科学盛宴丛书:未解的宇宙(txt+pdf+epub+mobi电子书下载)


发布时间:2020-07-19 04:54:47

点击下载

作者:汪诘

出版社:湖南科学技术出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

科学盛宴丛书:未解的宇宙

科学盛宴丛书:未解的宇宙试读:

序言

在我还是少年的时候,就对神秘的大自然和宇宙充满了好奇,每当借到一本讲述宇宙未解之谜的图书,都会如获至宝。神秘的飞碟是外星人的飞船吗?百慕大三角为什么会发生那么多离奇的失踪事件?尼斯湖里的怪兽到底长什么样?我痴迷地想知道这些神秘问题的答案。在那个少年的心中,宇宙之大,无奇不有,越是离奇的传说越有研究的价值。

但随着年龄的增长,我才逐渐发现,原来少年心中的大自然与世界的真相之间有如此巨大的差距。随着对科学知识的深入学习,我开始了解科学史,了解相对论、量子力学,我又突然发现,原来宇宙的真正神奇之处远超少年的想象。

外星生命之谜,生命起源之谜,黑洞之谜,暗物质、暗能量之谜等,这些宇宙中的谜题远比飞碟、百慕大、尼斯湖怪兽更加令人震撼和着迷。

青少年对宇宙未解之谜往往有着非常强烈的好奇心,而好奇心正是人类区别于动物最重要的特质之一。好奇心不但促使我们不断保持学习的状态,激发创造的活力,更驱动着人类文明的不断发展,甚至可以说,一切科学发现最初都是源于好奇心的驱使。

然而我也看到,在宇宙未解之谜这个科普领域却又是伪科学的重灾区。如果接受了错误的知识,青少年不但无法从小培养科学精神,反而还会形成错误的世界观,在看待问题的思维方式上可能会误入歧路。

在我的这本书中,你会跟随我从真假之谜分两个维度切入,领略最原汁原味的科学思维和科学方法。通过破除假谜,了解如何识别假象和谎言;通过了解真谜,将你引入真正的科学探索的大门。

在这个纷繁复杂的世界中,我希望你能尽早树立这样的思维方式:用证据还原真相,用科学理解宇宙。

这将令你受益一生。

本书能够得以顺利完成,我必须要感谢我的文献助理黄小艳女士(但我喜欢亲切地叫她牛牛小编),是她帮我耐心细致地查阅了大量的外文文献,以确保本书信源的真实可靠。我还要感谢我的好友,科普作家吴京平先生,他对本书的选题以及内容都提出了非常多宝贵的意见。因为有了这位擅长用评书风格讲科学史的高手相助,使得本书的趣味性大大增强。

来吧,这就跟我开启一段探索之旅。

宇宙终结之谜

宇宙终结之热寂说

我们知道,那些所谓的世界末日往往都是一些经不起推敲的传说和故事,没有任何的科学依据。但是,如果把时间的尺度拉到足够长,那么地球也迟早是要毁灭的。别的不说,单说太阳就不能一直像现在这样燃烧下去。科学家们已经发现,太阳在几十亿年以后就会变成一颗红巨星,很可能到那时候太阳的烈焰就会吞噬地球,地球上的所有水分都会被蒸发殆尽,当然也就不可能允许生命的存在。太阳最终也会因为燃料耗尽而慢慢熄灭,太阳系将回归黑暗。从这个意义上来说,世界末日迟早会到来。不过,那也只能称为地球或者太阳系的末日,并不是人类世界的末日,因为我们可以移民到宇宙中的其他恒星系。看一看

不过,如果我们把时间的尺度继续拉长,宇宙的最终命运又会是怎样呢?宇宙是否有末日呢?关于这个问题,依然是一个宇宙未解之谜。

但是,科学家们可以根据已知的物理定律,作出一些基于科学的猜想。你知道科学猜想和胡思乱想有什么区别吗?科学猜想是基于现有的实验或者观测,利用合理的假设和已知的科学定律,一步一步推导出来的结论。胡思乱想就刚好相反,不需要任何理由,仅仅只是随便一拍脑袋就凭空冒出来的想法。但是,我并不是说胡思乱想就要不得,其实,人类离不开胡思乱想,我们每个人都有胡思乱想的自由,只要我们清楚科学猜想和胡思乱想的区别就好。

这两节内容,就来跟你说说关于宇宙末日的几种科学猜想。总的来说,有两种最主要的猜想,一种叫作“热寂说”,一种叫作“大撕裂说”。我们先从最多科学家支持的热寂说开始讲起。

在物理学中,有一个非常著名的热力学第二定律,这个定律是这样说的:任何孤立系统中的熵,只能增大不能减小。那到底什么是熵呢?这个问题是一个我最常被问到,但也最常会把人搞糊涂的问题。

熵,实际上表示的是一种自然界自发的发展方向,这个方向就是从有序向无序发展,用热力学的术语来说就是从低熵值向高熵值发展。我们拿到一副新的扑克牌,牌是从小到大按顺序排列的,我们洗牌的次数越多,这副牌就会变得越来越无序,在这个系统中,熵就是在慢慢地变大。一个打碎的玻璃杯,不可能自发地还原。你在沙漠中堆起一座沙堡,风很快就会让沙堡消失,重新回归无序,再厉害的风也永远不可能把沙子吹成一座规则的沙堡形态。

听完我的这三个比喻,或许你感觉自己理解了什么是熵,但我想告诉你,用有序和无序来理解熵,依然还是一种比喻,这样的理解依然是模糊的,在遇到一些其他例子时,还是容易产生误解。

例如,假设我们有两个盒子,每个盒子中都有4块积木块,其中一个盒子中的积木块大致均匀地分布在盒子中;而另一个盒子中的积木块则是一边多一边少。

现在我问你,这两个盒子的熵值,哪个更大呢?这时候,你如果再用有序和无序去考虑问题的话,可能就会有点儿犯糊涂了,到底是盒子1更有序呢,还是盒子2更有序?或许,大多数人会认为盒子1更加有序,因为看起来更加整齐。但是,答案恰恰相反,从熵的角度看过去,盒子1的熵值更大,也就是更加无序。而盒子2的熵值更低,更加有序。这是为什么呢?

