95米,翼展16.5米,空重14588千克,最大起飞重量29483千克,海平面最大速度987千米/小时,巡航速度774千米/小时,实用升限11580米,最大航程3254千米。该机的主要电子对抗设备装在外挂的电子吊舱内。为了有足够的动力携带外挂负载,采用2台推力各为49.8千牛的轴流式涡轮喷气发动机。

电子对抗设备采用综合接收系统设计,其特点是对电子干扰设备和己方防御的干扰设备具有控制能力,即己方的电子干扰设备对敌方的雷达、无线电信号反应灵敏,而对敌方的干扰信号则不敏感,并能同时对战术干扰设备进行监视。该机装备的雷达告警接收机(AN/ALR-67)具有高截获概率、高测向精度、全向覆盖和广泛的信号识别能力。

AN/ALQ-99D大功率战术杂波干扰系统是EA-6B的核心系统,采用外挂吊舱式,每架飞机最多可携带5个吊舱。每个吊舱里有2台有源干扰发射机。该系统可自动完成发现和识别信号、干扰天线定向和干扰发射机变频等电子对抗措施。

AN/ALQ-126欺骗式干扰机是一种有源干扰设备。它可将敌方雷达照射到本机上的脉冲信号接收下来(延迟),并以大功率再将它们发射出去(回授),使敌方雷达跟踪这个干扰信号,从而产生方位和高度误差。这样,本机的真实位置就被隐蔽了。机上还装有AN/ALE-39干扰物投放设备、超短波通信干扰机等。

EA-6B常用战术有两种:一种是护航干扰(亦称伴随干扰),EA-6B直接加入突击机群编队,保持连续对敌方地对空雷达和高炮炮瞄雷达进行干扰,抑制战场一带的敌方防空指挥系统,进攻结束后,EA-6B再回到编队中的位置;另一种是远距干扰,EA-6B在突击机群进入目标区的同一方向上提前5~6分钟抵达预定活动区,活动区选择在敌方地对空导弹和高炮射程之外,与被攻击目标保持48~80千米的距离,EA-6B在活动区作往返航线或椭圆形航线飞行,对敌方火控雷达和指挥通信系统实施不间断地干扰,为己方的突击机群提供通向被攻击目标的“保护走廊”,支援其作战。

EH-101直升机

EH-101是由英国韦斯特兰直升机公司和意大利阿古斯特公司联合研制的多用途直升机。有海军型、民用型和军用型。海军型能昼夜全天候飞行,可在陆基、大小舰船和油井平台上起降。该机军用型造价约1200万美元。EH-101海军型直升机可在6级海情、任意舰船航向、任意风向和93千米/小时风速时,在3500吨级护卫舰上起降。最大起飞重量13000千克,有效载荷6083千克,带全部武器和任务载荷续时间为5小时,具有远距离巡航能力,航程在1000千米以上。可装备反潜搜索雷达、深水声纳浮标、监视跟踪设备、自动寻目标鱼雷、反舰导弹和小型武器、救援绞车等。

EH-60C直升机

美军第101空中突击师装备的EH-60C是UH-60直升机系列中的电子对抗型。1980年10月,美国陆军与西科尔斯基飞机公司签订合同,要求该公司准备一架YEH-60C原型机,机上安装“迅速定位”ⅡB电子干扰设备,以截获、监控和干扰敌方的战场通信。1984年10月,特雷柯航宇公司承担了将40架UH-60A改装成EH-60C电子对抗/电子支援型的改型合同。第1架生产型的EH-60C于1985年末完成,1987年首次交付美国陆军使用,该机的性能与UH60A基本相似。

F

F/A-18“大黄蜂”战斗机

美国F/A-18“大黄蜂”是美国麦道和诺思罗普飞机公司为美海军研制的舰载单座超音速多用途战斗及攻击机。主要用于舰队防空,也可实施对地攻击。第1架原型机于1978年11月首次试飞。该型机于1983年开始装备部队,正式服役。该机研制经费21.12亿美元,是美国海湾战争中的主力飞机之一。机身长17.07米,翼展11.43米(机翼折叠时为8.38米),机高4.66米;起飞重量16651千克;实用升限1.5万米;最大平飞速度1910千米/小时,作战半径740千米;装有1门20毫米6管机炮,备弹570发,9个武器挂架可挂2枚“响尾蛇”空对空导弹,2个“麻雀”中距空对空导弹或各种空对地武器,其他挂点可挂导弹、副油箱或其他武器;装有2台涡扇发动机,其加力推力共计2×71.2千牛。

F-105战斗轰炸机

战斗轰炸机家族在同一时期诞生的代表机型是美国的F-105。该机是由美国共和航空公司从20世纪50年代初在F-84的基础上开始研制的。其时,正值全世界刮起一股发展核武器之风。因此,F-105在设计之初就强调要具有战术核攻击能力。F-105研制之时,正值朝鲜战争打得如火如荼,因此,研制进度较快。1953年,朝鲜战争结束,F-105研制速度也慢了下来。直到1955年,原型机进行首次试飞,生产型于1958年正式装备部队。其最大平飞速度达到马赫数2.0,实用升限15850米,作战半径1460千米,最大载弹量5.9吨。尽管F-105具有载弹量大、突防能力强、突击性能好的特长,但作为一种战斗轰炸机,其空战能力却不敢让人恭维。越南战争中,曾有不少F-105成了越南空军米格机的活靶子。

