On the Relations of Man to the Lower Animals(txt+pdf+epub+mobi电子书下载)


发布时间:2020-08-09 13:52:30

点击下载

作者:Huxley, Thomas Henry

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

On the Relations of Man to the Lower Animals

On the Relations of Man to the Lower Animals试读:

On the Relations of Man to the Lower Animals

作者:Huxley, Thomas Henry排版:skip出版时间:2017-11-28本书由当当数字商店(公版书)授权北京当当科文电子商务有限公司制作与发行。— · 版权所有 侵权必究 · —On the Relations of Man to the Lower Animals     Multis videri poterit, majorem esso differentiam Simiae et     Hominis, quam diei et noctis; verum tamen hi, comparatione     instituta inter summos Europae Heroes et Hottentottos ad     Caput bonae spei degentes, difficillime sibi persuadebunt,     has eosdem habere natales; vel si virginem nobilem aulicam,     maxime comtam et humanissimam, conferre vellent cum homine     sylvestri et sibi relicto, vix augurari possent, hunc et     illam ejusdem esse speciei.—'Linnaei Amoenitates Acad.     "Anthropomorpha."'

THE question of questions for mankind—the problem which underlies all others, and is more deeply interesting than any other—is the ascertainment of the place which Man occupies in nature and of his relations to the universe of things. Whence our race has come; what are the limits of our power over nature, and of nature's power over us; to what goal we are tending; are the problems which present themselves anew and with undiminished interest to every man born into the world. Most of us, shrinking from the difficulties and dangers which beset the seeker after original answers to these riddles, are contented to ignore them altogether, or to smother the investigating spirit under the featherbed of respected and respectable tradition. But, in every age, one or two restless spirits, blessed with that constructive genius, which can only build on a secure foundation, or cursed with the spirit of mere scepticism, are unable to follow in the well-worn and comfortable track of their forefathers and contemporaries, and unmindful of thorns and stumbling-blocks, strike out into paths of their own. The sceptics end in the infidelity which asserts the problem to be insoluble, or in the atheism which denies the existence of any orderly progress and governance of things: the men of genius propound solutions which grow into systems of Theology or of Philosophy, or veiled in musical language which suggests more than it asserts, take the shape of the Poetry of an epoch.

Each such answer to the great question, invariably asserted by the followers of its propounder, if not by himself, to be complete and final, remains in high authority and esteem, it may be for one century, or it may be for twenty: but, as invariably, Time proves each reply to have been a mere approximation to the truth—tolerable chiefly on account of the ignorance of those by whom it was accepted, and wholly intolerable when tested by the larger knowledge of their successors.

In a well-worn metaphor, a parallel is drawn between the life of man and the metamorphosis of the caterpillar into the butterfly; but the comparison may be more just as well as more novel, if for its former term we take the mental progress of the race. History shows that the human mind, fed by constant accessions of knowledge, periodically grows too large for its theoretical coverings, and bursts them asunder to appear in new habiliments, as the feeding and growing grub, at intervals, casts its too narrow skin and assumes another, itself but temporary. Truly the imago state of Man seems to be terribly distant, but every moult is a step gained, and of such there have been many.

Since the revival of learning, whereby the Western races of Europe were enabled to enter upon that progress towards true knowledge, which was commenced by the philosophers of Greece, but was almost arrested in subsequent long ages of intellectual stagnation, or, at most, gyration, the human larva has been feeding vigorously, and moulting in proportion. A skin of some dimension was cast in the 16th century, and another towards the end of the 18th, while, within the last fifty years, the extraordinary growth of every department of physical science has spread among us mental food of so nutritious and stimulating a character that a new ecdysis seems imminent. But this is a process not unusually accompanied by many throes and some sickness and debility, or, it may be, by graver disturbances; so that every good citizen must feel bound to facilitate the process, and even if he have nothing but a scalpel to work withal, to ease the cracking integument to the best of his ability.

In this duty lies my excuse for the publication of these essays. For it will be admitted that some knowledge of man's position in the animate world is an indispensable preliminary to the proper understanding of his relations to the universe—and this again resolves itself, in the long run, into an inquiry into the nature and the closeness of the ties which connect him with those singular creatures whose 1history has been sketched in the preceding pages.