今天,我要教给你理解熵值更加准确的方法,就是考虑哪种状态的可能性更高。我们来分析一下,假如我们把这个盒子中的空间一分为二,给积木编号为1、2、3、4。那么,盒子1我们可以认为是四块积木刚好一边各2块,而盒子2则是左边有1块积木,右边有3块积木。

请你开动脑筋,想一下盒子1的这种分布方式的可能性总共有多少种,答案是6种可能性。相当于从4块积木中任意选出2块放到左边的空间。那盒子2的分布方式有多少种可能性呢?答案是4种可能性,相当于从4块积木中任意取出1块放到左边的空间。

好了,如果你理解了,那么请你记住,熵值不断增大的真正含义是自然界会自发地朝着分布可能性更高的方向发展。你可能到现在还没有想明白,那么我们来做一个思想实验。假设现在这是一个密封的长条状的盒子,盒子有一定的深度,这样积木块可以在里面自由地运动,不会堵塞。

好了,我们把盒子拿起来,使劲地摇一摇,然后把盒子放平稳,你觉得出现盒子1的情况的可能性更大呢,还是出现盒子2的情况的可能性更大?这次应该不难理解了吧,显然,积木块大致平均分布在盒子中的可能性是更大的。

或许有些人还会想,为什么熵值会必然增加呢?在这个思想实验中,完全有可能摇出盒子2的情况嘛。的确,在这个例子中,因为盒子1的可能性比盒子2的可能性大得不是很多,所以,只要我们摇的次数足够多,总还是会观察到盒子2的情况的。但是,如果我们把积木块的数量增加到1000个,那么盒子1的可能性就要比盒子2——也就是999个积木块都集中在右边——的可能性大得多,大到一个不可思议的程度,大约是10的300次方倍。打个比方,假如你从宇宙诞生的那一刻开始,每一秒钟摇一次盒子,一直摇到今天,也远远摇不出一次盒子2的情况。

好了,有了熵增的基本概念后,我们就要回到主题了。在宇宙学家的眼中,我们的宇宙就好像是这个盒子,而宇宙中的所有物质都是由原子组成的,这些原子就好像是盒子中的积木块。那么,宇宙中所有原子也一定会自发地朝着无序发展,整个宇宙的熵最大,也就是最无序的状态是什么呢?就是宇宙中的所有原子都均匀地分布在整个宇宙空间中,到了这时候,宇宙熵就达到了最大,我们的宇宙再也不可能产生什么变化了,宇宙的末日也就到了。

因为这个末日是由热力学第二定律推导出来的,所以,就被称为宇宙的热寂说。并不是宇宙最后会热死的意思,其实到了热寂那一天,宇宙的温度也降到了最低。

不过,科学家们对于热寂的整个过程到底会是怎样、会在多久之后发生,却没有一致的答案,甚至产生了比较大的分歧。关键的问题在于质子到底会不会衰变。这又是一个宇宙未解之谜。

那么,质子衰变是怎么回事呢?在自然界中,有一种叫作天然放射性的现象,这种放射性是怎么产生的呢?原因就是一些原子量较大的原子突然变成了原子量较小的原子,例如常见的,用来制造原子弹的铀原子,就会突然变成铅原子,这被称作衰变,衰就是表示原子量或者能量衰减了。

不过,原子的衰变不是质子衰变。大家知道原子核是由质子和中子构成的,那么,有一些物理学家就开始思考一个问题:构成原子核的质子会不会衰变呢?

正方物理学家认为,质子会衰变,因为用质子衰变可以解释宇宙学中的一个难题,这个难题就是:为什么在我们的宇宙中物质比反物质要多得多。

但是,反方物理学家却不这么认为,他们认为质子不会衰变,理由更简单,因为我们从来没有在实验室中观察到过质子的衰变,要解释那个反物质的难题可以从其他角度去考虑,但是请不要随意假设没有实验证据的质子衰变。

正方说,实验观察不到是因为质子的平均衰变周期太长了,根据他们的计算,质子最少也需要100万亿亿亿年才有可能衰变。

这里我需要解释一下,这个时间表示的是一种衰变概率,它的意思也可以等价于,如果我们同时观察100万亿亿亿个质子,那么平均每年就会有一个质子发生衰变。

检验科学理论的正确与否,唯一的方式就是实验证据。为此,美国和日本都建造了巨大无比的实验项目,其中最出名的就是日本的超级神冈探测器,科学家们在一个盛满了5万吨纯水的大水池中除了探测中微子外,也在仔细地捕捉质子衰变的信号。

那么,实验的结果到底是什么呢?质子是否衰变与宇宙终结之谜又是什么样的关系呢?我下节给你揭晓答案。

如果大家想见识一下超级神冈探测器的壮观景象,可以到“科学有故事”的微信公众号中回复关键词“SK”来观看一段纪录片中的节选。神冈探测器真的犹如进入科幻世界,令人迷醉,不看一眼的话,太可惜了。宇宙终结之大撕裂说

上节我们说到,质子是否会衰变这个问题事关宇宙热寂的方式。全世界有很多大型的实验装置都在试图寻找质子衰变的证据,然而,到目前为止,全世界没有任何一个实验室宣称找到了质子衰变的证据。不过,这还不能证明质子就一定不会衰变,很可能只是因为我们观察的时间还不够长,观察的对象还不够多,毕竟,质子衰变的概率实在太低太低了。看一看

不过,不论质子是否衰变,宇宙从现在开始都要经历一个漫长的退化时代。在这个阶段中,虽然质子是稳定的,不会发生衰变。但是,宇宙中的恒星都会慢慢地燃烧殆尽,星系和恒星的形成逐渐减缓并完全停止。越大越亮的恒星燃烧得越快,太阳在银河系中算是一颗中等大小的明亮恒星,大约再过50亿年就会全部烧完。而像比邻星这样的红矮星,体积小,温度低,比太阳可以燃烧的时间要长得多,但总有一天,也是要耗尽燃料,直至枯竭的。

这个过程是不可逆的,因为宇宙中的总熵必须一直增大。尽管宇宙中的总能量是守恒的,但是在热力学第二定律的支配下,能量会趋向于均匀分布在宇宙空间中。恒星燃烧其实就是把能量以辐射的形式散布在宇宙中。

有些人可能听说过生命的本质是负熵,这就好像人可以通过打扫屋子把屋子从无序转变成有序。那么,有没有可能在生命的参与下,减少宇宙的总熵呢?很遗憾,这是不行的。其实,生命不但不能减少一个孤立系统中的熵值,反而只会加速熵的增加。

就以打扫屋子为例,虽然屋子的熵值变低了,但是从地球这个大环境来看,你打扫屋子的行为必定要消耗能量,从总体来看,你只会消耗更多的电力和体能,而不论是烧煤发电还是消化食物产生体能,都是在破坏某种有序结构。所以,生命的出现,其实是让大自然更高效率地消耗能量,我们每一个人其实都是加速宇宙走向热寂的帮凶。

随着时间的推进,质子是否会衰变就决定了宇宙走向热寂的不同36方式。按照现在的某些理论假设,质子的半衰期大约是10年,也就36是说,在10年之后,大约就会有一半的质子发生了衰变。等到了大40约10年之后,宇宙中所有的质子都会衰变完毕。到这个时候,宇宙中就再也找不到会发光的物质了,只剩下黑洞和质子衰变后产生的轻子。

宇宙也从退化时代进入了黑洞时代,这个时代要远远长于充满恒星的宇宙时代,百花盛开的宇宙只不过占到了黑洞时代的约0.0000…(60个0)1,这是一个小到了简直无法打比方的数字。但黑洞也不是永恒的,它依然无法逃脱热力学第二定律为它设定的命运,黑洞会慢慢地蒸发,最终以霍金辐射的形式将自身的质量一点点地还给宇宙。