F-111战斗轰炸机

F-111战斗轰炸机是由美国通用动力公司研制的世界上第一种变后掠翼战斗轰炸机,也是世界上第一种实用型变后掠翼飞机。美国的航空专家苦心钻研了10年,才掌握了变后掠翼技术。1962年,美国通用动力公司开始研制F-111,1964年,原型机进行了首次试飞,生产型于1967年10月交付部队使用。F-111的主要优点是载弹量大,航程远,机载电子设备齐全,超低空和全天候作战能力较强。缺点是结构笨重,机动性差,不适于空战。该机刚装备部队不久,美国即把其投入越南战场,主要想利用它优良的超低空性能撕开越南军队严密的防空网。然而,F-111出师不利,一上场就被击落两架。结果美国曾一度把所有参战的F-111撤回本土。为了不让越方得到变后掠翼的技术秘密,美国甚至还派出飞机去轰炸F-111的残骸。在海湾战争中,曾有42架F-111披挂上阵。尽管F-111战绩不俗,但毕竟已有30多年机龄,因此到1996年7月,F-111最后退出了历史舞台。

F-117隐形战斗机

1988年11月10日,美国国防部新闻报道官丹尼尔·霍厄德向公众宣布,美国已经研制成功一种飞机,这种飞机的编号为F-117A。至此,这个被严格保密了近10年的怪物终于首次亮相。1990年4月21日,美国空军专门安排F-117作了第一次公开展示,上万名观众有幸目睹了它的风采。F-117的外形看上去非常古怪。它面呈黑色,头部像个楔子,后缘呈锯齿状,机尾很像燕尾。更为与众不同的是,其全身找不到一丝曲线和曲面的痕迹,整个飞机几乎都由直线和平面组成,连它的机翼和V型尾翼也都采用了没有曲线的菱形。这种独特的外形使F-117具有了一种前所未有的隐身本领。因为这种外形可以改变雷达波的反射角度,从而大大减少飞机在雷达屏幕上的显示信号。此外,就连飞机的发动机进气口、尾喷口、座舱盖接缝、起落架等部位,也都经过有益于隐身的特别设计,采用这些措施后,F-117的雷达反射截面积只有0.01~0.1平方米,与一只小鸟的雷达反射截面积相差无几,使得先进的雷达也难以发现其踪迹。F-117作为当代高新技术结晶,代表了现代作战飞机发展的潮流。如今,隐身飞机已经成为许多国家研制新一代战机的发展目标。

F-14“雄猫”舰载战斗机

美国F-14“雄猫”舰载战斗机是美国格鲁门飞机公司为美国海军研制的变后掠翼重型舰载战斗机,主要用于护航、舰队防空,也可携带常规炸弹和空对空导弹执行远距离遮断和近距离空中支援任务。1972年10月装备航空母舰。

F-14采用串列双座、双发、双垂尾、变后掠翼的布局形式,能根据飞行速度自动变换后掠角。采用变后掠翼,一是可以改善超音速飞机的起降性能,解决高低速之间的矛盾;二是可缩小停放空间,以便上舰使用。其缺点是结构复杂,重量有所增加。

F-14没有副翼,尾翼由双垂尾和可差动的自动平尾组成。差动平尾不但可以起俯仰操纵作用,同时可以代替副翼起横侧操纵作用。

F-14的机身为全金属的半硬壳结构,机头可以向上折起。机上装有2台TF30-P-412涡扇发动机,单台推力为93.1千牛;F-14D则装有2台F110-GE-400涡扇发动机,单台推力为125千牛。F-14机长19.1米,机高4.88米,翼展为19.45米(后掠角20°时)、10.15米(后掠角75°时)。飞机空重18191千克,最大起飞重量33724千克。高空最大平飞速度2485千米/小时(2.34马赫),海平面最大平飞速度1470千米/小时(1.2马赫),最大巡航速度740~930千米/小时。海平面最大爬升率150米/秒,实用升限15240米,作战半径720千米。最大航程约3220千米。

F-14装有1门20毫米6管“火神”航炮,备弹675发;机下有10个外挂架,机身和机翼挂架可同时挂6枚“不死鸟”远距空对空导弹和2枚“响尾蛇”近距空对空导弹,或同时挂4枚“麻雀”中距空对空导弹和4枚“响尾蛇”近程空对空导弹;对地攻击时可载各种炸弹,最大载弹量6577千克。机上装有火控雷达、大型高功能红外扫描装置、火控计算机、平视显示器等组成的火控系统;包括数据传输、保密通信、机内通话等通信系统;惯性导航系统、塔康系统、雷达高度表、自动控制着舰接收机、姿态航向参考系统;以及敌我识别应答器、雷达警戒系统、主动电子对抗装置和干扰丝施放器等。

F-14格斗能力很强。在中距离时,可使用“麻雀”导弹进行全向攻击;近程格斗主要使用“响尾蛇”导弹。F-14有多种型别:A型为最初生产型;D型是A型的改进型,除换装发动机外,还对60%的电子设备作了改进;RF-14A为侦察型。

“发现者”号卫星

“发现者”号卫星是美国综合性军用试验卫星系列。自1959年2月到1962年2月共发射38颗卫星。36颗主要是试验性的返回型照相侦察卫星,其中12颗未入轨,12颗回收失败,12颗回收成功(8颗空中回收,4颗海面打捞);另外2颗为导弹预警试验卫星。“发现者”号卫星的主要任务是进行空间照相侦察,其次是进行生物辐照、空间环境探测、导弹预警试验和电子侦察试验。卫星和运载火箭末级阿金纳号在轨道上连成带有锥顶的圆柱形组合体。用阿金纳A为末级的发现者1~15号全长为5.8米;用阿金纳B为末级的发现者16~38号全长为7.6米。组合体直径为1.5米,总重为590~1150千克,卫星重111~200千克。专用系统为45.4千克重的一架16毫米相机和88.5千克重的胶卷密封舱。“发现者”号卫星系列在航天技术方面取得世界第一的成果有:1959年4月13日“发现者2号”进入近圆形极轨道,同时实现了三轴姿态控制。“发现者13号”于1960年8月11日在轨道上接收地面指令控制,弹射出一个再入密封舱并在海上回收。

