仿生试验(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-03 17:05:02

点击下载

作者:宋涛

出版社:辽海出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

仿生试验

仿生试验试读:

前 言

科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。

科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。

科学教育,让广大青少年树立这样一个牢固的信念:科学总是在寻求、发现和了解世界的新现象,研究和掌握新规律,它是创造性的,它又是在不懈地追求真理,需要我们不断地努力奋斗。

在新的世纪,随着高科技领域新技术的不断发展,为我们的科普教育提供了一个广阔的天地。纵观人类文明史的发展,科学技术的每一次重大突破,都会引起生产力的深刻变革和人类社会的巨大进步。随着科学技术日益渗透于经济发展和社会生活的各个领域,成为推动现代社会发展的最活跃因素,并且是现代社会进步的决定性力量。发达国家经济的增长点、现代化的战争、通讯传媒事业的日益发达,处处都体现出高科技的威力,同时也迅速地改变着人们的传统观念,使得人们对于科学知识充满了强烈渴求。

对迅猛发展的高新科学技术知识的普及,不仅可以使青少年了解当今科技发展的现状,而且可以使之从小树立崇高的理想:学好科学知识,长大为人类文明作出自己应有的贡献。

为此,我们特别编辑了这套“青少年科谱知识丛书”,主要包括《战机大观》、《舰艇博览》、《导弹百科》、《火炮之库》、《战车王国》、《军事先锋》、《武器前沿》、《太空世纪》、《登月传真》、《空间站之窗》、《航空档案》、《宇航时代》、《时间奥秘》、《气象缩影》、《激光聚焦》、《通信展望》、《纳米研究》、《材料世家》、《核能前景》、《能源宝库》、《建筑奇观》、《仿生试验》、《农业新空》、《环保结锦》、《医疗革命》、《民航之窗》、《交通纵横》、《电脑新秀》、《网络世界》、《微生物迷码》、《生活新探》、《人类未来》。这些内容主要精选现代前沿科技的各个项目或领域,介绍其研究过程、科学原理、发展方向和应用前景等,使青少年站在当今科技的新起点寻找未来科学技术的契入点和突破口,不断追求新兴的未来科学技术。

本套青少年科普知识读物综合了中外最新科技的研究成果,具有很强的科学性、知识性、前沿性、可读性和系统性,是青少年了解科技、增长知识、开阔视野、提高素质、激发探索和启迪智慧的良好科谱读物,也是各级图书馆珍藏的最佳版本。

揭开遗传之谜的钥匙

俗话说,“龙生龙,凤生凤,老鼠的儿子会打洞”,“种瓜得瓜,种豆得豆”,这些都是遗传。

生物为什么会遗传?拿人来说,最初仅仅是父亲的一个精细胞和母亲的一个卵细胞,结合在一起,一步一步就发育成了胚胎、婴孩,发育成了儿童、成人。下一代和上一代之间的物质联系仅仅是那么两个细胞。那么一丁点儿的物质联系就足以确定下一代在外貌、体质等方面酷肖父母。多少年来,人们一方面赞美大自然的神奇造化,一方面苦苦思索:生物遗传到底是怎样进行的呢?

进入20世纪中叶,一批批在遗传学领域里辛勤耕耘的科学家有了收获,这个问题的答案开始清晰起来,生物的遗传物质是DNA。DNA的正式名称叫做脱氧核糖核酸,它隐藏在染色体内。染色体是细胞的主要成分(低等的原核细胞例外),而DNA则是染色体的核心部分,是染色体的灵魂。

DNA直接控制着细胞内的蛋白质合成,细胞内的蛋白质合成与细胞的发育、分裂息息相关。细胞如何发育、如何分裂决定着生物的形态、结构、习性、寿命……这些统称为遗传性状。DNA就通过这样的途径来控制生物的遗传。当然,这是最简略的说法。

远在发现DNA之前,一些生物学家推测生物细胞内应该存在着控制遗传的微粒,并把它定名为基因。现在人们清楚了,基因确确实实存在着。一个基因就是DNA的一个片段,是DNA的一个特定部分。一个基因往往控制着生物的一个遗传性状,比如,头发是黄还是黑,眼睛是大还是小,等等。准确地说,一个遗传性状可以由多个基因共同控制,一个基因可以与多个遗传性状有关。

低等动物噬菌体的DNA总共才有3个基因,大肠杆菌大约有3000个基因,而人体一个细胞的DNA中有大约10万个基因。

DNA是由四种核苷酸联结而成的长链。这四种核苷酸相互之间如何联结,这条长链折叠成什么样的立体形状,这两个问题在本世纪40年代曾难倒了许许多多有志于此的研究者。终于,在1954年,两位美国科学家找到了正确的答案,建立了令人信服的模型——DNA是由两条核苷酸链平行地围绕同一轴盘曲而成的双螺旋结构,很像是一把扭曲的梯子。两条长链上的核苷酸彼此间一一结成对子,紧紧联结。螺旋体每盘旋一周有10对核苷酸之多,而一个基因大约有3000对核苷酸。

DNA双螺旋结构的发现是生命科学史上一件划时代的大事。标志着现代分子生物学及分子遗传学的诞生,它对生物的遗传规律提供了准确、完善的解释,是人们揭开遗传之谜的钥匙。

那么,遗传信息又是怎样从DNA反映到象征性状表现的蛋白质上的呢?在DNA双螺旋结构的基础上,人们研究了DNA的复制、转录和翻译过程,提出了中心法则。指出DNA解开双链,通过自身复制实现遗传信息忠实的倍增复制;然后通过转录将遗传信息赋予一种信使——mRNA;mRNA在核糖体内通过一种转移核糖核酸分子(tRNA)将氨基酸搬运到身边,按遗传密码的要求组装成蛋白质。这样,遗传就实现了从DNA到蛋白质的“流动”。

日新月异的关于基因的研究终于使人们可以将基因从染色体上取出,然后再把它放到另外一个地方或转移到另外一种生物体内。这便是DNA体外重组技术,又称基因工程。基因工程就是按照生物体遗传变异的规律,预先缜密地设计出改变生物遗传特性的方案,有目的地去改造生物。如果说DNA双螺旋模型开辟了分子生物学的新纪元,那么70年代末的基因工程技术的建立则将我们带入了一个认识基因、改造基因、利用基因的新世纪。如今,通过基因工程技术可以将人体内某些有药用价值的基因放到细菌体内,让细菌源源不断地产生大量的重组药物,细菌变成了“制药厂”。利用基因工程还可以改良农作物的性状,生产更大、更甜、更易保存的水果,产量更高的作物。甚至基因工程食品也已写进了我们的食谱。基因工程使我们可以做到“种瓜得豆,种豆得瓜”,当然这里也必须遵循遗传和变异规律。

人类关于基因的研究成果预示着21世纪将是生物学世纪。生物学正处在理解和操纵生命的能力史无前例的爆炸边缘。随着我们进入新的世纪,生物技术将利用它自己的成就为人类历史开创锦绣前程。

移植“发光基因”

加利福尼亚大学的植物园内,种植着几畦奇异的植物,每当夜晚降临时,它们就会发出一片紫蓝色荧光,成为校园夏夜里一道迷人的奇妙景观。

这难道是萤火虫在田间闪烁吗?