当所有的黑洞都蒸发完毕后,宇宙就进入了真正的黑暗时代,虽然从宇宙大爆炸那一刻产生的光子依然游荡在宇宙空间中,但是,宇宙是无比黑暗的,因为这一点点的光子与如此巨大无比的宇宙空间相比,依然是不值一提的。

但此时,宇宙离最终的完全热平衡还差很远很远。大约会在100010年以后,宇宙达到了完全的热平衡,也就是说,所有的光子和轻子在宇宙中均匀地分布,宇宙的熵达到了最大值。到了这个时候,我们才可以说,宇宙热寂了。那么宇宙热寂之后呢?之后是有之后还是从此再也没有之后了呢?目前的科学就只能到这里为止了。

如果质子衰变的假设是错误的,质子不会发生衰变,它会一直稳定地存在下去。那么,一个可能的结果就是宇宙中所有原子量小于铁的物质都会最终发生核聚变,变成铁原子。而所有原子量大于铁的原子都会最终衰变为铁原子。因为根据量子理论,铁的结合能是最小的,1500熵值是最大的。这个过程大约要经过10年才能最终完成。这也是宇宙的热寂,因为最终的目标依然是熵值最大。此时的宇宙,铁原子均匀分布在宇宙的所有空间中。冰冷的热力学第二定律依然死死地统治了整个宇宙。

关于宇宙热寂的假说一度统治着宇宙学,不同的宇宙学家只是在热寂的年代和方式上会产生分歧。不管怎么说,宇宙热寂需要的时间实在太长太长了,我建议你不用试图去想象我前面说到的那些时间跨度有多大,因为我保证,不论你有多么巨大的想象能力,也不论你把那些时间想象得有多久远,实际上,真实的时间跨度依然要远远大于你的想象。

但是,令人意想不到的是,当人类进入21世纪,在宇宙学上的一个意外发现,很可能让宇宙末日来临的时间大大地缩短了,这种缩短程度超乎想象,就好像把现在的整个可观宇宙一下子缩短到还没有一个原子那么大。这个意外发现到底是什么呢?

这就是我们之前已经详细讲过的暗能量,暗能量的出现,很有可能改变宇宙的最终命运。

2003年,距离暗能量的发现已经过去了四年,美国著名的达特茅斯学院的罗伯特·考德威尔仔细地计算着暗能量对宇宙的影响到底会是怎样。计算结果表明,如果暗能量产生的斥力与宇宙的平均能量密度的比值小于-1的话,那么很可能,暗能量的力量会无限增强下去,一直到把宇宙中所有的基本粒子都互相扯开为止。

考德威尔用了一个词来形容这种情况,英文是Big Rip,也就是——大撕裂,非常的形象。更加令人意想不到的是,根据考德威尔的计算,这个结局会到来得非常快,他的计算结果是在220亿年之后,宇宙就会被彻底撕裂了。所谓的彻底撕裂,就是每个基本粒子之间互相远离的速度都超过了光速,任何基本粒子之间永远也不再可能发生相互作用。

这个理论刚出来的时候,并未引起太大的反响,偶尔也会有一些科学家参与讨论,但反对的声音比较多。不过,大撕裂假说在2015年迎来了一个重量级的支持。这一年7月,在著名的《物理评论D》杂志上刊登了一篇论文,这是一本入选自然指数的期刊,在物理学界很有影响力。这篇论文的作者是美国范德比尔特大学的一组研究人员。他们建立了一个数学模型来计算宇宙加速膨胀的可能结果,该模型支持大撕裂假说。并且,这篇论文还回应了之前一些科学家对这个假说的质疑。

虽然大撕裂距今还有220亿年,并不会对我们的现在产生任何影响。但每每想到这种可怕的大撕裂的结局,我还是会不寒而栗,想想吧,每一个基本粒子互相远离的速度都大于光速,这个宇宙不可能再发生任何的变化,一切可能性都丧失了。但是,在人类没有彻底揭开暗物质和暗能量产生的根源之前,大撕裂仍然是一个建立在流沙上的城堡,可能说毁就毁了。

热寂假说和大撕裂假说是目前科学界有关宇宙末日最重要的两种假说,除此之外,还有一些其他假说。例如宇宙大塌缩假说,这种假说认为宇宙在膨胀到某一个临界值之后,就会开始收缩,宇宙将会从膨胀模式进入塌缩模式。这个假说曾经一度是主流的假说,但是随着暗能量的发现,这种假说也就失去了市场。但它并没有被彻底地否定,主要原因还是关于暗能量我们知道的太少了。

此外,还有一种很有趣的假说叫作大反弹,也就是说,宇宙就像一个反复被吹大又放气的气球,会不断地从小到大又从大到小,循环往复。

总之,我们的宇宙到底会走向何方,会以什么样的方式迎来末日,这些问题依然是宇宙未解之谜。但我想告诉大家,或许你今天晚上睡觉的时候,也会想出几个宇宙终结方式的猜想,但是,在我看来,我们普通人的这些猜想都是胡思乱想,而不是科学猜想。如果你真的对宇宙末日的问题感兴趣,最好的方法是从现在开始就学好数学和物理,等你能把科学家们现有的假说中那些数学公式都看懂了,再去提出自己的假说也不迟。

最后,这一节给大家准备了一个Discovery的小视频,听听专业人士对宇宙终结的看法,其中还有一个观点,想要弄懂宇宙终结,就必须先搞清大爆炸的原理,这是为什么呢?如果你有兴趣,在我的微信公众号“科学有故事”中,回复“宇宙终结”,就可以观看了。

宇宙大沉默之谜

他们在哪儿呢?

估计很多人都看过著名的科幻小说《三体》,这部科幻小说的第二册有个副标题,叫“黑暗森林”,很多人看完之后都会觉得印象深刻。然而,可能你们没有注意到,在小说中,作者借主人公的口,解释完黑暗森林理论后,接着说了一句这就是“费米悖论”的解释。而这个著名的费米悖论,正是我们今天要谈论的话题,宇宙大沉默之谜。费米悖论

我们要先从费米悖论开始讲起。费米是意大利科学家,二战期间为了躲避法西斯的迫害,逃亡到了美国。他在美国可以算是家喻户晓的著名科学家,因为他主导研发了世界上第一个受控核反应堆。这个反应堆就是原子弹工程的起步阶段,为原子弹的制造奠定了基础。两位获得过诺贝尔奖的华人科学家杨振宁和李政道都曾经受教于他。看一看

既然叫费米悖论,就是因为这是费米先生弄出来的一个悖论。这个故事大致是这样的,1950年的一天,费米和几个同事,在一起吃午餐的时候,偶然聊起了最近的新闻。从1947年罗斯威尔事件以来,不明飞行物是当时的热门话题。很多人声称自己看到了UFO,报纸上也经常报道。正巧,纽约也有新闻说最近垃圾桶经常失踪,不明不白就没了。于是漫画家邓肯就画了一张很有意思的漫画——外星人开着飞碟来到了地球,趁月黑风高之夜,把垃圾桶全都偷走了。