通过它拍摄的照片,曾侦察到苏联研制新一代洲际导弹及其拜科努尔发射场的情况。1982年英阿马岛之战,美国利用侦察卫星及时发现了阿根廷“贝尔格拉诺将军”号巡洋舰的坐标和航向,英军统帅部在接到美国的情报后及时进行部署,于同年5月2日,英军核动力潜艇“征服者”号一举击沉“贝尔拉格诺将军”号,舰上368名官兵全部丧生。

“发现”号与“和平”号交会

1995年2月3日,美国“发现”号航天飞机发射升空。这次飞行的主要任务是实现与俄罗斯“和平”号空间站的在轨交会,随机一同进入太空的有5名美国宇航员和1名俄罗斯宇航员。

2月6日,“发现”号航天飞机经过3天的机动飞行,从空间站的下方绕飞到空间站上方120米处停泊下来,然后以每小时4.8千米的相对速度向空间站靠拢。19时20分,航天飞机与空间站相距11.3米,航天员们互相招手示意。在接近过程中,他们进行了通信联络、雷达与激光传感等多种用于对接的试验。13分钟后,“发现”号航天飞机逐渐拉开与空间站的距离,环绕空间站飞行一周后,再次启动机动发动机,离开了空间站,于2月11日安全返回地面。

这次航天飞机与空间站的太空交会是继1975年美国“阿波罗”飞船与前苏联“联盟”号飞船实现对接以后两国航天器的首次轨道会合,在此之前美国航天员已乘坐俄罗斯飞船进入了“和平”号空间站。这次空间交会说明美俄这两个世界航天大国在航天领域已开始了全面的合作,国际空间站已进入了工程建造的第一阶段,拉开了国际空间站建造的序幕,它的成功为空间站建造的顺利实施奠定了坚实的基础。

“费尔康”雷达

“费尔康”是采用了以色列埃尔塔电子分公司研制的EL/2075L波段有源相控阵雷达。该雷达可同时跟踪100个目标。在9000米高度,该雷达对战斗机大小的空中目标、舰船和直升飞机的探测距离分别为370、400、180千米。由于它是相控阵体制,故与采用旋转天线进行机械扫描的E-2和E-3预警机上的雷达相比有三个优点:一是扫描速度快,机械扫描雷达一般对空域扫描一周需12秒,识别目标需20~40秒,而“费尔康”的雷达只需2~4秒就能对目标进行识别;二是灵活性强,根据需要可以在选定的空域给以超长的驻留时间,以进行航迹跟踪或消除虚警,也能根据需要增大探测距离以探测特定扇区;三是可靠性好,即使多个收发组件出现故障,系统仍能继续工作。“费尔康”还装有收发组件、信号处理机、电子支援测量分系统、通信情报分系统、敌我识别系统和操作台等。

飞机诞生日

飞机是美国发明家奥维尔·莱特(1871~1948)和威尔伯·莱特(1867~1912)弟兄俩发明的。1903年12月17日10时30分,奥维尔驾驶他们自己设计制造的“飞行者1号”——一个有三层楼高的白色“怪物”,在美国北卡罗莱纳州的基蒂霍克海滩成功地进行了一次动力飞行。飞行距离为37米,时间为12秒;接着威尔伯也驾该机飞行了51秒,距离约260米。后来,人们将这一天定为飞机诞生之日。

飞机发射卫星

1990年4月5日,人类第一次从飞机上发射升上太空的火箭,在太空探索方面开始了一个新纪元——“微航天”时代。这天,一架改装后的美国B52核轰炸机呼啸升空,在飞机升到约2000米高度时,放下了一枚挂在右机翼下的长15米、顶部有一个卫星的三级不载人火箭,称为“柏伽索斯”号。5秒钟后,这枚火箭点火,直上太空,把约重200千克的一颗军用通讯卫星送入穿过北极和南极上空600千米高度的预定轨道上。在航天器发射方面使用微电子设备,大大减少了卫星和火箭的体积和费用,也使人们有了一种新方法把小的有效载荷送上太空。“柏伽索斯”号火箭装有一个翼,帮助它飞行爬上太空,从而省去了昂贵的地面助推器。除了坚固得多的航天飞机外,还没有有翼的

飞行器

像“柏伽索斯”那样,以音速8倍的速度飞行,或受到如此高强的热和压力。这次发射成功有两个意义:第一,它使宇航商业化的努力取得了新进展;第二,现在创造的用飞机发射卫星的可能性,可大幅度降低发射小卫星的费用。飞行器

飞行器是在大气层内或大气层外空间(太空)飞行的器械。飞行器分为三类:航空器、航天器、火箭和导弹。在大气层内飞行的飞行器称为航空器,如气球、

飞艇

、飞机等。它们靠空气的静浮力或空气相对运动产生的空气动力升空飞行。在太空飞行的飞行器称为航天器,如人造地球卫星、载人飞船、空间探测器、航天飞机等。它们在运载火箭的推动下获得必要的速度进入太空,然后在引力作用下完成与天体类似的轨道运动。装在航天器上的发动机可提供轨道修正或改变姿态所需的动力。

火箭是以火箭发动机为动力的飞行器(火箭发动机也常简称火箭),可以在大气层内,也可以在大气层外飞行。它不靠空气静浮力,也不靠空气动力,而是靠火箭发动机的推力升空飞行。

导弹有主要在大气层外飞行的弹道导弹和装有翼面在大气层内飞行的地空导弹、巡航导弹等。有翼导弹在飞行原理上,甚至在结构上与飞机颇为相似。导弹是装有战斗部件的可控制的火箭。通常火箭和导弹都只能使用一次,人们往往把它们归为一类。飞艇