不是,这是一片能从体内直接发射荧光的神奇植物,是美国加利福尼亚大学的生物学家们,用基因工程的方法,创造出来的“杰作”,不愧是人间奇迹。

那么,科学家是如何使这一“杰作”成功的呢?

他们首先在萤火虫的细胞深处,找到了使萤火虫发光的基因(即DNA遗传分子长链)。然后,他们又把一些化合物当作“剪刀”和“胶水”,将这种“发光基因”从萤火虫的细胞上“剪”下来,“粘”到一种植物感染菌上。当这种植物感染菌感染烟草细胞时,就会把萤火虫的基因“嫁”到烟草细胞的内部。受到感染的细胞此时一部分是萤火虫,一部分是烟草。

这些神奇的细胞在整株烟草里生长发育,便成为闪闪发光的烟草了。

或许有人要问:这种闪光烟草的“荧光”有什么作用呢。

科学家们认为:将某种发光基因移植到生物的基因中去,从而使生物自身发出光亮,以便更好地研究生物内的发育和生长情况,这是生物自体示踪法。用这种方法来研究植物的奥秘,将更加方便。—英国科学家在烟草研究的基础上,又先后在小麦、棉花、苹果树等植物上移植了“发光基因”。

面对这些研究成果,科学家们对未来进行了大胆而乐观地设想:未来的世界,高速公路的两旁已不再是现代化的路灯,而是被一排排高能发光植物所代替;尤其是发光的番茄和马铃薯以及形形色色的发光蔬菜,将在未来的餐桌上大放异彩;人们对植物的施肥、浇灌将更有目的,更为科学。

长出鲫鱼尾的金鱼

我国已故著名生物学家童第周教授,曾经和美籍科学家牛满江教授合作,完成了一项很有意义的研究工作——鲫鱼和金鱼的“分子杂交”,在国内外影响很大。这种杂交鱼被誉为童鱼。

他们把鲫鱼细胞里的DNA和RNA分别提取出来,注射到金鱼的受精卵里去。这是一项很复杂的技术,操作者要在高倍显微解剖镜下,用比绣花针还细的针管进行移植工作。童老在显微解剖镜往往要连续工作几个钟头;他精神集中,动作敏捷,人们很难想象是一个年逾古稀的科学家。

这些鱼卵在科学家的精心培育下,发育成了金鱼,竟出现了一个奇异的现象:其中有一些金鱼的尾巴变得像鲫鱼的。大家知道,金鱼的尾巴是大而美丽的“双尾”,鲫鱼是普通的“单尾”。现在,由注射过鲫鱼核酸的金鱼受精卵发育成的金鱼,却长了一个鲫鱼的尾巴。经过传代繁殖,发现有些单尾金鱼在后代中还能遗传下去。

不久,童第周教授等人又用鲤鱼甚至蝶螈的核酸去处理金鱼的受精卵,也获得了类似的结果。

鱼类是体外受精、体外发育的,比较容易实现遗传操纵。在分子水平上进行鱼类的远亲杂交,把不同鱼种的优良特性集合起来,可以培育出长得快、味道好、适应力强的家鱼新品种。

大家知道,青鱼、草鱼、鲢鱼、鳙鱼(即大头鲢子)是我国有名的四大家鱼。但是光有这几种家鱼还不够。我国水域辽阔,环境条件差异很大,为了进一步发展水产养殖,满足人民群众吃鱼的要求,迫切需要更多更好的家鱼新品种。在这方面,遗传工程技术必将大显神通。

熟而不软的西红柿

西红柿学名为番茄。它不仅营养丰富,糖、蛋白质、各种维生素、无机盐俱全,被誉为“小型营养库”。它还具有一定的医疗价值,深得人们的青睐,成为人们食谱中极为常见的蔬菜。

大家知道,番茄有一个特点,成熟后往往容易变软,这给运输、销售带来极大的不便。“怎样来克服这一弊端呢?”“番茄成熟后不变软那该多好啊!”这是人们祖祖辈辈发出的感叹!

然而,现代高新技术的发展,将人们久盼不解的问题带入了“柳暗花明又一村”的境地。

科学家们发现,番茄果实的软化是由半乳糖醛酸酶控制的,这种酶能破坏细胞辟的果胶质,从而使果实很快变软。

这启发人们:破坏番茄细胞壁控制变软的酶乳糖醛酸酶,可让其成熟而不变软。

美国一个公司的科学家利用基因工程的手段,将控制乳糖醛酸酶活性表达的反义基因转入番茄体内,结果,使半乳糖醛酸酶的活性降低了92%,果实腐烂程度减少了50%,而果实的颜色、酸度、风味等性状无任何改变。

高新技术,给番茄扭转了传统的秉性,使其一反常态——熟而不软。水果在成熟之际,会释放出乙烯,从而促使水果成熟。如果通过基因工程破坏掉释放乙烯的基因,那么,成熟后的水果哪怕是挂在树上或植株上3个月也不会变软。待投放市场时,只要再加入一点乙烯,便可很快变软。

基因工程番茄的大面积种植,将会给菜农和商业部门带来方便与利润。

不再需要人工施肥的“懒人庄稼”

俗话说,“懒人种豆”。因为大家都知道,豆类作物不需要施肥,种下后几乎可以坐等收获,是一种“懒人庄稼”。

豆类作物为什么不需要施肥呢?是因为它的根部会与土壤中的根瘤菌结合形成根瘤,而根瘤菌会把空气中的氮元素转变成植物能直接利用的形式,源源不断地供给植物。这也就是说,每一棵豆科植物都拥有一座小型的氮肥厂,自给自足,绰绰有余。土壤中根瘤菌到处都有,独有豆科植物对它有吸引力。这是因为豆科植物有一种固氮基因,这种基因在根部发育到一定阶段就会起作用,向土壤中的根瘤菌发出信号,欢迎它们来“作客”、“定居”。

当基因工程方兴未艾之时,一个极其动人的主意很自然地跳了出来:如果豆科作物的固氮基因转移给水稻、小麦、棉花,那该多好!不要说省去了成亿吨的化肥,也不要说省去了施肥的大量劳力,就对于改善土壤结构、保护生态环境来说,这也是功德无量的好事。

所以。在整个植物基因工程中,固氮基因的转移成了皇冠上的明珠。许多学者孜孜不倦地进行着研究,希望早日攻下这座堡垒。

现在,固氮微生物细胞中遗传固氮能力的核心——固氮基因,已经能够在原核生物界细菌之间转移,人们正在进一步研究将它向真核生物——酵母菌中转移。

我国在生物固氮方面取得了可喜的成就。红花草用根瘤拌种或泼浇菌液已在江苏等地农村应用,增产效果显著。应用生物技术诱导小麦等非豆科植物结瘤固氮的研究,也初步获得突破,并在中澳、中德合作中得到证实。

我国科学家采用基因工程技术,已经选育出了适合我国水稻应用的耐氨固氮菌,这是一种奇妙的“增产菌”。当水稻根部接上这种菌2之后,可以获得相当于每666米土地增施2~2.5千克纯氮肥的增产效果。今后,这种耐氨固氮菌将在全国农村大面积推广。

目前,有人已把一种固氮菌移植到了胡萝卜细胞,还有人已把豌豆根瘤菌引入小麦和油菜的细胞。

看来,实现这宏伟蓝图的日子已为期不远了。

侏儒症的福音

人体内分泌腺的总枢纽——垂体,能分泌一种生长激素。生长激素分泌的不多不少,人体才能得到正常的发育。如果生长激素分泌得过多,就会出现巨人症,个子长得令人难以接受;如果生长激素分泌得过少,就会出现侏儒症,成为人们无法承受的“小不点”,个子只有1.2米左右。

那么,怎样能使这些“小不点”来一个“拔高”呢?