我想这些外星人太没见识,我们地球人都知道,偷井盖比偷垃圾桶合算。也不知道这些外星人是聪明还是笨。费米他们几个谈到了UFO,他们当然不相信外星人光临地球的传闻,因为这些科学家都受过严格的科学训练。知道什么是可靠的证据,什么是捕风捉影的臆想。但是,就在这时候,费米的这颗聪明脑袋中突然冒出了一个问题。

他的直觉告诉他,在地球上没有发现外星人存在的证据,这件事情似乎有点儿不可思议。费米是个估算的高手。有一个著名的事件,当年测试原子弹爆炸的时候,他第一个跳起来,撒了一把碎纸屑。他根据原子弹冲击波把纸屑吹出去的距离,就准确估算出原子弹的当量是2万吨TNT。

今天,费米突然想估算一下地球文明与外星文明接触的可能性有多大。估算必须有个起点,费米的起点是宇宙学第一原理,也被称为“平庸原理”,意思是,地球在宇宙中并不特殊,只是一颗普普通通的行星。我们也并不是独一无二的存在。

在这个基本前提下,费米就开始了估算:银河系有1000多亿颗恒星,哪怕只有万分之一的概率出现地球这样的行星,也有1000万个“地球”了,再有万分之一的概率进化出智慧文明,那也至少应该有1000个像地球一样的文明了。银河系的尺度是10万光年,如果按照百分之一的光速计算,1000万年就可以从银河系这头飞到那头了,即便是按照千分之一光速的保守速度计算,1亿年也能横贯整个银河系了。1000万年也好,1亿年也好,相对于地球存在的时间来说,都不算太长,毕竟我们的地球已经存在了46亿年之久。

更重要的是,银河系中的智慧文明利用无线电波互相联系应该是更加普遍的行为,毕竟无线电波的速度可以达到光速,如果以光速作为考量的话,那么银河系就很小了,再相对地球46亿年的历史来说,早就应该有无数智慧文明发射的无线电信号到达了地球才对。

可是我们人类却什么痕迹也没发现,这不是一件奇怪的事情吗?假如发达的外星文明有很多,那么他们都在哪儿呢?正是费米当时的这句感叹“那么他们都在哪儿呢?”成为了著名的“费米悖论”。

我们来理一下费米悖论的逻辑关系,它的核心思想是“人类没发现外星人的踪迹(简称观点甲)”和“人类应该发现外星人的踪迹(简称观点乙)”相矛盾,但目前我们已经知道观点甲是事实,这样一来,就必须要给观点乙一个合理的解释。

实际上,在费米刚刚提出这个疑问的时候,不管是他自己还是其他人,也都当是一个茶余饭后闲聊的谈资而已,并不会去深入思考这个问题有没有什么严肃的科学研究价值,或者社会学意义。而且,在1950年那个时代背景下,要解释人类为什么没有发现外星人这个问题还是相对容易的。

反对的人可以从两个角度去反驳,第一个角度是质疑宇宙学第一原理,凭什么认为地球这样奇特的环境在宇宙中是普遍存在的呢?那个时候,人类的望远镜还很弱,根本无法证实太阳系以外还有行星。而且,根据天体物理学的定律,我们也可以计算出,恒星系中的宜居带,也就是允许液态水存在的温度区域是相当狭窄的。狭窄到什么程度呢?我们以太阳系为例,假如我们把整个太阳系比作是一个足球场的话,你用美工刀在足球场中心附近划出一个圈,划痕所在的区域差不多就是宜居带的大小了。因此,平庸原理在没有证据的情况下,是完全可以质疑的。

反对者的第二个反驳角度是,人类还没有仔细监听过来自宇宙的星际无线电波,凭什么说外星人没有试图用无线电与我们取得联系呢?费米提出问题的年代也是射电望远镜刚刚发明的年代,那时候的射电望远镜分辨能力还比较低,并且也没有几个人把射电望远镜的使用目标设定在监听外星智慧文明信号上,所以,当时没有收到外星人发给地球的电报不是太正常不过了吗?监听和寻找

所以,费米的闲聊很快就过去了,没有什么人真正把它当回事。不过,在美国确实有一位痴迷于寻找外星人的射电天文学家,他就是法兰克·德雷克。1960年,德雷克使用美国国家无线电天文台的射电望远镜开始了他的第一个地外文明搜寻计划,史称第一次“奥兹玛计划”,这是人类历史上第一个由严肃科学家代表官方实施的外星人搜寻计划,具有开创性意义。

从此开始,人类搜寻地外文明信号的努力就再也没有停止过,而且投入的资源也越来越多,规模也越来越大。就在2016年,全世界最大的单口径射电望远镜中国天眼在贵州落成,也正式加入搜寻地外文明电波的战斗中。然而,将近60年过去了,人类依然一无所获。如果银河系中真有无数个外星文明存在的话,那么它们似乎对地球集体保持了无线电静默。人类就像是一个孤独的小孩,寂寞地调节着收音机,一个频率一个频率地慢慢搜索过去,虽然全神贯注地听了60年,却什么也没有听到。

这是费米悖论逐渐受到科学界重视的原因之一,在费米那个年代,人们只是感觉宇宙是沉默的,但并没有证据。可是今天,我们已经积累了快60年的证据。

第二个原因就是宇宙学第一原理也获得了大量观测证据的支撑。从1995年人类发现第一颗系外行星开始,人类发现系外行星的速度就逐年递增。截止到2017年8月,综合英文维基百科和NASA官网提供的数据,天文学家已经发现了将近5000颗系外行星候选者,超过3200颗已被确认,这其中被确认位于宜居带的行星有53颗。

这里要特别说明的一点是,这些系外行星中的80%以上都是由开普勒空间望远镜发现的,而开普勒望远镜是固定地对着天鹅座附近的一小块天区,也就是说,它只能观测固定的10万颗恒星左右。它采用的方法叫作“行星凌日”法,这种方法有一个苛刻的要求:只有当系外行星的公转平面与地球的公转平面大致平行且处在同一水平线上时,才能被开普勒望远镜观测到。因此,按照概率来说,在这10万颗恒星中,大约只有1%,也就是1000颗恒星系中的地外行星能被观测到。现在我们的观测证据表明,几乎所有的恒星系统中都存在行星,而且都不止一颗。

这些证据足以表明宇宙学第一原理是可靠的,地球在宇宙中的地位并不特殊,与地球相似的系外行星比过去最大胆的天文学家估计的还要多。

正是在这样的背景下,越来越多的科学家、哲学家开始对费米悖论感兴趣了,既然大量地外文明存在的可能性很高,那么他们都在哪儿呢?