飞艇是有推进装置、可控制飞行的轻于空气的航空器。飞艇由巨大的流线型艇体、位于艇体下面的吊舱、起稳定控制作用的尾面和推进装置组成。艇体的气囊内充以密度比空气小的浮升气体(氢气或氦气),借以产生浮力使飞艇升空。吊舱供人员乘坐和装载货物。尾面用来控制和保持航向、俯仰的稳定。飞艇的升降调整有多种方法,如改变浮升气体量(放气或充气)、抛掉压舱物(水或沙袋)、利用艇体或翼面的气动升力、改变推力方向等。

飞杆式加油

飞杆是一根可伸缩的半刚性杆,安装在飞机尾部。飞杆的未端对称地安装两个短翼,操纵它,就可使飞杆在一定的角度范围内移动。飞杆是由坐在加油机尾部座舱的一名飞杆操纵员操纵的。空中加油时,操纵员将飞杆放到加油状态,通过信号指挥受油机接近伸出的飞杆。当受油机接近加油机尾部5~10米距离时,两机保持位置不变,然后由飞杆操纵员操纵飞杆上的短翼,使飞杆移动,进入受油机的受油口。操纵员锁上连接器后开始加油。加油完后,操纵员开锁收回飞杆,两机脱开。这种装置的特点是有专门的加油员,飞杆输油流量大,加油时间短,加800升燃油的时间约需4~7分钟。

防雹火箭

把催化剂(如磺化银、介乙醛)、炸药送入云层分别播撒、爆炸,达到消雹降雨目的的火箭,称为防雹火箭。它是人类改造自然环境的一种工具。防雹火箭飞行的顶点高度一般在3~8千米。对防雹火箭的要求主要是发射安全、易于制造、使用方便、固体推进剂原料来源丰富、加工成形容易、成本低廉、生产安全。防雹火箭的壳体一般用纸或塑料制造,固体推进剂大多采用易于制取的黑火药,有的采用性能较好的复合药。中国农村在同雹害斗争中使用了防雹火箭,型号较多。有代表性的是“支农1号”消雹降雨火箭。火箭长800毫米,直径65毫米,总重3.15千克,使用的推进剂是聚氯乙烯复合药。

返束光导管摄像机(RBV)系统

返束光导管摄像机(RBV)系统由3台并列组成,可同步摄取同一景物的3个波段影像,分辨率为80米。陆地卫星3号上的RBV改由2台并列组成,可同步摄取互有重叠的两景单一波段影像,分辨率40米。

反卫星技术

反卫星技术是从地面、空中或外层空间攻击敌方卫星的军事技术。它包括:反卫星导弹、反卫星卫星、反卫星激光武器和粒子束武器等。反卫星导弹可以从地面发射,也可以从飞机上发射。20世纪60年代初至70年代中期,美国曾在“奈基—宙斯”反弹道导弹武器系统的基础上研制了第一代反卫星武器系统。从飞机上发射反卫星导弹具有机动灵活的特点。反卫星卫星与空间观测网、地面“发射—监控”系统组成反卫星武器系统。这个系统在接到命令后,将反卫星发射到预定轨道上,根据目标卫星的运行轨道,起动变轨发动机,作变轨机动去接近目标卫星,使用非核弹头和火箭将其摧毁。受变轨机动所消耗推进剂的制约,最大作战高度在2000千米以内。反卫星激光武器和粒子束武器在80年代初处于技术发展阶段和探索阶段。此外,航天飞机既能在空间捕获卫星,又能用各种攻击手段摧毁对方卫星。

反导弹无人机

为对付日益增多的地对地战术导弹的攻击,国外研究机构正积极研制用于拦截导弹的无人机。这种无人机可在距所防卫目标较远处击毁来袭导弹,从而克服了“爱国者”、C-300等一类导弹拦截距离近、反应时间长、拦截成功后的残体仍对目标有一定损害作用的不足。

“福波斯”探测器

1988年7月7日和12日,前苏联成功发射“福波斯1号”和“福波斯2号”两个火星探测器,开始新一轮探测火星及其卫星“火卫一”的活动。这种探测器重4吨,装有各种科学仪器,无线电太阳能电池板,姿态推力装置,电视摄像机等。它们能在太空飞行200天后,到达接近火星的轨道,在距“火卫一”几十米时,释放出一个永久性自动站,对“火卫一”进行460多天的科学考察,以便为将来载入登上火星探明道路。1988年底,福波斯1号在宇宙空间已失去联系,不知去向。福波斯2号1989年1月29日飞临火星,进入绕火星飞行的轨道,开始对“火卫一”进行考察活动。但到3月27日,福波斯2号又因出现故障而停止工作。这项探测火星的任务失败。

“风云1号”气象卫星

中国于1988年9月7日首次发射了一颗太阳同步轨道实验性气象卫星,星上主要遥感仪器是两台五通道可见光和红外扫描辐射仪,扫描宽度可达3000千米,星下点分辨率为1.1千米。卫星发送资料有三种方式:一是甚高分辨率图像传输(HRPT发射机);二是高分辨率图像传输(APT发射机);三是延时图像传输(DPT发射机)。卫星进入近圆形轨道不久,就发回了气象信息。这颗气象卫星星体外形为1.42m×1.42m×1.2m六面体,星体外侧对称安装6块太阳电池帆板,全部展开后星体总长8.6米,6块帆板上共装有14000片太阳能电池,可以产生800瓦电力,电池效率为11.5%~12%。卫星轨道高度900千米,倾角99度,运行周期103分钟,姿控方式为三轴稳定对地定向。

“风云2号”气象卫星

我国“风云2号”气象卫星是从太空对地球和大气进行观察时拍摄的。从气象卫星上获取的云图和气象资料,对工农业生产、航空、航海、捕鱼、军事保障及日常天气预报是卓有贡献的,它促进了气象科学、海洋及大气科学的研究和发展,使之可以实现对全球气象的连续观测和预报。气象卫星获得的大量气象资料,往往是常规方法无法得到的,自然很难用金钱进行估价,气象学家和气象人员用这些气象资料,极大地提高了预报时效和准确率,特别是对灾害性天气的监视能力。