The importance of such an inquiry is indeed intuitively manifest Brought face to face with these blurred copies of himself, the least thoughtful of men is conscious of a certain shock, due perhaps, not so much to disgust at the aspect of what looks like an insulting caricature, as to the awakening of a sudden and profound mistrust of time-honoured theories and strongly-rooted prejudices regarding his own position in nature, and his relations to the under-world of life; while that which remains a dim suspicion for the unthinking, becomes a vast argument, fraught with the deepest consequences, for all who are acquainted with the recent progress of the anatomical and physiological sciences.

I now propose briefly to unfold that argument, and to set forth, in a form intelligible to those who possess no special acquaintance with anatomical science, the chief facts upon which all conclusions respecting the nature and the extent of the bonds which connect man with the brute world must be based: I shall then indicate the one immediate conclusion which, in my judgment, is justified by those facts, and I shall finally discuss the bearing of that conclusion upon the hypotheses which have been entertained respecting the Origin of Man.

The facts to which I would first direct the reader's attention, though ignored by many of the professed instructors of the public mind, are easy of demonstration and are universally agreed to by men of science; while their significance is so great, that whoso has duly pondered over them will, I think, find little to startle him in the other revelations of Biology. I refer to those facts which have been made known by the study of Development.

It is a truth of very wide, if not of universal, application, that every living creature commences its existence under a form different from, and simpler than, that which it eventually attains.

The oak is a more complex thing than the little rudimentary plant contained in the acorn; the caterpillar is more complex than the egg; the butterfly than the caterpillar; and each of these beings, in passing from its rudimentary to its perfect condition, runs through a series of changes, the sum of which is called its Development. In the higher animals these changes are extremely complicated; but, within the last half century, the labours of such men as Von Baer, Rathke, Reichert, Bischof, and Remak, have almost completely unravelled them, so that the successive stages of development which are exhibited by a Dog, for example, are now as well known to the embryologist as are the steps of the metamorphosis of the silkworm moth to the school-boy. It will be useful to consider with attention the nature and the order of the stages of canine development, as an example of the process in the higher animals generally.

The Dog, like all animals, save the very lowest (and further inquiries may not improbably remove the apparent exception), commences its existence as an egg: as a body which is, in every sense, as much an egg as that of a hen, but is devoid of that accumulation of nutritive matter which confers upon the bird's egg its exceptional size and domestic utility; and wants the shell, which would not only be useless to an animal incubated within the body of its parent, but would cut it off from access to the source of that nutriment which the young creature requires, but which the minute egg of the mammal does not contain within itself.

The Dog's egg is, in fact, a little spheroidal bag (Fig. 12), formed of a delicate transparent membrane called the 'vitelline membrane', and about 1/130 to 1/120th of an inch in diameter. It contains a mass of viscid nutritive matter—the 'yelk'—within which is inclosed a second much more delicate spheroidal bag, called the 'germinal vesicle' (a). In this, lastly, lies a more solid rounded body, termed the 'germinal spot' (b).

The egg, or 'Ovum,' is originally formed within a gland, from which, in due season, it becomes detached, and passes into the living chamber fitted for its protection and maintenance during the protracted process of gestation. Here, when subjected to the required conditions, this minute and apparently insignificant particle of living matter becomes animated by a new and mysterious activity. The germinal vesicle and spot cease to be discernible (their precise fate being one of the yet unsolved problems of embryology), but the yelk becomes circumferentially indented, as if an invisible knife had been drawn round it, and thus appears divided into two hemispheres (Fig. 12, C).

By the repetition of this process in various planes, these hemispheres become subdivided, so that four segments are produced (D); and these, in like manner, divide and subdivide again, until the whole yelk is converted into a mass of granules, each of which consists of a minute spheroid of yelk-substance, inclosing a central particle, the so-called 'nucleus' (F). Nature, by this process, has attained much the same result as that at which a human artificer arrives by his operations in a brickfield. She takes the rough plastic material of the yelk and breaks it up into well-shaped tolerably even-sized masses, handy for building up into any part of the living edifice.

