海洋声光电波导效应及应用(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-14 04:53:07

点击下载

作者:张永刚 等

出版社:电子工业出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

海洋声光电波导效应及应用

海洋声光电波导效应及应用试读:

前言

21世纪是海洋的世纪,“建设海洋强国,共筑中国梦想”是我们的奋斗目标;有效利用海洋现象,提升海洋科技自主创新能力,跟踪和探索海洋领域重大科学问题,是我们认识海洋、建设海洋、发展海洋、利用海洋的重要方法和手段。海洋声光电的传播是海洋环境的重要组成部分,而声光电波导效应是海洋中的自然现象,如何了解并掌握海洋中的波导现象,实现声光电的超视距传播,是本书解决的主要问题。

本书是作者带领的科研团队,根据十余年努力得到的一些研究成果,以及作者指导的声、光、电三个方向博士论文整理而成的。主要指导思想是介绍和研究声光电在自然界的传播过程中存在的波导现象,这种现象会形成超视距传播和各种异常路径传播特征,认识和掌握这类自然规律,对提升各类装备仪器在海洋环境中的应用能力是一件十分有意义的工作。

本书侧重于声、光、电的超视距传播和异常路径传播,注重对各类自然界客观存在的物理现象的认识和掌握,强调自然界中真实存在对声光电传播产生的波导效应。写作手法强调认识自然,掌握自然规律,探索自然现象等特点,不追求平淡泛泛的概念上的叙述,而是直接面对实际问题开展研究,强调对自然现象的认知、作用与影响,以及解决的方式和方法。

全书共分10章,内容包括绪论、海洋声波导现象与海洋环境、声波导的传播特性、中国周边海域的声波导分布特征、中尺度环境条件下的声波导效应、光在湍流大气中的传播特性、海洋大气光学折射及波导效应、海洋中的大气波导现象、大气波导环境下的电磁波传播、海洋声光电波导效应的应用。第1章主要论述了海洋中声光电波导的类型、成因及其重要性,并介绍了国内外相关研究的发展状况;由张永刚教授编写。第 2 章至第 5章主要介绍了声波导效应,其中第 2 章论述了海洋中的声波导现象和声波导类型,第 3章研究了海洋声波导的传播特性,第 4 章分析了中国周边海域的声波导分布特征,第 5章介绍了中尺度环境条件下的声波导效应;由张旭博士完成。第6章和第7章主要介绍了光波导效应,其中第6章介绍了光在大气湍流中的传输特征,第7章研究了海洋大气光的折射及光波导效应;由李云波博士完成。第8章和第9章主要介绍了电波导效应,其中第8章研究了海洋中的大气波导现象以及大气波导的监测与数值预报问题,第9章论述并仿真了大气波导环境下电磁波的传播特性;由焦林博士完成。第10章主要探讨了海洋中声光电波导效应的应用问题,由张永刚教授编写。

在本书编写过程中,得到了黄小毛博士、王华博士、李庆红博士、张宇博士、林乔木博士、余向军博士、董楠博士的大力支持,在此一并表示感谢!

本书内容非常广泛,对海洋中的声、光、电波导效应各个方面都进行了深入研究,当然书中还有很多不完善的地方,敬请读者批评指正!

著者第1章 绪论

内容提要

本章阐述了自然界中声光电波导的类型,主要包括轴对称型波导、半轴对称型波导和管道型波导,并总结了波导所具有的共同性质;分析了水上大气、电磁及光学波导和水下声波导的形成原因。此外,从现实需求和实际应用价值两个方面介绍了海洋中声光电波导的重要性,并详细阐述了国内外在海洋声光电波导方面的研究现状和发展趋势。1.1 自然界中声光电波导的类型及其成因1.1.1 自然界中声光电波导类型及其性质

1.自然界中声光电波导的类型

自然界中声光电波导大体可以分为3大类,即轴对称型波导、半轴对称型波导和管道型波导。

1)轴对称型波导

轴对称型波导是指以一个轴或一个平面,波围绕着轴或平面上下摆动传播的波导。在自然界中最典型的是由海洋中主温跃层作用形成的主声道轴波导或主声道面波导。其原理是在主声道轴或主声道面上海水温度随深度降低,直至主声道面。由于声速受水温影响较大,因此主声道面相对海面上层海水声速最小,而主声道面上层声速随深度减小,因此在主声道面以上的声线会向主声道面弯曲,而在主声道面以下的高密度海水为常温,这种高密度海水会使声速加速,因此在主声道面以下声线也会向主声道面弯曲,从而形成了轴对称型声波导现象。