G

GPS全球定位系统

GPS的身上载有GPS全球定位系统的接收终端机构,它充分利用定位信号获得准确方向。“斯拉姆”是采用GPS技术的第一种战术导弹。

1991年1月16日,美海军由A6型舰载攻击机携带两枚“斯拉姆”导弹飞向伊拉克的一座发电站,首先发射一枚命中发电站正面护墙,炸开一个大洞,随后一枚接踵而至,非常精确地穿洞而入,在发电站内部爆炸,彻底摧毁了这座电站。

轨道太阳观测台

美国发射的观测太阳的卫星系列,英文缩写为OSO。自1962年发射OSO-1以来,至1975年6月已发射到OSO-X。OSO系列的主要任务是通过观测太阳的紫外线、X射线和γ射线,系统而连续地研究太阳的结构、动力学过程、化学成分以及太阳活动的长期变化和快速变化。卫星由九边形的轮鼓和半圆形的帆形物构成。轮部以每分钟30转垂直于太阳方向稳定自旋,帆部指向太阳。科学仪器分别置于轮部和帆部。OSO系列的轨道倾角约33°左右,高度约550千米,轨道为圆形。

OSO系列持续观测了整个太阳活动周,技术不断改进,获得了大量的X射线、γ射线观测数据和远紫外线宽带测量和谱线强度测量资料,OSO-2取得了氢Lα谱线、电离钙的H和K线的太阳单色像。OSO-4、OSO-5、OSO-6取得284~1400埃范围的太阳光谱和宁静日冕、活动区、耀斑的X光谱,以及大量远紫外线太阳单色像。卫星的定向和姿态控制精度愈来愈高,OSO-4、OSO-5分辨角约为1,OSO-6分辨角为35,OSO-7分辨角达20。OSO-6能在8分钟内绘制整个太阳单色像或每30秒钟绘出一幅选定区域的7575的局部太阳像,OSO观测为研究太阳结构及其动力学提供了丰富的新资料。

轨道天文台

美国发射的在紫外线、X射线和γ射线波段(侧重于紫外波段)范围内探索宇宙的卫星系列,英文缩写是OAO。卫星重2吨多,长约3米,宽约2米;轨道倾角35°,高度750千米,形状近圆形,周期100分钟。

这个系列的第一颗OAO-1于1966年4月8日发射,由于电源失灵,发射后两天停止工作,未取得任何资料。

OAO-2于1968年12月7日发射,携有4架口径32厘米的望远镜,在1000~3000埃间的4个紫外光谱区(有效波长在2600、2300、1500和1400埃附近)用紫外电视光度计对热主序星作紫外光度观测;携有1架口径41厘米的反射镜,配上900~3000埃的宽带光度计,用来研究弥漫星云的紫外线辐射和星际物质吸收;携有4架口径20厘米的望远镜组用作恒星光度测量;2台恒星紫外物端光栅分光计,用来研究1100~4000埃区域的光谱细节。

OAO-3于1972年8月21日发射。为了纪念伟大的天文学家哥白尼500周年诞辰,被命名为哥白尼卫星。它携带1架直径81厘米、f/20的卡塞格林望远镜和光栅光电分光计,研究热星的紫外光谱;还携带3架小X射线望远镜研究3~9埃、8~18埃和44~60埃3个X射线波段的星际吸收和X射线源。

轨道地球物理台

美国发射的综合性空间观测台系列。它的科学测量内容包括太阳和银河系的宇宙线、宇宙线中的不同粒子成分、γ射线能谱、行星际等离子体、辐射带粒子、地球磁层和行星际磁场、高层大气成分、射电天体、Lα线在地冕中的散射、地面反照率、地球附近的行星际尘埃密度等。每颗卫星完成20项以上的实验。OGO系列最初采用自旋稳定系统,自转轴对向地面,后来发展到由水平扫描器、太阳敏感器、气体喷嘴系统和电驱动飞轮组合成的三轴稳定姿态控制系统。从1964年到1969年,共发射了6颗OGO卫星。

高能天文台

美国发射的大型轨道天文台系列。它的任务是对天体的X射线、γ射线和宇宙线进行高灵敏度和高分辨率的探测和研究,重点是研究X射线天文学。这个卫星系列原计划研制4颗,每颗卫星重约9500千克。后来改为3颗,卫星的重量和体积也都缩小了,但仍不失为20世纪70年代最大的轨道天文台系列。第1颗主要是进行X射线巡天探测,第2颗是详细研究有特殊兴趣的X射线源,第3颗测量γ射线和宇宙射线。

第1颗高能天文台(HEAO-1)卫星于1977年8月12日由美国肯尼迪空间中心发射,初始轨道的远地点和近地点分别为447和428千米,倾角22.76度,周期93.16分钟,卫星重量3175千克。A-1大型X射线巡天实验,主要目的是测绘0.15~20千电子伏能段的X射线源天图,并测定其能谱、强度和时间变化;实验仪器由7个X射线正比计数器、1个气体系统和2个星体方位装置组成。

A-2宇宙X射线实验,主要目的是测量0.2~60千电子伏能段弥漫X射线的辐射与吸收;实验仪器由6个正比计数器和1个气体系统组成。

A-3扫描调制准直器实验,目的是精确测定1~15千电子伏范围内的选定的X射线源的位置、大小和结构;实验仪器由两台配有正比计数器的扫描调制准直器、方位传感器等组成。

A-4硬X射线和低能γ射线实验,目的是研究能量范围为10千电子伏~10兆电子伏的X射线和γ射线源的位置、强度、能谱和时间变化等特性;实验的仪器由迭层闪烁计数器、粒子监测器等组成。