唯一的拯救方法,是向人体注射生长激素。

然而,生长激素的获得实在太难。远远不是人们想像的那么简单。以往,要获得生长激素,需解剖尸体,从大脑的底部摘取脑垂体,并从中提取生长素。从600具尸体的脑垂体中提取的剂量,仅仅能治疗一个侏儒症病人!若想从动物中获得生长激素释放抑制因子,需要50万只羊脑才能提取到0.005克的纯激素!

显然,大量获取治疗侏儒症的生长激素,是摆在人们面前的一个重大难题。

科技工作者经过长期、艰苦的探索,发现基因工程为解决这一难题展现了诱人的前景。科技工作者将人的生长激素基因“嫁接”到大肠杆菌中,让大肠杆菌来帮助生产生长激素,为侏儒症患者带来了福音。

被“嫁接”的大肠杆菌不负重望,生产出了“价值连城”的药物,成为微生物家族里的一颗超级明星,引起了人们的极大关注。

这样,人们从450升大肠杆菌培养液中提取的生长激素,就可相当于6万具尸体的全部产量!9升培养液中的生长激素释放抑制因子足以取代50万只羊脑!

发酵罐的容量可达700升,每升菌液可得到2.4毫克生长激素。

在美国,有一个小女孩患有侏儒症,身高仅125厘米,从1984年开始,便服用由大肠杆菌生产的生长激素,在不到一年的时间里,身高一下子长过150厘米。

目前,一些发达国家已经销售人生长激素。1990年销售量已达6亿美元;1995年销售10亿美元,是世界范围内销售量最大的生物技术药品,有着喜人的市场。高技术将知识转化成了巨大的经济效益。

“基因”打退棉铃虫

我国是棉花生产大国,每年栽种面积在470万公顷以上。可是,每年棉田防治害虫的费用也是惊人的,高达70亿人民币。

过去控制棉花害虫主要施用化学杀虫剂。开始的时候,效果不错,但是由于长期使用,造成昆虫对杀虫剂产生了耐受性。现在常规的剂量甚至更大剂量的杀虫剂,已经不能有效地控制住虫害。不能再用化学农药,必须考虑其他的途径了。

科学家发现Bt毒蛋白对棉铃虫有毒杀作用。科学家设想,能否利用生物新技术即转移基因的技术,培育出能抗虫的棉花呢?

他们首先人工合成能杀虫的毒蛋白基因,叫Bt毒蛋白基因。然后把Bt毒蛋白基因转入到棉花植株的细胞里去。这样棉花植株细胞就能产生杀虫的毒蛋白。当棉铃虫的幼虫吃了这些植物的叶子,便被毒死,从而起抗虫的作用,这种棉花叫做抗虫棉。

美国孟山都公司的转基因抗虫棉,已进行了10年的大田试验。我国这方面的工作,虽然刚刚起步,但也取得了显著的效果。我国是世界上获得抗虫棉的第二个国家。

1996年秋天,在河北省的衡水召开了抗虫棉现场会,来自五湖四海的100多名学者、专家汇集在一起进行现场考察。

自1992年以来,衡水的400万农民就开始和棉铃虫开展抗争。他们一次又一次地喷洒杀虫剂,一次又一次地赤膊上阵抓虫,但是他们一次又一次地失望了。

后来他们种植了抗虫棉,看到了种植棉花的曙光。

专家们在500多亩抗虫棉地里,看到棉花枝繁叶茂,结铃累累,棉桃竞相绽放,有的即将吐絮;而在与抗虫棉试验基地隔垄相望的一块方圆几百亩种植普通棉籽的棉田里,人们看到的却是另一番景象,植株叶片千疮百孔,空头棉竟占了半数以上。“耳听为虚,眼见为实”,鲜明的对照使棉农们口服心服,他们认识到农业的发展要靠科技,今后一定要种抗虫棉。

抗虫棉不是无虫棉。目前,培育的抗虫棉对危害严重的第二代棉铃虫威力最大。如果到了第三、第四代棉铃虫严重发生期,还是喷一些药的。其次,抗虫棉只抗棉铃虫,还不抗棉花蚜虫、红蜘蛛等害虫。

培育抗虫棉,推广抗虫棉,是我国棉花生产和科技发展的趋势。

少年朋友们,为了取得棉花更大的丰收,你们长大后愿意加入培育更好的抗虫棉的行列吗?

会走的“制药厂”

药品只能在药厂或试验室里生产,这是人们司空见惯的事。今后,这种观念需要变一变了,一些药品可以从饲养的四条腿动物中获取。动物自身就是一个“制药厂”,这样以来,会走的“制药厂”就诞生了,这已不是“天方夜谈”,即将成为现实。

恩格斯曾说过:“蛋白质是生命存在的形式。”人如果缺少了某种蛋白质就会生病。因而从理论上讲,任何一种蛋白质都可能成为潜在的多肽药物。

自从基因工程诞生来,人类一直在探索利用这种方法,来生产有重要医疗价值而又难以大量获得的珍贵蛋白。

随着高科技的发展,这种想法已变为现实,并且取得令人欣喜的成就。

1992年,英国受丁堡大学的一个研究组发表了一篇报告,宣布他们已经生产了6头转基因绵羊,这些绵羊可以在奶中生产一种抗胰蛋白酶的成分。“抗胰蛋白酶”可以药用,专治遗传性功能紊乱疾病。世界上每2000人中就有一人受此疾病的影响。抗胰蛋白酶是人体血浆中的糖蛋白,具有抑制胰蛋白酶的作用,人体一旦缺乏它,就会产生如肝功能衰竭、肺气肿等多种疾病。

美国科学家培育出了一批可生产含人TPA的雌山羊,奶中含有治疗心脏病的药物。

该转基因羊的操作是,先把乳腺控制基因和编码TPA的基因并成一个杂交基因,然后将基因用微注射技术注射到一个受精卵里,再将受精卵转移给雌山羊,产下的仔羊就携带杂交基因,长大后这些山羊彼此交配,雌性后代山羊的奶中就会含人TPA。每升羊奶中含人TPA为3~10毫克。

美国科学家还培育出第一批基因奶牛,这种奶牛的奶中含有人乳铁蛋白,具有抗菌、强体等生物学特性,是婴儿食品中的重要组成部分。

科学家们认为,奶牛比其他动物更适合药品的商业生产,因为每头奶牛一年可生产1万升奶,而山羊一年只能生产200升,奶牛的产奶量是他们的50倍。

日本科学家培育出了一种转基因白鼠,它的奶中含有能促进入体生长发育的生长素,为侏儒症患者带来了福音。

更有甚者,有些国家培育的转基因猪,能生产大量乳清酸性蛋白奶。

法国科技工作者培育的转基因兔子,奶中含有治疗血友病的7号元素和治疗贫血症的红细胞生成素。

现在,会走的“制药厂”,真是林林总总,各具风采。

面对这些基因动物的诱惑力,许多进行相关领域研究的科学家和企业界把注意力转向动物的乳房。这预示着一个以动物乳房为主要生产手段的巨大产业将要从地平线上升起;预示着在充满田园风光的养牛场和养羊场中,将涌现出一批“钻石”企业。

是的,会走的“制药厂”的进一步突破,必将带来巨大的经济效益和社会效益。不久的将来,“遍地是牛羊”的草原景色,将会变成遍地是“会走的制药厂”。

人们多么期盼这一天的早日到来啊!