人类在将近60年的监听过程中,只有唯一的一个真正令人激动的发现,这个发现是什么呢?如果你想知道的话,在我的微信公众号“科学有故事”中,回复“Wow”就可以观看了。黑暗森林法则看一看

上一节我给大家讲了从宇宙学第一原理出发,我们似乎应该得出一个最合乎逻辑的结论就是:人类应该收听到来自外星文明的电波。但现实情况是,我们很努力地监听了将近60年,却一无所获。这样的话,就需要一个解释,为什么宇宙似乎对人类保持了无线电静默呢?要知道,这绝不是技术上的问题,即便是以人类20多年前的技术,就已经能把无线电波发送到银河系的任何角落,而且抵达目标的信号强度用现有的人类技术就能接收到。

这个问题随着时间的推移,也受到了越来越多科学家、哲学家和科幻作家的关注,历史上有很多人都试图给出一个合理的解释。早期的解释大多集中在否定宇宙学第一原理这个思路上,认为地球是宇宙中,至少是银河系中非常特殊的一种存在。不过,我们上节也说过,随着观测证据的增多,稀有地球假说也就越来越不吃香了。现在还在持稀有地球假说的人都已经上升到了稀有地球说的2.0版本,也就是说,他们不再否定类地行星在宇宙中是很普遍的这个基本前提。但是他们会提出,出现智慧生命需要的条件实在太苛刻了,而我们现在找到的所有超级地球无非只是满足了两个最基本的条件,一是和地球差不多大小并有着坚硬地表的岩石星球,二是位于宜居带中。

但是,一颗行星想要诞生生命,尤其是智慧生命,哪有这么简单呢?你们知道还有多少苛刻的条件吗?比如说:

木星在太阳系中扮演了非常重要的角色。一方面它替地球遮风挡雨,吸引了无数小天体的撞击。另一方面它又扰乱小行星带,造成大大小小的冰块砸向了地球,地球因祸得福在内太阳系有了充足的水源。因此巨行星的位置也非常重要。

再比如,地球有个超大号卫星月亮造成了潮起潮落,对生命演化也是有作用的。地球是有板块的,激烈的地震火山可以释放地球内部的能量,地球也就不会冷得太离谱。而且可以改变地球大气的成分。

即便有了生命也不代表能出现智慧生命。细菌病毒都可以亿万年地生存下去。诞生智慧生命本来就是非常偶然的事件。智慧生物能发展出工业文明更是奇迹中的奇迹。假如某颗恒星的煤炭和石油都埋藏过深,那么生命恐怕也难以走上利用外部能源的道路。

但这种稀有地球假说2.0版被吐槽最多的地方是,这种假说太像是“萝卜招聘”,也就是说,把外星人完全按照地球的特征来拟定智慧生命存在的条件,当然筛来筛去就只有地球一家最合适嘛。刘慈欣在《三体》中就描写了一个会脱水的三体人来适应三体星上反复无常的自然条件,自然选择的神奇之处可能远远超出人类的想象。

还有一种假说,被称为“大过滤器”假说,这种假说也由来已久,而且还在不断地被完善升级中,这种假说与稀有地球假说有点像,但实质上不太一样。这种假说不否定宇宙学第一原理,但是认为,存在着某种大过滤器,使得宇宙中能演化出有能力进行星际通讯和旅行的文明少之又少。这个理论认为,生命的演化要经历9个关卡。

1.合适的行星系统(存在有机物以及可能宜居的行星);

2.可自我复制的分子(比如RNA);

3.简单单细胞生命,也叫作原核生命;

4.复杂单细胞生命,也叫作真核生命;

5.有性生殖;

6.多细胞生命;

7.脑量较大、使用工具的动物;

8.我们目前这个阶段;

9.星际殖民扩张。

每一道关卡,都会刷掉一大批候选者,最后能通过全部9关的,要么极为稀少,要么就是还没出现。我们人类似乎被卡在了第8关,进入不了第9关,也就是星际殖民这一关。例如,卡尔·萨根和约希夫就提出,技术文明要么会在持续一个世纪的发展星际通讯的过程中走向自我毁灭,要么掌握自己的命运并继续存活上亿年。笼统地讲,一个星球总是会从有序走向无序,也就是可用的资源越来越少。如果在此之前还无法发展出足够强大的宇航技术,那么最终也一定会因为资源枯竭而亡。这里面真正起作用的就是热力学第二定律,也就是我们之前讲过的熵增定律。

这个假说是目前比较流行的假说,也是得到最多支持的假说,虽然没有什么明显的逻辑上的漏洞,但最大的问题在于,我们只有地球生命这一个研究对象,实在是缺乏证据来证明每一关都会筛掉大量的候选者。而且从我看到的所有材料综合来看,研究生命起源和演化的科学家们似乎越来越有信心地说,在地球这样的环境中,出现生命并且演化出高度复杂的生命形式是自然选择的必然。

还有一种假说,也是最晚提出来的一种假说,就是科幻作家刘慈欣先生在2008年创作的科幻小说《三体·黑暗森林》中提出来的假说。他认为,由于宇宙中资源的总量是恒定的,而生存是文明的第一需求,因此,文明在发展到一定阶段后,必然会意识到宇宙是一座黑暗森林,所有的文明都在争夺有限的资源。一个文明如果暴露了自己的位置,是一件非常危险的事情,因为别的文明会由于害怕自己被消灭,而率先消灭比自己弱小的文明。

刘慈欣借助科幻小说,预言了文明在发展过程中,第一步会演化出隐藏基因,也就是开始意识到宇宙丛林的危险,而自己很弱小,所以要尽可能地把自己藏好,不要暴露位置。第二步就会演化出清理基因,也就是说,一旦发现了别的比自己弱小的文明,就会毫不犹豫地把它消灭,以免这个弱小的文明以技术爆炸的方式超过自己,反而消灭了自己。

我觉得黑暗森林理论最有意思的地方在于,人类文明发展的轨迹似乎完全印证了刘慈欣的预言。例如,在人类刚刚发展出宇航技术和发明射电望远镜的头几十年,我们特别热衷于联络外星文明。例如,20世纪70年代,先驱者10号和11号,旅行者1号和2号,都分别携带了送给外星人的礼物。那张著名的金唱片中还录制了联合国秘书长和美国总统代表人类对外星人的友好问候,还欢迎外星人来地球坐坐。1974年,人类首次利用当时全世界最大的阿雷西博射电望远镜向武仙座球状星团发送了电报。此后,人类在1999年、2001年和2003年还有三次大规模的给外星人发电报的行为。但是,2003年之后,这种行为开始遭到了越来越多科学家的警告和谴责。其中最著名的一位就是霍金,他多次发出不要与外星人联络的警告。

2005年3月,在圣马力诺共和国召开了第六届宇宙太空和生命探测国际讨论会,在这次会议上通过了一个在寻找外星人历史上有里程碑意义的文件,也就是圣马力诺标度。在这份文件中,明确指出,试图给外星文明发送电报是显著危险的行为,而回应来自外星文明的电报则是极端危险的行为。

国际航空学会甚至还搞出了一份《寻找地球以外智慧生命国际公约》,向全世界呼吁,在未征得国际组织研究批准前,不允许发送任何信号给地球以外的智慧生命。

从以上这些事实中,我们可以得出结论:人类正在演化出隐藏基因,认为宇宙有风险正在逐步成为国际共识。那么,人类在下一步是否会演化出清理基因呢?这个恐怕要等到非常非常遥远的未来才能知道了,别说星际攻击了,就是星际旅行的技术对现在的我们而言,都是遥不可及的梦想。