国际通信卫星

国际通信卫星组织经营的商用通信卫星系列。这个组织到1984年已拥有109个成员国。1965年4月6日,美国成功地发射了世界上第一颗半实用、半试验的静止卫星——国际通信卫星1号,正式为北美和欧洲之间提供通信业务,它是通信卫星进入实用阶段的标志。卫星既可由运载火箭发射,也可由航天飞机发射。它有一个灵活的公用舱,能适应通信有效载荷的变化。卫星还广泛应用了石墨纤维增强塑料,借以减轻重量。

国际通信卫星V号

现代世界上容量最大的国际商用通信卫星。整个卫星采用模块式结构,由天线舱、通信舱和辅助舱3部分组成。天线舱是个结构塔架,上面装有4个展开式抛物面反射器、2个馈源阵组件、2个覆球波束喇叭、5个遥测、指令和信标天线以及3个地球敏感器。通信舱装有15台接收机、43个行波管放大器、输入多路调制器、输出多路调制器和140多个微波开关等通信分系统组件。大功率行波管装在卫星南北两侧板上,使热量辐射到舱外空间。卫星的辅助功能器件,如动量飞轮、推进剂箱、管路和推力器均装于辅助舱内。在中央套筒内装远地点发动机。姿态控制的电子设备、传感器以及电源、遥测和指令分系统则装在中央安装板和南北短侧板上。卫星采用被动式温控,关键部件如远地点发动机和推力器等装有电加热器。在卫星进入地球同步轨道后,抛物面反射器展开,南北两侧各伸出一个长7米、宽1.7米的太阳电池翼,并自动跟踪对准太阳,为卫星的仪器设备提供电能。

国际通信卫星V号系列共有9颗卫星,截至1984年3月已发射了8颗。前6颗均由“宇宙神—半人马座”号火箭发射,后2颗由阿里安号运载火箭发射。其中3颗卫星上还装有1.6/1.5吉赫频段的专供海上船舶通信用的海事通信转发器,并采用重量轻、效率高的新型镍氢蓄电池代替镉镍蓄电池。

国际日地探险者卫星

美国与欧洲空间局合作研制的观测日地关系的天文卫星系列。这个系列的卫星从1977年10月到1978年8月共发射3颗。它们的主要任务是执行1976-1979年国际磁层研究(IMS)计划,在地球磁层的最边沿调查日地关系、研究太阳风与磁层交界面的激波和详细结构,探测接近一个天文单位处行星际区域的宇宙线和太阳耀斑。

国际日地探险者1号和2号是同时发射的,后者由前者弹射出来,成为“母女”卫星。卫星轨道的近地点约280千米,远地点约14万千米,倾角28.7°,周期约57.5小时。1号和3号由美国制造,为16边棱柱体,重量分别为340千克和470千克。2号由欧洲空间局制造,为圆柱体,重166千克,卫星以19.8转/分自旋稳定。3号是第一个环绕空间日地系统中的一个拉格朗日平动点(离地球约150万千米处)运行的卫星,也就是它既不环绕地球又不环绕太阳或月球运行,平动点处太阳引力恰好与“月—地”系统的引力平衡。

3号是一颗早期预报太阳活动的卫星,它比绕地轨道的1号和2号要早一个小时探测到太阳风的传播。它还能提供银河宇宙射线源和γ射线爆发的数据。3号于1983年被改名为国际彗星探险者卫星(ICE),任务为1985年9月与“贾可比尼—津纳”彗星会合,探测彗尾中的等离子体密度、流动速度、温度和重离子特性等数据。因此,它必须飞越月球并借助月球引力场提高运行速度。在与上述彗星会合后还将飞往哈雷彗星,测量太阳风对哈雷彗星的影响等数据。

“国际宇宙”号卫星

“国际宇宙”号卫星根据“国际宇宙”计划用前苏联运载火箭发射的科学卫星系列。这些卫星由东欧各国研制探测仪器,前苏联提供卫星保障系统。用于研究太阳、地球大气和行星际空间发生的物理现象,1969-1981年共发射22颗。

过载

作用在飞机上的气动力和发动机推力的合力与飞机重力之比称为飞机的过载。飞机所能承受过载的大小是衡量飞机机动性的重要参数。过载越大,飞机的受力越大,为保证飞机的安全,飞机的过载不能过大。一般飞机的G力很少超过5G,但战机往往要做G力达9G的急转弯去逃避敌人的攻击。然而,9G对飞机也是极限了,不过不是机体承受不了,而是飞行员承受不了。飞行员在机动飞行中会因为过载承受超重和失重。飞行员所能承受的最大过载一般不能超过8。

高速光度计

高速光度计可在可见光波段和紫外波段范围内,对天体作精确测量,既可确定恒星目标的光度标准,又可进一步识别过去已观测到的天体情况。

高枕无忧的宇航员

人在太空,由于失重的缘故,站着睡和躺着睡是一样的,而且也没有上下之分。一张双层床可以睡4个人。最上面睡1人,第2个人却睡在上铺的反面,和下铺上的第3个人面对面,第4个人呢?站在床的侧边睡,各得其所,互不干扰。

宇航员每人有一个睡袋,“睡袋床”上都装有台灯、通讯装置、电扇、隔音毛毯和特别床单,外还有枕头。在空间睡觉,本来有没有枕头和软垫子都一样,只不过多年的习惯用起来感觉可以自然些。

睡觉前,宇航员跟在家里一样,也把衣服脱掉,只不过要放到专设的小柜子里,免得到处飞舞。脚上的靴子不能脱,因为失重状态阻碍血流正常流向脚跟,脚跟容易被冻坏。然后,爬进睡袋,把长拉链从腿部拉到胸前。再用皮带系住腰部,戴上遮眼罩和隔音帽。最后调好空气,关上灯。为了避免手臂悬在空中,还得把手插在腰部的皮带里。睡袋的头部虽然固定在舱壁上了,人的脑袋却无法固定,睡觉时仍晃来晃去。不过,宇航员们仍能高枕无忧,安然入睡。