抗盐植物的培养

前几年,联合国粮农组织的专家,发出了振奋人心的消息:用海水灌溉农田将不再是梦。

早在20世纪80年代,科学家们就从红树林及各种海洋植物中得到启示:它们之所以能在海水浸泡的“海地”中生长,主要原因是它们为喜盐、耐盐的天然盐生植物。

于是,科学家们“顺藤摸瓜”,运用基因工程技术,从种子基因到生态环境进行研究,结果发现它们的基因与陆地甜土植物不同,而正是这种独特的基因,使它们成为盐生植物,适应海水浸泡和滩涂的生态环境。

据此,科学家认为人类一定有办法找到或培育出适应海水灌溉的农作物。

抱着这一信念,科学家苦苦探索了十几年。

1991年,美国亚利桑那大学的韦克斯博士,完成了一种耐寒内质盐生物——盐角草属的杂交试验。

紧接着,他又潜心研究高粱种子基因,使它适应咸土的生态环境。

韦克斯博士认为,在现有粮食作物中,高梁生产速度快,根须多,水份吸收快,只要解决耐盐问题,海水浇灌或咸土裁培均有可能。

无独有偶。美国农业部的土壤学家罗宾斯也在打高粱的主意。他将高粱与一种非洲沿海盛产的苏丹杂草杂交,结果成功地培植出一种独特的杂交种——“苏丹高梁”。这种粮食作物的根部会分泌出一种酸,可快速溶解咸土土壤中的盐分而吸收水分。种植这样的农作物,采用海水浇灌后,海水中的盐分会自然被溶解掉,而不致于影响高梁的“今日一片荒滩,明日一片绿洲”。当然,这一美好愿望的实现,仍是借助于植物基因工程的帮忙。

以色列的厄瓜多尔加拉帕斯海岸,生长着一种番茄,它的个小味涩,口质很差。但以色列科学家从这种耐盐西红柿中提取出了耐盐基因,将它整合到普通西红柿的种子后,通过认真管理,竟培育出了味美、个大、品质优良的耐盐品种,为充分利用海边盐碱地开辟了广阔的前景。难怪有人说耐盐西红柿是“盐农业”的一颗明珠。

看来,将昔日的滩涂、盐碱地变为稳产、高产的沃土绿洲,已为期不远了。

用细菌生产“蚕丝”

蚕丝,是生产丝绸的原料。要大量生产丝绸,无不受养蚕业及蚕丝的制约。

于是,科技工作者大胆地提出设想:让细菌来生产蚕丝该多好啊!

当然,要实现设想并非易事,这需要高科技来“导航”。

它的原理是:把蚕的脱氧核糖核酸的分子分离出来,“剪切”下制造出丝蛋白“基因”来,再从细菌的细胞里提取一种叫做“质粒”的脱氧核糖核酸分子,把它和“剪切”下来的基因拼接在一起,再接到细菌的细胞里去。这样,细菌便可以生产出蚕丝来。

说起来简单,做起来可不是一般的难。

这是因为脱氧核糖核酸的分子非常小,要用电子显微镜才能看到它的’尊容”。要把它链上的制造丝蛋白的“基因”“剪切”下来,当然不能用普通的剪刀,而要用一种“限制性核酸内切酶”。这是一种蛋白质,它有着特殊的本领,能识别脱氧核糖核酸分子上特定的位点,并把它分成长短不一的片段。

细菌细胞内有一种叫做“质粒”的脱氧核糖核酸分子,也需要同样的“剪刀”来剪,才能使两个“剪口”完全吻合。

为了使它们连接得更加牢固,还需要请连接酶来帮助把接缝抹掉。

借助于高科技手段,经过一番“高难度”动作,将细菌进行“脱胎换骨”,细菌就会像蚕那样合成丝蛋白,具备了生产丝的本领。这真是人间奇迹!

不仅如此,聪明的科技工作者又进一步研究试验,别开生面地使细菌生产了一种具有重要经济价值的“蛛丝”来。

这种丝线是由一种叫“金蜘蛛”的蜘蛛生产的,它的丝具有令人难以置信的强度和硬度,将万分之一毫米直径的蛛丝拉长两倍,也不会断裂。它比同档粗细的钢丝还要结实5倍。然而,天然的金蜘蛛十分稀少,非常难得,而人工饲养的金蜘蛛又吐不出同样品质的丝来。

怎样才能获得人们需要的蛛丝呢?

科学家的目光聚向高新生物技术,产出了大胆而新奇的想像请蚕产“蛛丝”。

用某种昆虫的病毒,改变其遗传基因,让蚕感染上这种已改变的遗传病菌,并把它携带的产生蛛丝的基因传给蚕。这样,蚕吐的丝就是“蛛丝”了。

这种“蛛丝”性能非常好,抗断裂强度是蚕丝的10倍、尼龙丝的5倍,伸缩率达到35%,大大超过了尼龙丝。

由于蚕的饲养、管理和繁殖也受外界条件的影响,于是,科学家只好另辟蹊径,采用重组和细胞融合手段,从金蜘蛛体内分离控制吐丝的遗传基因,植入特定的细菌中,从而这种细菌成了能产蛛丝的“微型工厂”,能生产出蜘蛛丝的蛋白。这种蛋白从微孔中挤出的丝,细度是丝的十分之一,拉伸强度为相同粗细钢丝的5~10倍。“微型工厂”生产的蛛丝蛋白,同蜘蛛产的丝别无二致。

蛛丝是一种优异的纺织原料,是制造降落伞绳、头盔及防弹背心的最佳材料,用途十分广泛。

基 因

在遗传学和基因工程领域,基因这个概念是经常要用的。要了解基因工程,先了解“基因”是必不可少的,否则,你就无法弄清与此有关的生物技术的奥秘。

所谓基因,在生物遗传学上是指的遗传功能单位。最早提出基因这个概念的是丹麦科学家约翰逊,这是1909年的事。当时他是这样定义的:基因是用来表示任何一种生物中控制任何性状及其遗传规律又符合孟德尔定律的遗传因子。说得通俗些,生物的性状如高矮、花色、籽粒大小、动物的肤色、毛色等等都是由基因控制的。

到了1910年,美国杰出的遗传学家摩尔根在研究果蝇的遗传现象时,发现基因会发生突变。本来是白色复眼的果蝇,在它的后代中突然出现红色复眼果蝇。究其原因,是控制白色复眼这一性状的基因发生变化,变成了控制红色复眼性状。摩尔根认定,基因还是突变单位。同时这告诉人们,改变基因,就有可能得到新的性状,培育出新的生物种。这对于包括基因重组技术的基因工程技术来说,是极为重要的。