但是黑暗森林理论也存在与大过滤器理论同样的问题,从人类这一个有限的样本中得出的结论还不能算是证据,只能算是一种逻辑自洽的猜想。

总之,费米的疑问到现在为止还是一个宇宙未解之谜。这并不是一个完全虚无缥缈的话题。我们常说,以人为鉴,可以明得失;以史为鉴,可以知兴替。而我认为,对于外星文明的研究和探讨可以站在整个文明的角度审视人类文明自身。

想听听号称要带领人类殖民火星的马斯克是怎么看待外星人问题的吗?如果你有兴趣,在我的微信公众号“科学有故事”中回复“Musk”,就可以观看了。

暗物质之谜

什么是暗物质

在当今的天文学界和物理学界有两个共同的重大谜团,有些文章中把它们并称为黑暗双侠,这就是暗物质和

暗能量之谜

,我将用三节的篇幅先为你讲解暗物质之谜。看一看

我们先从暗物质是怎么被发现的开始讲起。1932年,有一位叫奥尔特的天文学家观察到了一个非常奇怪的现象,那就是银河系的转动速度似乎太快了一点,他觉得银河系中的恒星似乎太少了,但遗憾的是,限于技术条件,他的观测数据比较粗糙,什么也证明不了。现在回过头来看,奥尔特确实厉害,直觉超一流,他从非常有限的观测数据中就窥到了惊人的秘密。

到了第二年,也就是1933年,在美国的加州理工学院,另外一个特别有个性的天文学家兹维基,也发现了一些与奥尔特类似的奇怪现象。不过兹维基当时研究的并不是银河系,而是后发座星系团。后发座是天上的一个星座,离北斗的勺柄不远。在后发座的这片天区中,有个巨大的星系团,星系团的中心有两个巨大的星系,都有银河系10倍大小,周围还分布着1000个大小不等的星系,它们共同组成了这个巨大的星系团,距离我们3.2亿光年左右。

兹维基研究了这个星系团里的星系运行情况,发现与牛顿力学计算出来的速度是不相符的,而我们知道星系的旋转速度与星系中所有物质产生的引力相关。这说明,似乎这个星系团不应该产生那么大的引力。兹维基就认为,必定存在很多不发光的物质,而且数量庞大。于是,兹维基就把这些物质命名为暗物质。有趣的是,宇宙中最暗和最亮的物质都是这个兹维基命名的,最亮的那个是超新星。可惜的是,兹维基并没有把这件事当作太重要的发现,在当时也没有引起太多重视。

在兹维基之后,还有一些天文学家也发现了类似的奇怪现象。例如,1936年,史密斯对仙女座大星系的研究似乎印证了兹维基的观点。1959年凯恩和沃特研究了仙女座大星云和银河之间的相对运动,他们发现我们人类所处的本星系团中看不见的物质比可见物质的质量要大10倍左右。

但是,直到这时候,科学界对暗物质依然没有给予足够的重视,其中一个最主要的原因还是在于证据不够充分。从这里你也可以看出,科学研究是多么讲究证据。原因其实也不难理解,每一位科学家的时间和精力以及经费都是有限的,而这个世界上可供研究的课题又那么多,选择研究课题是一件非常谨慎的事情。

非同寻常的证据来自女天文学家薇拉·鲁宾的研究,其实鲁宾也并不是专门去研究暗物质才发现的证据,而是无心插柳的结果。事情是这样的,20世纪六七十年代,鲁宾选择了一个在当时非常冷门的方向,那就是研究银河系的旋转。从奥尔特开始,大家用的办法其实大同小异,但是测量精确度却在突飞猛进,数据的积累也越来越多。

积累的数据越多,越让鲁宾感到心惊,银河系外围的旋转速度那不是快了一点点,而是大大超出了预期。为什么这么说呢?因为根据牛顿的万有引力定律,离银心越远的恒星,应该旋转得越慢。但是实际观测的数据根本就不是这样。离星系中心很远的那些恒星,运行速度并没有明显地减慢,比预期的速度要快得多。按照这个速度去计算的话,整个星系产生的引力都拉不住这些恒星,星系根本就无法维持,早就该散架了。可是这些星系已经稳定存在了上百亿年,这是一件非常奇怪的事情。

我给你打个比方。假如我们用沙子捏成一个陀螺,让它转起来,这个沙陀螺就会散架。要想不散架,就必须用胶水和在沙子中,增强沙子之间的结合力。我们的银河系就好像这个沙陀螺,而万有引力就好像沙子中间的胶水。现在的情况是,银河系中如果只有会发光的可见物质提供引力的话,那么银河系早就该散架了。

鲁宾这次的发现与之前最大的不同在于,她提供的数据非常详细,证据无可辩驳。所以,到了1980年左右,大家都觉得这是一个大问题。看来星系之中含有大量我们看不到的物质,这些物质也会产生引力,确保了星系能以更快的速度旋转而不分崩离析。而且这种物质似乎与星系的形成有密切关系。

接下去,科学家们就开始追问,为什么我们看不到这些物质呢?一开始,大家觉得这不难理解,不过是一些不发光的气体云罢了,因为它们太暗了,所以我们看不到它们。就好像地球表面的空气是无处不在的,但是我们也没办法用肉眼看到空气。这是一个非常合理的想法。

还有一些人认为是因为在宇宙中的黑矮星数量非常多,黑矮星就是燃料耗尽而慢慢冷却的恒星。当然,真正让科学家们松一口气的是黑洞理论的兴起,如果黑洞是存在的,那么就顺便解释了暗物质现象。因为黑洞就是个只进不出的家伙,我们无法直接观测黑洞。

可是,随着观测数据的积累,人们惊讶地发现,即便把上面这些不发光的物质总量全部都按照最大的可能性加起来,星系的总体质量也远远达不到预期的质量。

说到这里,你可能会好奇,科学家们是怎么估算星系的总体质量的呢?这个办法很巧妙,就是利用引力透镜效应。什么是引力透镜效应呢?根据爱因斯坦的相对论,大质量天体附近的时空弯曲非常厉害,就连光走的都不是直线。假如有个遥远的天体,它发出的光在奔向我们地球的途中遇上了大质量的星系团,光线也是会发生弯折的,这个遥远天体的图像也就会被扭曲,就好像隔着透镜看一样。通过引力透镜效应,就可以计算出半途中碰上的这个星系团总共有多少物质。

那么如何计算这个星系团里能够看到的普通物质是多少呢?这也不难,只要看看这个星系团的整体亮度就行了。不管是自己发光的,还是被别人照亮的,照片上都能看得到。

科学家们把用引力透镜效应计算出来的星系总质量称为引力质量,而把通过星系亮度估算出来的质量称为光度学质量。现在的结果是,在宇宙中已知的绝大多数星系,它们的引力质量都远远大于光度学质量,平均而言,有6倍的差距。这也就证明了星系团大部分物质是看不到的,但是却有引力存在。所有能看见的物质只是很少一部分。