主声道轴波导在整个大洋都存在,一般赤道和低纬海区主声道轴大约在1000m水深,在中高纬大约500m水深,在极地海区主声道轴位于几十米水深左右。由于主声道轴对声能量传播损耗很小,因此可使声能传至很远甚至整个大洋。美国海军在深海岛屿上有水声监听站,就是监听主声道轴所传来的水下各种信号。

2)半轴对称型波导

半轴对称型波导包括上半轴半对称型波导和下半轴半对称型波导。

上半轴半对称型波导,多数指以海面为轴平面,半波导型传播的波导,其中海面为反射面。当秋冬季节来临时,表层海水降温,混合下传,致使海水温度随深度增加,形成了上冷下暖的自然现象。这种自然现象会使声波以海面为轴平面,半波导型传播,海面起到反射作用。这个现象在美国海军舰对舰鱼叉导弹战斗使用条令中有明确的描述,并指出要利用此现象在声波第二海面汇聚区大约180km处监听敌舰目标,引导导弹攻击。

下半轴半对称型波导,多数指以海底为轴平面,半波导型传播的波导,其中海底为反射面。这种现象多出现在泥底地质,能起到很好的声波反射效应。如果这种泥底地质是以一种很长慢坡形式存在,声波可沿泥底地质传播很远,甚至可传至主声道轴深水平面上。同时主声道轴声波也可沿这种泥底地质利用半声道轴传至浅水海区。在高纬度海区应用性最强,如何利用好该声道轴是我们应该思考的问题。

3)管道型波导

管道型波导是经典型波导类型,在声光电中都普遍存在。(1)管道型声波导。

● 浅海声波导。在有泥底地质时,由于泥底对声波有很好反射作用致使声波在海面和泥底之间相互反射传播,形成波导传播。这种波导受限于地质类型,并受限于海面不能有大风浪作用。这种浅海声波导分布较广,也是各国海军常用声波导。美国海军就配有用水深和海水表层温度制作的滑尺来计算声呐作用距离。

● 斜坡传播。斜坡传播之所以重要是因为它可使两个波导衔接进行传播,在浅海声沿斜坡按浅海声波导进行传播,当水深达到一定深度时声波将按下半轴型半对称声波导进行传播。当底质能保持泥底或淤泥底时,这种现象常会出现。(2)管道型大气波导。

● 海面蒸发波导。由于夏天海水表层温度低于海面上大气中温度,加之海水蒸发作用,致使在大气和海面形成一个过渡带,过渡带中空气密度大于上层空气密度,当有风作用时,这个过渡带会随着边界层湍流扩散效应加厚,增高。在流体力学的边界层理论中有所描述,蒸发波导成因就是大气与海面交界面上的边界层。当电磁波或光波以平行于海面水平传播时,由于地球曲率作用电磁波或光波会以一个非常小的角度与边界层顶相接触,虽然这个边界层与上层大气只有微弱密度变化,但在这个极限小的角度入射到边界层顶时,也会产生反射现象,使电磁波或光波折向海面。加之海面小角度入射必然会使电磁波或光波反射波导中形成管道型波导的现象。

● 陆地(或沙漠)蒸发波导。在沙漠中也有蒸发波导现象,但形成机理有所不同,沙漠中或高速公路中形成蒸发波导的主要原因是沙漠或路面温度远高于空气气温,从而使大气与地面交汇处形成了一个过渡带,这个过渡带密度要低于上层空气密度从而会产生波导作用。但当有风出现时,由于下层空气密度小,上层空气密度大,这种不稳定结构随风很快消失。

● 管道型波导和半轴半对称型组合形成的波导。这种波导在极地海区常见,由于海面反射或冰的下垫面反射作用,加之主声道轴上浮至近海面,在这两类波导上下叠加,形成了极地海区海洋声透明现象。声呐在极地海区应用如鱼得水,效果非常好,但对信号的提取和精度提高面临着新的问题。尤其对冰的下垫面不规则效应处理决定声呐使用的效果。(3)半壁管道型波导。

大气中的悬空波导主要是半壁管道型波导。这种波导成因有三,即:①大气动力强迫下沉绝热增温产生的逆温层;②水汽凝结增温产生的暖云现象;③高空风效应产生空气团密度差异。

大气大尺度运动过程中,在高压区或高压脊上空无辐散层(即850~700mb之间)有较强的下沉气流来维持高压或高压脊的存在。这种大范围下沉气流达到一定强度时,下沉气块干绝热增温量(按每下沉100m增温1℃,即1℃/100m速率增温)大于该高度下层气块温度时,就形成悬在高空的逆温层。这个很薄的逆温层气温高于下层空气气温,从而使该气层空气密度发生突变,产生与下层大气形成的过渡面。当水平发射电磁波以一定的小角度入射到这个过渡带时就会产生反射至地面现象形成悬空波导效应。这种悬空波导高度,我们通过多年试验发现从几百米到3000m不等都出现过,但在1000m至2500m居多。这要根据天气形势来决定。这种悬空波导有时很强,也很稳定,并且电磁波回波信号也很稳定,无闪烁、颤动现象;有时持续时间也很长,能连续存在好几天。这种波导在陆地上可使雷达探测到山后面移动的目标,真正实现了超视能力。但这种悬空波导不足在于对地面有跳跃盲区存在,而且在海上很少有二次海面反弹形成完整的管道型波导现象。(4)水汽凝结型半壁管道型波导。