在很长一段时间内,人们虽然知道基因是怎么回事,但它是什么具体的物质,却并不清楚。直到1914年一个著名的实验之后,才明确DNA是遗传即基因的物质基础。DNA有4种核苷酸构成,4种核苷酸固定配对形成密码。它们就是一切生物所以会遗传的密码。

基因材料的保存

基因重组的材料是基因片段(含有目的基因)。那么,这些用于基因重组的基因片段是怎样保存的呢?生命体的细胞中含有该生物遗传的全部密码。为了改造某一生物,把含有目的基因的片段导入该生物的细胞中去,才能培育出带有外源基因的转基因生物(动物、植物或微生物)。问题是这个含有外源基因的片段,不是随时随地可以觅到的,必须事先保存在一个地方,这就是基因文库。它是存放基因的“仓库”。

生物的全部基因就在细胞内的DNA上,这是一条很长的链。指挥生物的一切秘密全在上面。遗传工程科学家为了基因重组方便,就采取先把一种生物细胞中的全部DNA或染色体上的DNA的所有片段,随机地连接到基因载体上,然后移植到宿主细胞中进行增殖,形成各个片段的无性繁殖系。这样,该生物的全部基因片段就在宿主细胞内一个不留地全部复制出来。

这好比拍电影,先拍分镜头(相当于基因片段),拍好全部镜头后进行剪接,配上录音,就是一部电影了。有了这个电影片子,就可以复制出许许多多相同内容的电影。

从70年代起,科学家已建立了大肠杆菌、酵母菌、果蝇、鸡、兔以及大豆、水稻等多种生物的基因文库。我们要取这些生物的任何一个基因片段进行重组,都非常容易了。

用于侦破的基因指纹

大家知道,在现代侦破手段中,利用指纹寻找罪犯,捉拿凶手,是非常有效的。这是因为世界上几乎没有两个人的指纹是相同的。不同的指纹,实际就代表不同的人。只要在自己的指头上涂以油墨或者印泥,捺在白纸上就能印出清楚的指纹。因此,在犯罪现场寻觅指纹是极其重要的任务。

现在还有利用基因指纹作为侦破手段的。基因指纹是遗传学上的概念。原来,人的基因虽然大体上都是一致的,但是仍有不同,而且同样找不出两个人会有相同的基因(双胞胎也有微小区别)。根据基因密码,经过特殊处理,也会显示出如同条形码那样的纹形——黑白相间,这就是基因指纹。

现代科学技术能从一滴血、一根头发或者一口唾液中发现基因指纹。如果是一个杀人犯,他在与被害者搏斗过程中,很可能弄破自己的皮肤而留下极少的血迹。刑侦人员从血迹中就可以找到基因指纹。当刑侦人员从疑犯身上获得基因指纹,如与现场血迹的基因指纹一致,那么疑犯就成了百分之百的凶手。至于对强奸犯的侦破,利用精液获得基因指纹,在国外已经成了常用的侦破手段。

基因指纹用于现代侦破虽然历史还很短,但已经受到特别的重视。

对血友病病人实施基因治疗

血友病是一种常发于男性而通过女性遗传的疾病,用药物无法治疗。患此病的人,最怕皮肤伤破,一旦伤破就会流血不止。这是因为血友病病人的血液中无凝血因子Ⅸ。为了治此病,只有输入含有凝血因子Ⅸ的血液,使其在流血过程中凝血,终止出血。患此病的人,还易受艾滋病和乙型肝炎的感染。

血友病在地中海一带比较多见,过去对此无根治的办法。病人提心吊胆度日,深怕皮肤碰破弄伤。因为人体内血液有限,如果流血不止,就会有生命危险。因此,必须寻找理想的治疗办法,这个办法就是基因治疗。给血友病人补充凝血因子Ⅸ,虽然可行,但来源有限,不可能从其他人体中提取凝血因子Ⅸ。

对血友病人进行基因治疗,是将病人的皮肤细胞在体外进行培养,然后通过反转录病毒载体将凝血因子Ⅸ导入皮肤细胞,进行扩增,与胶原混合注射回病人体内。这样能使病人的Ⅸ因子的浓度升高2倍。持续1年余,血友病人的症状就会得到明显改善。经过基因治疗的病人,即使皮肤破损,流血也会凝固,不会出现流血不止。这说明,基因治疗可以把血友病治好。但是,这还要从遗传这个角度解决问题。因为血友病是遗传的,虽然病人可以治好,此病却仍然会遗传给子孙后代。

培育转基因猪

猪,最终能否成为人体器官的供应者,关键是能否培育出带有人体基因的新型猪。要回答为什么向猪索取器官的问题,还必须回答什么样的猪才可以成为人体器官的供应者。

并不是所有普通猪的器官都可以取下来移植到人身上。它必须经过基因转移,把人身上的基因转移到猪身上。

英国科学家首先做了开创性研究,他们把人体内负责调节补充蛋白质的两种基因——强烈排斥异体组织的化学物质——注射到猪的受精卵中。这两个基因与猪受精卵的DNA相结合,培育出含人体基因的新型猪。此猪不同于一般的猪,因为它已经有了人体基因。长到一定大小,科学家从猪身上取出心脏,移植到一只狒狒身上。此心脏持续跳动了30小时,而不带人体基因的猪心脏持续跳动只有1.5小时,前者是后者的20倍。可见转基因猪不同凡响的作用了。

尽管美国科学家已培育出带有人体基因的新型猪,并且计划造一座现代化的养猪场,进行器官移植试验,但是目前还不能在人体身上移植,只能在灵长类动物身上试验,以积累经验,最终培育出人体对其器官不排斥的转基因猪。为解决人体器官移植不足的难题,此项工作的研究颇具幻想色彩,但有重要实践意义。器官衰竭的晚期病人是多么期望这一天的到来啊!

研究转基因植物

转基因植物,顾名思义是把目的基因片段转移到植物细胞中去,经过培育而得到的植物。这种植物不仅保留着原有的遗传性状,而且增加了新的目的基因所控制的性状。

为了使不抗细菌病的水稻能够抗细菌侵染,设想把抗细菌病的基因转移进水稻体内,以获得抗病性能。多少年来,农学家和生物学家一直在为此目的努力,但效果并不明显。直到前不久,能抵抗细菌病的转基因水稻才培育出来,这是美国和法国科学家共同研究的成果。

转基因植物,从80年代初开始至今,用来改良各种农作物品种取得了可喜成就。如优良的烟草、向日葵、油菜、土豆、西红柿和黄瓜等相继问世,出现在超级市场的货架上。但是,前面列举的这些品种都是双子叶植物,转基因的单子叶植物似乎还是千呼万呼不肯出来,因为在单子叶植物上进行转基因有一定难度。

这个困难终于在1995年被克服,美、法科学家携手合作,一种能抵御最常见细菌病的水稻新品种培育出来了。他们采用的就是转基因方法。转基因水稻新品种能抵抗黄杆菌传播的细菌病。此病在世界上至少要吞吃掉5%~10%的水稻产量,在非洲和亚洲的个别地区甚至可以毁掉50%的水稻。