“哥伦比亚”号航天飞机

“哥伦比亚”号航天飞机是美国国家航空暨太空总署甘乃迪太空中心旗下拥有的太空梭之一。“哥伦比亚”号是美国的太空梭机队中第一架正式服役的,它在1981年4月12日首次执行代号STS-1的任务,正式开启了NASA的太空运输系统计划之序章。不幸的是,“哥伦比亚”号在2003年2月1日,在代号STS-107的第28次任务重返大气层的阶段中与控制中心失去联系,并且在不久后被发现在德克萨斯州上空爆炸解体,机上7名太空人全数罹难。

“哥伦布”号计划

欧空局联合11个国家,正在执行一项研制“赫尔梅斯”号航天飞机和“哥伦布”号空间站的计划。“哥伦布”号空间站由增压舱、极轨平台、服务舱和尤里卡平台组成。增压舱是空间站主体,为航天员工作和生活的场所;极轨平台用于对地观测;服务舱载有动力、温控、通信和其他保障系统;尤里卡平台是航天员从事空间科学实验的地方。“赫尔梅斯”号小型航天飞机实际上也是空间站系统的一个组成部分。

跟踪

由于运载火箭控制系统不可能绝对精确,航天器也就不可能一点没有偏离地进入预定的轨道。因而,航天器进入轨道以后,地面就要测出它的实际飞行轨道。另外,在干扰力的作用下,航天器轨道会逐渐发生变动,地面也需要随时知道它的变动情况。测定航天器轨道参数的任务由跟踪设备来完成。目前常用的跟踪方法有无线电跟踪和光学跟踪两种。用光学方法跟踪测轨要受到天气条件的限制。使用无线电电测轨法,只要频率、功率等选择适当,航天器飞经地面站上空,就可以对它测轨。由于使用无线电电测轨法所受的限制条件较少,故而该测轨法是目前航天器测轨的主要手段。现在,使用全球定位系统(GPS)能顺利地对航天器进行跟踪及测轨。跟踪和数据中继卫星

跟踪和数据中继卫星是转发地球站对中、低轨道航天器的跟踪、遥控信息和转发航天器发回地面的数据的通信卫星。1983年4月,美国从“挑战者”号航天飞机上发射了第一颗跟踪和数据中继卫星,它也是现代最大的通信卫星。跟踪和数据中继卫星相当于把地面上的测控站升高到了地球静止卫星轨道高度,一颗卫星就能观测到大部分在近地空域内飞行的航天器,两颗卫星组网就能基本上覆盖整个中、低轨道的空域。因此由2颗卫星和1个测控站所组成的跟踪和数据中继卫星系统,可以取代配置在世界各地由许多测控站构成的航天测控网。跟踪和数据中继卫星的主要用途有:跟踪、测定中、低轨道卫星;为对地观测卫星实时转发遥感、遥测数据;承担航天飞机和载人飞船的通信和数据传输中继业务和满足军事特殊需要等。

广播卫星

不必经过地面站转播,可直接向用户转播电视和声音广播的应用卫星就属于广播卫星。转播的原理和方法与在对地静止轨道上的通信卫星相似,但其转发器数目少、输出功率大,天线定向精度高,覆盖面积很大,故在边远地区、小岛或山区的用户都能直接收到转播的节目。

H

HAS3.2/3“山猫”舰载直升机

英国HAS3.2/3“山猫”舰载直升机主要用于反潜、搜索、攻击。1977年开始用于装备部队。其旋翼直径12.8米,机身长15.47米、高3.59米(折叠后长10.61米、宽3.75米、高3.20米),最大起飞重量5896千克,最大速度333/306千米/小时,航程593/620千米。装有功率为835千瓦发动机2台。主要武器为2枚反潜鱼雷或导弹、深水炸弹。主要设备有吊放声纳、磁探仪、雷达。

划时代的“一小步”

地球上亿万人的目光都通过电视屏幕紧盯着走出登月舱口的阿姆斯特朗。他花了3分钟才走完9级踏板的舷梯。美国东部时间,1969年7月20日,22时56分20秒,月面上终于踏出人类的第一个脚印。阿姆斯特朗面对沉睡已久的月球大地宣布:“对一个人来说,这只不过是小小的一步,可对全人类来说,这却是一个巨大的飞跃。”在此后2小时40分的月面探险中,两位宇航员展开了太阳能电池阵。安设了月震仪和激光反射器,还采集了22千克月球岩石和土壤的样品,并与美国总统尼克松进行了电视谈话。7月21日上午11时15分,登月舱飞离月面之后与绕月轨道上的飞船会合。1969年7月28日,美国东部时间12时55分22秒,“阿波罗”11号完成人类首次登月后,安全降落在夏威夷西南的太平洋上。总统尼克松亲临打捞的“大黄蜂”号航空母舰,主持“阿波罗”11号3位宇航员返航的欢迎仪式。“阿波罗”11号飞船和3位宇航英雄,在人类发展史上永久地刻下了自己的姓名。

哈勃太空望远镜

以著名天文学家哈勃命名的“哈勃”号太空望远镜,是迄今发射上天直径最大的望远镜,它总长12.8米,镜筒直径4.28米,主镜直径2.4米连外壳孔径为3米,全重11.5吨,是一座完整的“太空天文台”。哈勃太空望远镜可以独立完成许多天文研究工作。

第一,它能够单个地观测星群中的任一颗星;第二,它能研究和确定宇宙的大小和起源,以及宇宙的年龄、距离标度;第三,它能分析河外星系,确定行星部、星系间的距离;第四,它能对行星、黑洞、类星体和太阳系进行研究,并画出宇宙图和太阳系内各行星的气象图。