Next, the mass of organic bricks, or 'cells' as they are technically called, thus formed, acquires an orderly arrangement, becoming converted into a hollow spheroid with double walls. Then, upon one side of this spheroid, appears a thickening, and, by and bye, in the centre of the area of thickening, a straight shallow groove (Fig. 13, A) marks the central line of the edifice which is to be raised, or, in other words, indicates the position of the middle line of the body of the future dog. The substance bounding the groove on each side next rises up into a fold, the rudiment of the side wall of that long cavity, which will eventually lodge the spinal marrow and the brain; and in the floor of this chamber appears a solid cellular cord, the so-called 'notochord.' One end of the inclosed cavity dilates to form the head (Fig. 13, B), the other remains narrow, and eventually becomes the tail; the side walls of the body are fashioned out of the downward continuation of the walls of the groove; and from them, by and bye, grow out little buds which, by degrees, assume the shape of limbs. Watching the fashioning process stage by stage, one is forcibly reminded of the modeller in clay. Every part, every organ, is at first, as it were, pinched up rudely, and sketched out in the rough; then shaped more accurately; and only, at last, receives the touches which stamp its final character.

Thus, at length, the young puppy assumes such a form as is shown in Fig. 13, C. In this condition it has a disproportionately large head, as dissimilar to that of a dog as the bud-like limbs are unlike his legs.

The remains of the yelk, which have not yet been applied to the nutrition and growth of the young animal, are contained in a sac attached to the rudimentary intestine, and termed the yelk sac, or 'umbilical vesicle.' Two membranous bags, intended to subserve respectively the protection and nutrition of the young creature, have been developed from the skin and from the under and hinder surface of the body; the former, the so-called 'amnion,' is a sac filled with fluid, which invests the whole body of the embryo, and plays the part of a sort of water-bed for it; the other, termed the 'allantois,' grows out, loaded with blood-vessels, from the ventral region, and eventually applying itself to the walls of the cavity, in which the developing organism is contained, enables these vessels to become the channel by which the stream of nutriment, required to supply the wants of the offspring, is furnished to it by the parent.

The structure which is developed by the interlacement of the vessels of the offspring with those of the parent, and by means of which the former is enabled to receive nourishment and to get rid of effete matters, is termed the 'Placenta.'

It would be tedious, and it is unnecessary for my present purpose, to trace the process of development further; suffice it to say, that, by a long and gradual series of changes, the rudiment here depicted and described becomes a puppy, is born, and then, by still slower and less perceptible steps, passes into the adult Dog.

There is not much apparent resemblance between a barndoor Fowl and the Dog who protects the farm-yard. Nevertheless the student of development finds, not only that the chick commences its existence as an egg, primarily identical, in all essential respects, with that of the Dog, but that the yelk of this egg undergoes division—that the primitive groove arises, and that the contiguous parts of the germ are fashioned, by precisely similar methods, into a young chick, which, at one stage of its existence, is so like the nascent Dog, that ordinary inspection would hardly distinguish the two.

The history of the development of any other vertebrate animal, Lizard, Snake, Frog, or Fish, tells the same story. There is always, to begin with, an egg having the same essential structure as that of the Dog:—the yelk of that egg always undergoes division, or 'segmentation' as it is often called: the ultimate products of that segmentation constitute the building materials for the body of the young animal; and this is built up round a primitive groove, in the floor of which a notochord is developed. Furthermore, there is a period in which the young of all these animals resemble one another, not merely in outward form, but in all essentials of structure, so closely, that the differences between them are inconsiderable, while, in their subsequent course, they diverge more and more widely from one another. And it is a general law, that, the more closely any animals resemble one another in adult structure, the longer and the more intimately do their embryos resemble one another: so that, for example, the embryos of a Snake and of a Lizard remain like one another longer than do those of a Snake and of a Bird; and the embryo of a Dog and of a Cat remain like one another for a far longer period than do those of a Dog and a Bird; or of a Dog and an Opossum; or even than those of a Dog and a Monkey.

Thus the study of development affords a clear test of closeness of structural affinity, and one turns with impatience to inquire what results are yielded by the study of the development of Man. Is he something apart? Does he originate in a totally different way from Dog, Bird, Frog, and Fish, thus justifying those who assert him to have no place in nature and no real affinity with the lower world of animal life? Or does he originate in a similar germ, pass through the same slow and gradually progressive modifications,—depend on the same contrivances for protection and nutrition, and finally enter the world by the help of the same mechanism? The reply is not doubtful for a moment, and has not been doubtful any time these thirty years. Without question, the mode of origin and the early stages of the development of man are identical with those of the animals immediately below him in the scale:—without a doubt, in these respects, he is far nearer the Apes, than the Apes are to the Dog.