相信生物基因工程必将为最终解决粮食问题作出贡献。

应用于大田栽种的转基因作物

用基因重组或者基因导入技术培育出的转基因作物品种一年比一年多,但真正用于大田栽培的并不多。是转基因作物的品质不好,还是它们的产量不高?这都不是主要原因,而是人们担心这些转基因一旦进入田间试验,会不会引起生态不平衡或者造成其他无法预料的后果。

现在情况已发生变化。在美国已有相当多的转基因作物经批准在田间试种,其中包括转基因的保鲜番茄、能抗病害的大豆以及一些蔬菜。保鲜番茄由于基因导入,使它不易腐烂,在超级市场出现之后就受到特别的钟爱。转基因水稻和转基因玉米,因为品质上佳,蛋白质含量高,成为美国农场主们十分欢迎的新品种。

近几年,在美国由于对转基因研究工作的大量投资,现在已有所回报了。转基因作物的销售额到2000年预计达20亿美元,而到2010年可达200亿美元。

美国在1996年上市了抗病虫的玉米、大豆和棉花新品种。这目前还不会影响到美国的杀虫剂生产。但是,随着扩大它们的栽种面积,随着转基因水稻、小麦的培育成功,今后美国的杀虫剂生产厂商的日子肯定会越来越不好过。转基因作物在田间的大量扩种,现在还没有出现生态失衡的迹象。看来这种担心也是多余的。

基因重组的操作

基因重组是一项十分精细的技术。只有掌握了这一高技术,才能在改造生物和创造生物中有所作为。因为这是在分子水平上的操作,其难度也就可想而知了。但是,再难也难不倒我们的科学家。

一般来说,基因重组分为4个步骤。首先,是获得具有目的基因的片段,即DNA片段。这个片段的取得既可用工具酶,也可以用机械方法剪取DNA片段。用化学合成人工基因片段,是另一种比较简便的有效的方法。第二,是把含有目的基因的片段与载体(质粒或病毒)DNA分子重组在一起。第三,是把重组好的DNA分子导入宿主细胞。第四,让这些重组的DNA分子在细胞内与宿主的DNA组合在一起,让它表达出来,选育出含有所需要的重组DNA宿主细胞。对宿主细胞进行培育,如果是植物,它就会长成一棵新植物;如果是大肠杆菌,它就会变成能合成目的基因控制的化学有机物;是动物细胞,就会形成具有新性状的动物。这在理论上是可以成立的,而且实践也证明,基因重组技术的确可以用来改造生物和创造生物。

基因工程问世之后,发展之快令人目不暇接。不论是微生物还是植物、动物,用基因重组技术都得到了许多新品种。基因工程已成了改造和创造生物种的最有力的手段。

从事基因工程的预防措施

基因工程的问世,的确为改造和创造新的生物品种带来了希望。同时,人们又不得不对它潜在的危险担忧。这种担忧不是没有道理的。万一有人在实验室内通过基因重组而培育出一种致人患病的特殊细菌“逃逸”到实验室外,并感染了人,那不是一场灾难吗?因此,美国、日本等国制定了有关法律和规定,在实验室内进行基因工程操作都必须采取有效的预防措施。

对于基因工程这一特殊研究对象,人们的担心是很自然的,这种担心来自4个方面。

首先,害怕基因武器。用基因工程的办法研制各种新型的剧毒病原体已成现实。比如,把肉毒杆菌产生毒素的基因或致癌病毒基因引入大肠杆菌,大肠杆菌就变成杀人武器。肉毒毒素是一种异常毒的毒素,只要25克(半两)就足以把全世界的人毒死。

第二,任何大肠杆菌经过基因重组,都可能成为有害的菌种。它可以寄生在人体内,并且可以传播,可以造成灾难性的后果。

第三,如果把重组DNA分子培育出来的新生物扩散到自然环境中去,就会破坏自然界原来的生态平衡。

第四,基因工程也可能被用来进行培育“怪物”。

所以,在立法上制定预防措施,明确哪些实验可以做,哪些实验不可以做,是完全必要的。

可能成为现实的“牛西红柿”

1983年4月1日,西欧有一家报纸刊登了一条新闻,就是德国汉堡大学的两位教授用最先进的生物技术,成功地使牛的细胞和西红柿的细胞融合在一起,融合了的细胞经过培养长成一棵古怪的植株,结出的果实含有动物蛋白,吃起来有牛肉味道。两位教授把这种植物定名为“牛西红柿”。

这条消息立即引起了轰动。用细胞融合培养出动物和植物之间的杂种,这可是具有划时代意义的大事。一时间,各国的传播媒介竞相报道,我国的一些报刊也作了转载。

然而,不久披露出来的真相使人们一下子泄了气。原来,所谓的“牛西红柿”完全是编造出来的谎言。在西方的许多国家,4月1日是愚人节,那家报纸对读者开了一个大玩笑,一个国际玩笑。

玩笑归玩笑,这一事件毕竟使公众对细胞融合的认识和重视又提高了几分。确实,作为细胞工程的骨干,细胞融合技术有可能创造出许多不可思议的奇迹,它的前程不可限量。

所谓细胞融合,就是使两个不同物种的活细胞紧密接触在一起,并且使接触部位的细胞膜发生融化。这样,两个细胞的细胞质你来我往、互相流通,最后合而为一,完全合并成一个细胞。在精巧的培养技术之下,这个细胞有可能发育成完整的生物个体,那就是原来两个细胞所属的物种的杂种后代了。这个杂种后代有可能兼有两个上代的一些优良性状。这对于改良品种,提高农、林、牧业产品的产量和质量,是很有意义的。

细胞融合说说容易,做起来就是另一回事了。细胞的直径大多在数十微米上下,几十只细胞并排着能从针眼里穿过,所以细胞融合的操作难度是可想而知的。这还是小事,要使两个不同种的活细胞紧密接触,进而使细胞膜发生融化,是细胞融合的最大难题。在这个难题面前,科学家们使尽了浑身解数:有的使用了聚乙二醇等化学药品;有的使用了细胞电穿孔技术——用高强度、短时程的电脉冲去击穿细胞膜以促进融合;有的更是别出心裁,用失去活性的病毒颗粒来促使细胞膜融化。至于在细胞融合后再把它培养成健全的生物个体,则牵涉到设计和使用成分复杂的培养基,牵涉到控制和不断变更培养条件等等,也是困难重重,荆棘满途。

尽管如此,致力于细胞融合的各国科学家还是取得了很大的进展。

许多植物的优良品种由此来到了世界上。在动物方面,山羊—绵羊,牛—貂,猴—鼠,甚至人—鼠的细胞融合也已经成功了。这些融合了的细胞尽管还没有能发育成动物个体,但已经能长期存活,而且能不断分裂,形成同种细胞的群体——杂交瘤。

前两年,有人完成了一项引人瞩目的细胞融合:在使用细胞电穿孔技术后,人的红细胞被整个地摄入矮牵牛的叶肉细胞中。过几天后,两者相安无事,各自都活得很自在,矮牵牛叶肉细胞慢慢长出了细胞壁(原来的细胞壁在融合前剥去了);而红细胞则照样履行它原先在人体里的使命——分泌血红蛋白。这个奇特的融合细胞可以看成是一种全新的生物体系——植物和动物的杂交体系。尽管它距完整的杂交个体还有遥远的距离,但已经是一个破天荒的伟大的开端。如果能从这个开端顺利发展下去的话,本文开头说的那个牛而红柿,说不定真有一天会出现在你的餐桌上呢!