既然暗物质如此之多,为什么我们看不到它们呢?这当然就是一个宇宙未解之谜了。科学家们猜测,很可能是因为它们不参与电磁相互作用。

在日常生活中,我们绝大部分的感受其实都来自于电磁力。例如,光本身就是一种电磁波,当然要依靠电磁作用。我们能看到的各种颜色,能感觉到温度的高低,能感觉到物体的软硬,背后都是电磁力在起作用。

为什么石墨那么软?为什么金刚石那么硬?为什么糖是甜的、盐是咸的?其实都与化学成分以及原子的排布结构有关系。原子、分子的结构都是依靠电磁力作为骨架来搭建的。

假如暗物质对电磁力毫无反应,碰到普通的分子、原子,自然是无动于衷。我们当然也就感受不到这些物质的存在。但是它们同样会产生万有引力,它们庞大的数量在星系尺度上显示出了巨大的力量。

因为我们现有的知识体系并不能很好地解释这种现象,所以才会觉得它们非常的神秘。不过,也正因为有这样的认知空白,科学家们才有了无穷无尽的研究课题,而科学活动的目的就是要发现自然界中那些尚不为人所知的规律。

如今,暗物质已经被大多数物理学家所承认,但是仍然有一部分科学家认为,他们有更好的办法来解释星系旋转过快的现象,不需要去假设一个看不见摸不着的暗物质,就好像100多年前的以太一样,因为按照奥卡姆剃刀原理,“如无必要,勿增实体”,理论中的假设越少越好。这一派科学家虽然很少,但科学理论的真伪从来不以人数来决定,唯一能决定理论好坏的只有实验和观测证据。

所以主流物理学家们也面临着巨大的挑战,暗物质如果真的是一种物质,这些物质到底有什么样的性质呢?我们该如何去探测暗物质呢?我们下一节再来讲两种理论的PK。围绕暗物质的争论

今天我们来讲讲暗物质的性质,为此,我们需要一些预备知识。

以前曾经碰到过一脸稚气的小朋友问我:暗物质是不是反物质啊?大概现在的科幻作品里面很喜欢提到反物质引擎,于是反物质这个词出现的概率也很高。孩子的好奇心总是很强烈的,于是这个词他就记住了。一般人也很容易把反物质和暗物质搞混淆。

我这里明确回答一下,暗物质和反物质不是一回事。反物质是反粒子构成的。对于反粒子,物理学家们并不陌生。最早被发现的反粒子就是正电子。正常的电子带负电,但是反电子带的是正电,除此之外这两种粒子看不出什么区别。看一看

大多数人都以为反物质只能出现在实验室中,不会出现在我们的日常生活中,其实并不是这样,我们每一个人都接触过反物质,甚至可以说,反物质无处不在。一个最常被引用的例子就是香蕉,不知道为什么,物理学家们非常喜欢用香蕉来举例子。香蕉里面含有钾元素,极少量的钾原子带有放射性,100克香蕉平均每秒钟会有15个钾原子发生衰变,发射出普通的带负电的电子。但是,这里大概有千分之一的概率会出现正电子。假如你手上握着一根香蕉,大约两小时之内就会有一个正电子打进你的手里。这个正电子要是碰到了普通的电子,就会发生正反粒子湮灭,变成了纯能量。当然,这种极其微小的能量,你是一点感觉也没有的。

那么有的人仍然有疑问,为什么有些元素会有放射性呢?为什么会发生衰变呢?原因就在于一种叫弱相互作用的物理现象,正是弱相互作用导致了某些原子核是不稳定的。与弱相互作用相对应的还有一个强相互作用。一般来讲,强相互作用会把原子核捆在一起,形成各种各样的元素。而弱相互作用则会导致原子核不稳定,发生衰变。

除了强、弱相互作用,还有电磁相互作用让原子能结合成分子,分子能结合成物质;另外还有一种相互作用就是我们最熟悉的万有引力,它保证了我们能稳稳当当地站在地球上,保证了地球绕着太阳转。

这四种基本的相互作用,或者说这四种基本的力,协同配合,就构成了我们看得见摸得着的物质世界。

好了,预备知识讲完了。你可能想问,这和我们的主题暗物质有什么关系呢?答案是大有关系。回答暗物质到底是个什么东西这样一个高深的问题,让天文学家来回答不合适,这事儿还得交给粒子物理学家去寻找答案。粒子物理学家们可以双管齐下,一方面用大型计算机进行模拟计算,另一方面也可以调用大型设备去做非常精密的实验。

现在粒子物理学家们提出了很多描述暗物质的理论,最有希望的一种版本叫作WIMPs模型,全称就是弱相互作用重粒子,后面为了讲解方便,我就把它简称为“暗粒子模型”。说白了,科学家们也在猜测,暗物质显然没有电磁相互作用,所以我们看不到它们,强相互作用恐怕也是没有的。但是,这种物质有引力,这是板上钉钉的事情。那么有没有弱相互作用呢?这成了了解暗物质的一个关键问题。很多物理学家猜测,暗物质应该也有弱相互作用。暗粒子模型描述的暗物质粒子运行速度不快,但是质量很大,粒子的运动速度决定了物质的温度,因此这种猜测下的暗物质也被叫作冷暗物质。

根据暗粒子模型计算出来的暗物质数量和天文观测计算出来的数量比较相符,数据匹配特别好,而且也和宇宙大爆炸理论相符合。所以,物理学家们把它称为“WIMPs奇迹”。大家喜欢这个理论的另外一个理由是,这个理论是可以用大型粒子加速器或者其他的办法去探测的,能够用实验去检测是一个可靠理论必备的特征。

欧洲核子研究中心有着世界上最大的对撞机LHC,在粒子对撞的过程中就有可能会生成暗粒子。但是目前LHC并没有探测到什么特别的迹象。看来想依靠对撞机,在实验室里面造出暗物质粒子是很难的,即便偶尔造出来了,恐怕也很难捕捉。这条路暂时是走不通的,还需要去想别的办法。

虽然暗粒子模型这种理论看上去很不错,但是它也有解决不掉的烦恼。把这个模型输入计算机,用大型超级计算机去模拟一种矮椭球星系的形成过程,发现计算出来的数值偏大。冷暗物质会导致星系变成一锅粥,显得非常稠密。可是天文观测到的矮星系并没有那么稠密。这么来看,似乎冷暗物质又是不对的。不过,在科学研究中,如果一个理论在解释大多数现象时都表现得很好,但是却遇到了一个反例,这时候科学家们通常不愿意推翻整个理论,而是想着能不能打一个补丁来解决。

于是,科学家们设想用另外一种理论来解释矮椭球星系的问题。在现在人们已知的粒子之中,有一种中微子,这种粒子非常轻,而且也不容易和别的物质发生相互作用,所以这种粒子可以轻松地穿透整个地球,如入无人之境。过去大家以为中微子是没有质量的粒子,后来发现,它的质量不为零,但是非常微小。中微子的质量起码比电子轻了上百万倍,现在只能估计出一个大致的数量级。中微子也有不同的种类,而且会变来变去,来回变身,因此中微子也是一个神秘莫测的家伙。