The Human ovum is about 1/125 of an inch in diameter, and might be described in the same terms as that of the Dog, so that I need only refer to the figure illustrative (14 A) of its structure. It leaves the organ in which it is formed in a similar fashion and enters the organic chamber prepared for its reception in the same way, the conditions of its development being in all respects the same. It has not yet been possible (and only by some rare chance can it ever be possible) to study the human ovum in so early a developmental stage as that of yelk division, but there is every reason to conclude that the changes it undergoes are identical with those exhibited by the ova of other vertebrated animals; for the formative materials of which the rudimentary human body is composed, in the earliest conditions in which it has been observed, are the same as those of other animals. Some of these earliest stages are figured below, and, as will be seen, they are strictly comparable to the very early states of the Dog; the marvellous correspondence between the two which is kept up, even for some time, as development advances, becoming apparent by the simple comparison of the figures with those on page 249.

Indeed, it is very long before the body of the young human being can be readily discriminated from that of the young puppy; but, at a tolerably early period, the two become distinguishable by the different form of their adjuncts, the yelk-sac and the allantois. The former, in the Dog, becomes long and spindle-shaped, while in Man it remains spherical; the latter, in the Dog, attains an extremely large size, and the vascular processes which are developed from it and eventually give rise to the formation of the placenta (taking root, as it were, in the parental organism, so as to draw nourishment therefrom, as the root of a tree extracts it from the soil) are arranged in an encircling zone, while in Man, the allantois remains comparatively small, and its vascular rootlets are eventually restricted to one disk-like spot. Hence, while the placenta of the Dog is like a girdle, that of Man has the cake-like form, indicated by the name of the organ.

But, exactly in those respects in which the developing Man differs from the Dog, he resembles the ape, which, like man, has a spheroidal yelk-sac and a discoidal—sometimes partially lobed—placenta. So that it is only quite in the later stages of development that the young human being presents marked differences from the young ape, while the latter departs as much from the dog in its development, as the man does.

Startling as the last assertion may appear to be, it is demonstrably true, and it alone appears to me sufficient to place beyond all doubt the structural unity of man with the rest of the animal world, and more particularly and closely with the apes.

Thus, identical in the physical processes by which he originates—identical in the early stages of his formation—identical in the mode of his nutrition before and after birth, with the animals which lie immediately below him in the scale—Man, if his adult and perfect structure be compared with theirs, exhibits, as might be expected, a marvellous likeness of organization. He resembles them as they resemble one another—he differs from them as they differ from one another.—And, though these differences and resemblances cannot be weighed and measured, their value may be readily estimated; the scale or standard of judgment, touching that value, being afforded and expressed by the system of classification of animals now current among zoologists.

A careful study of the resemblances and differences presented by animals has, in fact, led naturalists to arrange them into groups, or assemblages, all the members of each group presenting a certain amount of definable resemblance, and the number of points of similarity being smaller as the group is larger and 'vice versa'. Thus, all creatures which agree only in presenting the few distinctive marks of animality form the 'Kingdom' ANIMALIA. The numerous animals which agree only in possessing the special characters of Vertebrates form one 'Sub-Kingdom' of this Kingdom. Then the Sub-kingdom VERTEBRATA is subdivided into the five 'Classes,' Fishes, Amphibians, Reptiles, Birds, and Mammals, and these into smaller groups called 'Orders'; these into 'Families' and 'Genera'; while the last are finally broken up into the smallest assemblages, which are distinguished by the possession of constant, not-sexual, characters. These ultimate groups are Species.

Every year tends to bring about a greater uniformity of opinion throughout the zoological world as to the limits and characters of these groups, great and small. At present, for example, no one has the least doubt regarding the characters of the classes Mammalia, Aves, or Reptilia; nor does the question arise whether any thoroughly well-known animal should be placed in one class or the other. Again, there is a very general agreement respecting the characters and limits of the orders of Mammals, and as to the animals which are structurally necessitated to take a place in one or another order.

No one doubts, for example, that the Sloth and the Ant-eater, the Kangaroo and the Opossum, the Tiger and the Badger, the Tapir and the Rhinoceros, are respectively members of the same orders. These successive pairs of animals may, and some do, differ from one another immensely, in such matters as the proportions and structure of their limbs; the number of their dorsal and lumbar vertebrae; the adaptation of their frames to climbing, leaping, or running; the number and form of their teeth; and the characters of their skulls and of the contained brain. But, with all these differences, they are so closely connected in

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载