克隆绵羊“多利”的诞生

1996年7月,在英国苏格兰爱丁堡市郊外的一个羊圈中,随着一阵阵“咩咩”的叫声,一只惹人喜爱的小绵羊落地了。尽管主人立即给它命名为“多利”,然而,对它的降临讯息,主人却保持了约有7个月的沉默,因此世人对它一无所知。直到给“多利”办完必要的登记手续——专利申请后的1997年2月23日,主人才对外宣布:“多利”是世界上首次采用一头6岁成年母绵羊已完全分化成熟的乳腺细胞无性繁殖成功的小绵羊。它的主人就是英国罗斯林研究所以伊恩·维尔穆特和基思·坎贝尔为首的研究小组。这一消息不胫而走,立即引起了全世界的广泛关注,成为近年来最具轰动效果的一项科学研究成果。

众所周知,在正常情况下,哺乳动物是以受精卵胎生的方式繁衍后代的。其中,卵子与精子结合成为受精卵是哺乳动物繁衍后代的第一个重要的环节。然而,克隆绵羊“多利”却是没有经过精子、卵子结合这个关键环节而得以诞生的。

更确切地说,克隆绵羊“多利”没有父亲,却有3个母亲。它诞生的过程是这样的:罗斯林研究所的科学家们首先从一头产于芬兰的成年多塞特母绵羊的乳腺中取出一个本身并没有繁殖功能的普通细胞,将该细胞的细胞核分离出来备用。然后,他们从一头苏格兰黑面母绵羊的卵巢内取出一个未受精的卵细胞,将这只羊卵细胞的细胞核取出,并换上从第一头母绵羊乳腺细胞中分离出来的细胞核,再将这个已被“调包”的卵细胞在电火花的作用下激活,使其开始像正常受精卵一样进行细胞分裂。这个卵细胞经过分裂形成胚胎后,再将它移植到另一头苏格兰黑面母绵羊的子宫内,使其进行正常的胚胎发育。这第三头绵羊经过正常的妊娠后产下了“多利”。

在1997年2月27日出版的英国权威科学周刊《自然》杂志上,英国罗斯林研究所以伊恩·维尔穆特和基思·坎贝尔为首的研究小组发表了他们的研究成果。维尔穆特指时:“多利”继承了其亲生母亲(提供乳腺细胞细胞核的第一头母绵羊)的遗传特征。也可以说“多利”几乎是第一头母绵羊百分之百的“复制品”。

克隆绵羊“多利”的诞生,开辟了哺乳动物无性繁殖的新时代。

自20世纪70年代以来,许多国家的科学家经过努力已获得了克隆青蛙、克隆猪、克隆山羊乃至克隆猴,但是这些克隆动物都是通过胚胎细胞进行的核移植,还算不上真正意义上的无性繁殖。因为胚胎细胞本身是通过有性繁殖产生的,其细胞核中的基因组,一半来自父本,一半来自母本。克隆绵羊“多利”是采用已高度分化的体细胞进行的核移植,它的基因组全部来自于其母本,这才是货真价实的无性繁殖。

科学家指出,“多利”顺利降生并能得以健康成长,其最重要的科学意义在于:首次采用动物巳高度分化的体细胞进行的核移植,这是前所未有的,无疑是20世纪科技领域内的又一重大突破。其最重大的理论意义在于:证明一个已完全分化成熟的体细胞还能完全恢复到早期的原始细胞状态,还能像胚胎细胞一样,完整地保存全部遗传信息,这同以往的科学结论是完全不一样的。绵羊“多利”诞生并健康成长的消息像一颗威力巨大的核弹头,将国际生物学界长期以来坚信不疑的“金科玉律”击得粉碎,开辟出了一个生物学的新时代。

无性繁殖的蛙和鼠

我们知道,用根、茎、叶进行无性繁殖,是使许多植物保持优良特性的好方法。优良果树通常是嫁接成的杂种。用种子繁殖,便不能保持优良特性。因为种子是有性生殖的产物,必须通过生殖细胞的结合,在这个过程中,遗传物质必然要发生重新组合,很难稳定不变。但嫁接是无性繁殖,直接由体细胞分裂,在细胞分裂时,遗传物质DNA都要精确地复制一份,每个子细胞内的遗传信息完全相同,所以,嫁接的苗木和母树一模一样。

可惜谷类和豆类等重要庄稼只能用种子繁殖,因此它们的育种过程就复杂多了。但是,随着细胞培育技术的发展,将有可能把无性繁殖应用到一切植物甚至动物中去,使良种繁殖和农牧业生产发生巨大的变革。

1962年,英国科学家格登做了一个著名的实验。他用紫外光照射等方法,把蛙卵中的细胞核杀死,然后又从蝌蚪的小肠细胞中取出细胞核,并把它移入除去了核的蛙卵里。结果,这个卵竟在人工培养下,发育成了一只青蛙。

我们知道,遗传物质主要在细胞核里,所以这只青蛙实际上并没有母亲,它的遗传物质完全是蝌蚪提供的。

后来,有人用老鼠也完成了同样的试验,得到了没有父亲的小老鼠。它的遗传物质完全是得自母鼠,可以说是母鼠无性繁殖的后代。因此小鼠长得同母鼠完全一样。

1981年,美国和瑞士的两名博士合作,育成了三只无父母的小鼠。他们采用的方法是,先从灰鼠的胚胎细胞中取出细胞核,将其植入除去细胞核的黑鼠受精卵中,再将它放在试管中培养几天,然后把它植入白鼠的子宫内。结果这白鼠竟生出了三只灰鼠。

借腹怀胎育良种

我们知道,传统的动物育种往往需要进行多代选择杂交,在每一代中选择那些具有优良性状的动物作为下一次交配的种畜和种禽,最后,培育出接近为纯种的高产优良动物品种。这种方法效果较好,但是需要几年、十几年的时间,费用也昂贵,不能满足现代畜牧业的发展。

随着生术技术的迅猛发展,人们已找到解决这一难题的技术方法。

科学家把良种乳牛的成熟卵,与良种公牛的精子进行受精,待发育成受精卵后,放到试管中培育。待这些受精卵在试管中发育成胚胎后,再通过“借腹怀胎”,移植到普通母牛的子宫里培育,使普通母牛也能产下地地道道的良种小牛。

令人欣喜的是,通过“借腹怀胎”,一头良种乳牛一年能让其它牛“代劳”产下30~40头自己的儿女。更奇妙的是,科学家还发明了“胚胎分割”的高招。当试管里的受精卵发育成胚胎后,到了一定阶段,将胚胎取出来分成若干份,然后再送入试管继续培育。被分割后的胚胎有的只有两个细胞,但仍能发育成新的胚胎。移入乳牛的子宫后,普通乳牛照样可生下新品种的小牛。

用此法,给普通乳牛的子宫内移入几个胚胎,就可产下“多胞胎”,从而打破了乳牛的单胎生育习惯。

在美国有60%~70%的优质奶牛是通过“借腹怀胎”生育的。由于优质奶牛的快速繁育,牛奶的产量大增,相应地减少了奶牛的饲养量。“借腹怀胎”,让人们大开眼界。它不仅加速了动物的繁殖,更重要的是加快了优良品种的繁育和推广,因而很受科技工作者的青睐。

人工种子

种子,是植物生长的物质基础。

人工种子,是现代科技发展的“产儿”。那么,人工种子和植物种子有相似的生命力吗?