化学电源

早期发射的卫星多用化学电源,如锌汞电池、锌银电池、镉镍电池。锌汞电池放电电流小,工作电压不平稳。镉镍电池能输出较大的功率,但比能量略低。20世纪50~60年代的科学试验卫星、空间探测器和返回型卫星多采用锌银电池,它的放电电流和比能量都很大,是短期飞行航天器的主要电源。载人飞船和航天飞机多采用氢氧燃料电池,这种电源每组电池峰值功率高达12千瓦,无维护工作时间可达2500小时,并具有多次起动和停机功能。镉镍电池、镉银电池和镍氢电池常用作为太阳电池阵的蓄能器。

“和平”号空间站

1986年2月20日,前苏联发射新一代航天站“和平”号进入太空运行,这是前苏联的第三代航天站。它在设计制造上作了许多重大改进,技术更成熟,设施更完善,工作生活条件更好。它的最大特点是有6个对接口,可同时和6艘宇宙飞船或航天器对接,组成一个大型轨道联合体,成为未来空间城的雏形。从1987年2月6日发射的“联盟”4M2号飞船与“和平”号对接成功后,3月31日,“量子”号天体物理实验飞行器、4月23日,“进步”29号货运飞船先后都与“和平”号对接成功,形成了世界上第一次四位一体的轨道联合体。

在航天站上,宇航员们开展了多种多样的科学考察和实验工作,进行了地球资源勘察、天文观测、太空物理实验;还进行了太空植物栽培实验,从事了制造生产半导体材料和特种药物;考察了在太空长期飞行对人体的影响;还多次试验了舱外行走、太空安装作业,以及太空轨道转移等千百项科研活动。这些活动为人类进一步征服太空,在太空建立长期生活基地,以至为飞往火星等外星考察提供了极为宝贵的经验和数据资料。“和平”号航天站进行了许多大型科学试验工作,这期间还于1986年5月5日至1986年6月25日进行了航天史上第一次“太空转移飞行”——在“和平”号联合体与“礼炮”7号联合体之间的穿梭飞行,进行了50多天的极其复杂而又十分顺利的空间站之间的往返飞渡。

“和平”号探空火箭

“和平”号探空火箭是中国研制的固体气象火箭。“和平2号”和“和平6号”气象火箭分别于1968年和1979年发射。“和平2号”气象火箭是两级无控制火箭,动力装置由两台不同直径(第一级255毫米、第二级205毫米)的固体火箭发动机组成。火箭全长6.65米,重330千克。发射角为80°时,飞行高度可达70~74千米,用于探测20~60千米高度的大气参数。“和平6号”气象火箭为单级无控制火箭,用两种探测箭头:综合型箭头用于探测20~60千米的风、大气温度、压力等参数,火箭全长2.52米,重60千克;落球型箭头用于探测30~80千米的大气密度等参数,火箭全长2.31米,重58千克,火箭的直径均为161.5毫米。

核电源

航天器所用的核电源有放射性同位素温差发电器、核反应堆温差发电器和热离子发电器,它们都是利用原子核的突变(裂变或衰变)所释放的能量来发电的。这些能量以热的形式输出,由热电转换器转换成电能。这种核电源寿命长、工作可靠、对核辐射、强带电粒子场和微流星轰击等的承受能力较强,常用于行星际探测器和部分军用卫星。核电源价格昂贵且不安全。1978年和1982年,前苏联的“宇宙954号”和“宇宙1402号”卫星载入大气层后造成了放射性污染。美国、前苏联等国仍在继续研制千瓦和数百千瓦级的核电源,以满足功率消耗日益增长的需要。高效太阳电池、聚光太阳电池和反应堆核电源正在发展中。

核动力卫星

核动力卫星是使用核电源的人造地球卫星。核电源具有适应能力强,运行阻力小等特点,适用于某些军用卫星和行星探测器。但由于卫星坠毁时会对大气和地球造成污染,核电源的使用会受到安全上的限制。

卫星用的核电源有两类:放射性同位素温差发电器功率较小,为几十至几百瓦;核反应堆电源功率较大,可达数千瓦至数十千瓦。美国在1965年发射的一颗军用卫星中,用反应堆温差发电器作为电源,由于电源调节器出现故障仅工作43天。以钚238放射性同位素作热源的同位素温差发电器,曾用于“子午仪”号导航卫星、“林肯”号试验卫星和“雨云”号卫星;前苏联在1967~1982年共发射了24颗核动力卫星,都属于海洋监视卫星。在外行星探测中,由于空间探测器远离太阳,难以利用太阳电池发电,必须采用核电源。

航天器轨道控制

对航天器的质心施以外力,以改变其运动轨迹的技术,称为航天器轨道控制。实现航天器轨道控制的装置的组合称为航天器轨道控制系统。无摄动航天器的质心运动服从开普勒定律。但是航天器受入轨摄动影响和需要变轨或机动时,则必须控制航天器质心运动的速度向量,以满足航天任务对轨道的要求。控制航天器的速度一般使用下列控制力:反作用推力、气动力、太阳辐射压力、电磁力和其他非重力场的力以及行星引力。

航天器的轨道一般由主动飞行段和自由飞行段组成。主动飞行段是航天器变轨发动机的点火段,变轨发动机熄火后是自由飞行段。航天器在脱离运载火箭后便进入自由飞行段。如果要改变它的轨道,就要插入主动飞行段。这个飞行段的时间程序和姿态控制是两个关键问题。

航天器姿态控制

航天器姿态控制是获取并保持航天器在太空定向(即航天器相对于某个参考系的姿态)的技术。航天器姿态控制包括姿态稳定和姿态机动两个方面。前者是保持已有姿态的过程,后者是把航天器从一种姿态转变为另一种姿态的再定向过程。在实现姿态稳定之前,通常有一个姿态捕获过程。如在卫星刚入轨时需要建立初始姿态;某种偶然原因使卫星失去正常姿态时,还需要重新建立姿态。几乎所有的航天器都需要采用某种姿态控制方式。实现航天器姿态稳定和姿态机动的装置或系统称为航天器姿态控制系统。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载