现在有些物理学家假设,暗物质粒子会不会是一种运动速度非常快的中微子呢?这也被称为“热暗物质”。他们把这个热暗物质模型拿到计算机里面去算,模拟矮椭球星系的形成过程,看看计算结果和实测数据是否匹配。结果发现这种热暗物质会导致星系变成一盘散沙,根本无法凝聚。看来,热暗物质的假说也遇到了很大的困难。

那么不冷不热的温暗物质行不行呢?经过大型计算机的模拟计算,不冷不热的温暗物质倒是可以形成矮椭球星系。但问题是,补了西墙,却拆了东墙,又有另外一些数据完全对不上了。

所以,到现在为止,暗物质的身份仍然是一个迷,我们依然缺乏一个很有效的理论模型去解释暗物质。暗物质似乎给粒子物理学家们设下了重重陷阱,你要想揭开暗物质神秘的面纱就不得不面对一个又一个的坑。这个坑你巧妙地化解了,说不定就掉进下一个坑里。你的理论对这个现象可以完美地解释,对那个现象则毫无办法。

有一小撮比较另类的科学家则在旁边窃笑不已,他们严守奥卡姆剃刀原理:“如无必要,勿增实体。”为什么一定要假想一种说不清道不明的暗物质呢?为什么只有添加了这种东西才能解释星系边缘恒星速度不正常的现象呢?难道你们就没想过对现有的引力理论下手吗?

这样的想法足够另类。到现在为止,以牛顿、爱因斯坦为首,科学家们历经数百年建立起来的理论大厦经受住了无数严苛实验的检验,但依然有一些科学家们怀着质疑精神。但是我必须告诉大家,科学的质疑与盲目质疑的区别在于,你不能只破坏不建设,为了质疑而质疑没有意义,你必须要提出一个更好的替代品。这些科学家就试图修正牛顿第二运动定律。

这一派科学家虽然人数很少,但是他们在物理学界依然很活跃。科学与宗教的区别在于,科学没有像圣经一样不可侵犯的教义,科学只讲逻辑和实证。不论是多数派还是少数派,任何科学理论必须经受全世界同行的评议。多数派科学家就认为那些修正牛顿动力学的努力有点像事后诸葛亮,他们纯粹是为了凑出一根曲线,强行给牛顿理论打了个补丁进去。

现在的情况是,主流科学界遵循久经考验的牛顿与爱因斯坦理论体系,但是不得不引入一个目前还看不见摸不着的新物质。而作为少数派的理论不需要引入暗物质,保持了系统的简洁性,但又对久经考验的牛顿定律下手。总之,科学家们处于两难的境地。

不过,到了2018年3月29日,著名的《自然》杂志刊登了一篇论文,展示了一个非同寻常的证据。我想,这个证据一出,恐怕少数不相信暗物质存在的人也打算投降了。那这个证据到底是什么呢?咱们下节揭晓答案。探测暗物质

上一节讲到了暗物质理论和修正牛顿动力学之间的争论。一般来讲,要提出一个新的理论来取代旧理论,需要满足几个要求:

1.新理论必须能够复制旧理论所有的成功之处。

2.新理论必须能够解释新的现象,否则也没有提出新理论的必要了。

3.最重要的是新理论必须有预言能力,并且能够在实验和观测上被验证。

修正牛顿动力学理论虽然支持的人很少,但是这个理论仍然是在科学方法论的框架之内提出来的,也可以用科学方法去验证。修正牛顿动力学可以很好解释星系里恒星的运动速度异常这方面,但是其他方面都不尽人意。不过,几十年来,这个理论并没有完全退出历史舞台。

哪知道,2018年3月的一个消息,估计要让支持修正牛顿动力学的人哭晕在厕所里了。来龙去脉是这样的:天文学家研究了一个不起眼的星系,编号为NGC1052-DF2,后面我们简称1052星系。测算下来,这个星系的引力质量和光度学质量相差无几。这意味着什么呢?这意味着,如果按照暗物质理论来解释的话,一句话就可以了,这说明该星系基本不含暗物质。看一看

但是修正牛顿动力学理论就遇到了大麻烦,因为这个理论否定了暗物质的概念,而修改了最基础的牛顿动力学理论,目的是为了解释为什么按照之前的观测结果,所有的星系的动力学质量都要远远大于光度学质量。如果这个理论是对的,那么就不能出现例外。但是,现在偏偏1052星系就是首个被天文观测到的例外。可以说,这个理论遭到了致命的打击。

相反,1052这样的星系用暗物质理论非常好解释,这个星系的引力质量和光度学质量相差无几。那就等于说这个星系暗物质基本不存在,所以外围恒星旋转的速度符合现有的物理学法则。这等于是用“不存在证明了自己的存在”。

在历史上,为了解释观测到的自然现象,几乎都会同时出现很多竞争的理论,例如托勒密、第古、哥白尼的天体运行模型。即便到了今天,在科学界依然存在与广义相对论竞争的理论。不过,科学与哲学、艺术、文学等其他学科有一个最大的区别:其他这些学科,往往讲究的是求同存异,百花齐放,没有绝对的正确与错误,但是,科学理论的赢家只能有一个。几乎每一个教科书上的公式都是经过了激烈竞争后的胜出者。

目前看来,暗物质理论更加可靠,能解释的现象也更多。但是,问题仍然困扰着大家——暗物质究竟是什么?理论物理学家们仍然在不断提出模型,修改模型,然后动用计算机去计算。而另一些实验物理学家则把注意力放到了其他地方。

实验物理学家在思考如何能探测到暗物质粒子。大家或许有疑问,现在连暗物质粒子是什么,有哪些性质都不知道,该如何去找呢?似乎一点可靠的线索都没有。

当然,即便是猜想也要有个逻辑的起点。目前科学家们是以WIMPs理论为基础的。上节我们讲过,这个理论把暗物质粒子描述成一种具有引力,有弱相互作用的非常重的粒子。科学家们猜测,WIMPs粒子,自己就是自己的反粒子。假如两个这样的粒子发生碰撞,就会发生湮灭现象,这也就为我们探测暗物质粒子提供了可能性。

现在探测宇宙里面各种粒子的太空探测器有那么几个:一个是装在国际空间站的Alpha磁谱仪;一个是帕梅拉探测器;还有费米卫星和我国发射的悟空号探测器。几个探测器的数据都可以相互对照印证。

名气最大的是装在国际空间站上的Alpha磁谱仪,领衔担纲的科学家是著名的诺贝尔奖得主丁肇中。这个探测器是国际协作的产物,其中高强磁铁是我国提供的。中国的高强磁铁是全世界最好的,F-35战斗机上也在用。

丁肇中在世界科学界的威望极高。本来NASA的航天飞机需要全部退役,但是丁肇中说服NASA在2011年再执行了一次航天飞机任务,把Alpha磁谱仪送进了国际空间站。这个探测器无法作为一个独立的卫星运行,因为太阳能电池板供电不够用,只有国际空间站太阳能电池板面积够大,能提供足够的电力。只有航天飞机有能力把这么重的探测器扛到国际空间站上。没办法,退休前航天飞机只好再加班多飞一趟。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载