是的,不仅如此,人工种子还具有普通种子所不具备的优越性。

所谓的人工种子,是利用组织培养方法,从植物的茎或叶等器官诱导产生胚状体或芽,外面包以胶囊,从而具备种子功能的“种子”。

具体来说,人工种子由三部分组成。最外层为人工种皮,具有通气,保护水分、养分和防止外部机械冲击的性能。中间为人工胚乳,含有胚状体发育所需要的营养物质及有益成分。最内侧为被包裹的胚状体或芽。

从大小和结构上看,人工种子就像一颗颗圆形半透明的鱼卵。

为了了解人工种子的过程,我们不妨以芹菜为例,来说明这个问题吧!

首先,科技工作者把杂种芹菜幼苗的嫩茎切割成小片,在无菌条件下操作接种在培养基上,诱导形成淡黄色的似菜花形状的愈伤组织。

然后,再把愈伤组织转移到另一种培养基上。不久,细胞便开始分化,在愈伤组织表面形成最大的绿色元宝形的结构。这就是“胚状体”,人们也管它叫“体细胞胚”。

这样,运用这种“分隔术”,一株杂种芹菜苗就能得到几百个胚状体,每个胚状体相当于一粒杂种种子,在实验室里就可以长成一棵杂种芹菜苗。

不过,把它们种在土壤里可就难以活命。追根究底,是缺少一种起保护作用的种皮。

于是,科技工作者的“聚焦”指向了种皮。

给胚状体包上一层皮,可不像我们想像的那样简单。

试验是成功的基础,科技工作者克服困难,经过100多种物质的试验,终于制成了理想的人工种皮。

然而,这些胶丸本身似乎也在自我“烦恼”,常常像受热的鱼肝油丸一样粘连在一起,给播种带来麻烦。

于是,科学家又想出一个办法,给每粒胶丸种子穿上一件用聚合物做成的“外衣”,从而解决了播种粘连的问题。这种“外衣”接触土壤后,通过生物降解作用,便会自动脱落。

生产人工种子的公司想的可真周到啊!他们把微量的自生固氮和化学除草剂加到胶丸里,这样,人工种子又具了天然种子所不具备的优点。

现在,世界上已有100多种植物能成功地诱导形成胚状体而形成人工种子。

我国对人工种子的研究处于世界领先地位。在胡萝卜、芹菜、黄连、橡胶等十几种植物上进行了体细胞胚芽发生及人工种子的研制。其中,胡萝卜、芹菜、黄连的人工种子就是在有菌条件下也可萌发并长成植物。

值得浓墨重彩的是,1987年底我国复旦大学人工种子研究组,首次研制成功水稻等人工种子。

人工种子作为一项高新生物技术,是育种和增殖的一次大变革,也是育种技术体系中的一次大突破,有着许多优点:

第一,通过组织培养产生的胚状体数量多,繁殖快。用于快速繁育苗木、人工造林等方面,比用试管苗繁殖,还更加多快好省。

第二,在制作过程中有意地向人工胚乳加入植物生长调节剂,抗虫、抗病药剂,可以大大提高植物体的活力和耐受力。

第三,可用来固定杂种优势,加速良种繁育进程。

第四,利用胚状体的发生途径,以基因转导作为植物基因工程和遗传工程的桥梁。充满诱人的魅力。

相信,不久的将来,人工种子会越来越受人们的青睐。

人工制造双胞胎

在我国体坛上,人人皆知李大双和李小双,他们是体操名将,是双胞胎的兄弟俩。

1997年5月11日,上海举行了一个由来自8个省市自治区的11对4胞胎的特别聚会。其中年龄最大的是4姐妹,今年已35岁。年龄最小的是4小凤,年仅1岁。每1对4胞胎在成长过程中,都得到当地政府和社会各界的关怀和帮助。

一卵双生,是由一个受精卵产生的,具有相同的遗传物质,其性别一定一样,脸蛋、性格也一样,几乎难于辨认。二卵双生,是由两个胚胎发育形成的双胞胎,其性别也可以一样,但脸蛋、性格往往是不一样的,和一般姐妹或兄弟一样,只不过他(她)们是同一胎出生而已。性别不一样的双胞胎,肯定是从两个胚胎发育来的。

多生是超过双胞胎的生育,有3胞胎、4胞胎或更多。这包括1卵双生和2卵双生的不同组合。例如3胞胎,可以是1卵3胞胎,也可以1卵双胞胎加1卵1胎,还可以3卵3胞胎。

胚胎细胞什么时候分离,单独发育成为一个个体呢?让我们从胚胎的发育谈起。

哺乳动物一般是有性繁殖动物,它由特化了的生殖细胞——精子和卵子相结合形成受精卵。

受精卵又叫合子,是单个细胞,带有父体和母体的基因。受精后随之开始进行分裂,由一个细胞分裂成两个细胞,再由两个细胞分裂成4个细胞,一直分裂到32个细胞,成为团状,其形状像叫桑椹的水果,所以32个细胞期的胚胎又叫桑椹胚。此后,胚胎仍不断分裂,并且细胞开始分化。

所谓分化就是胚胎的细胞发育形成各种不同的组织和器官,如皮肤、心脏、肝脏和生殖器官等组织和器官,其功能也随之不同。这样就逐步发育形成一只小动物。哺乳动物除生殖器官的生殖细胞为性细胞外,其他组织和器官的细胞都叫体细胞。由于一个个体的全部细胞是从一个受精卵发育来的,所以都有相同的遗传物质。

那么植物呢?在繁殖方式上,植物除和动物一样也有雌(胚珠)雄(花粉)相结合的受精作用外,它还有一种独特的繁殖本领,就是它的体细胞如一段枝条或一片叶子,埋在土里,就能生长,形成一植株,甚至植物的单细胞花粉,经人工处理、培养,也可以发育成为一植珠。这种繁殖方式叫做无性繁殖。科学爱把植物细胞的这种能力,叫做“全能性”。

那么哺乳动物有没有无性繁殖的方式呢?哺乳动物的细胞是否有“全能性”呢?

哺乳动物没有像植物扦插繁殖一样的无性繁殖方式。小猫、小猫的前肢或后腿,不能生长成为一只猫或一只狗。但哺乳动物在特殊的情况下,也有独特的繁殖现象,即发育早期的胚胎,从2个细胞发育到桑椹胚,当分为两个部分或更多部分时,每个部分能单独发育成为一个完整的个体,也就是我们见到的双胞胎、三胞或多胞胎。

科学家把2—细胞期绵羊胚胎分为两部分,把4—细胞期胚胎分为4部分,把8—细胞期胚胎分为8部分,分别获得2只、4只和5只羊

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载