由于水汽凝结会产生热量,加热云层温度,使云层密度变小,托住云层中所含有水的重量。当云层水滴含有足够多时,气层单位空间含水重量加大时,云层的水汽凝结就会加大,云层温度会升高,从而使云层空气密度减少达到浮力与云层含水重量平衡。这时云层空气密度小于下方空气密度,形成了标准空气密度过渡面,从而对一定角度入射的电磁波有很好的反射作用。判断云层能否形成波导,主要取决于云层含水量,云层含水量达到一定程度就会产生悬空波导效应。所以在有降水天气过程中,常出现雷达超视距现象,就是这个道理。

在热带和低纬地区,由于对流云出现概率大,因此在形成对流云底即对流凝结高度处,易形成悬空波导,波导高度就是云底高度。(5)高空风效应产生半壁型波导现象。

在冬季中纬度,早上高空风很强时,近地面层由于太阳没有出来,上空大气动能没有下传,使得高空风层与近地面气层形成了一个逆温层交汇的过渡面,这个过渡面也会产生对电磁波在小角度入射时向地面反射现象,形成半壁型波导。但这种波导可利用率低,因为这种结构强度很难达到可利用要求,因此研究此天气过程的人较少,但在高空急流区和大风天过程中这种波导现象也是存在的,有时也会产生通信盲区等现象。(6)大气中光的波导现象。

大气中光的波导效应主要体现在近地层,蒸发波导产生的光超视距传播和超视距目标闪烁、颤动,或形成上视影、下视影等现象。像沙漠中或高速路上均可看到这种常规现象。但对于高空而言,所能提到的现象就是海市蜃楼。海市蜃楼现象是一个典型悬空波导和云层反射综合效应的结果。悬空波导能使光传播折返向地,而云层侧向反射产生的镜面效应使得地面影像由于光反射到空中时,被波导和云层截获,由于波导效应对影像放大,云层侧向反射作用,使得我们能在空中看到海市蜃楼现象,如同我们看到彩虹一样,就是这个道理。因此,在海市蜃楼时多伴与云和光相随。

2.波导的性质(1)能实现超视距传播,传播能量损耗小。(2)可实现非直线传播,能克服地球曲率或能探测到山后面的目标。(3)由于波导作用,波能量传播受到了限制,因此在自由空间区域会产生盲区现象。(4)波导作用对超视距目标信号有放大效应。(5)在波导作用下波传播有时会产生多路径效应。同一个信号多次被接收,会产生持续或闪烁等现象,如同敲完钟后余音萦绕和目标闪动。1.1.2 自然界中声光电波导的形成原因

1.大气中波导的形成原因

对于海面和海底刚性效应反射是很好理解的,但对于大气波导和水声波导有时难以理解。这主要是由于大气中垂直层结有时会产生层结温度高于正常层结温度,使该层结密度与下面大气密度发生微弱的变化,这种微小变化在电磁波和光波传播中起到折射的作用。如同光波射到水面一样,当垂直或小于两个介质密度形成的临界角时,光波折射入水下,而当光波以大于临界角几乎平行于海面接近入射点时,光波就会折反射回大气。由于我们研究的电磁波或光波都是水平平行于海面传播射出的,由于地球曲率效应,电磁波或光波就能以地球曲率形成的非常小的角度与大气波导层结相接触,因此即使大气层结由于温度微弱差异导致密度层结微小变化,也可形成两个不同密度层结的过渡带,而这个过渡带就可以起到向下折反射电磁波或光波的效应。

2.水下波导的形成原因

水声波导的形成,有海水上下层结温度异常形成微弱密度差异导致的水声射线大于临界角即小角度接近两个层结过渡带时会产生折反射现象。也有其他原因,如声速受水深压力影响、深海主温跃层以下高密度海水综合影响会加大声速等,因此声线会折向声道轴即低声速轴。在水深足够时,声线会在声道轴两侧摆动传播,由于能量损耗很小,在主声道轴传播声波可传至很远,甚至整个大洋。主声道轴在低纬或赤道地区大约在水下1000m左右,在中高纬地区大约在水下500m左右,过了南北纬50°以后主声道轴有突变上浮现象,在极地海区主声道轴已浮至近海面在几十米水深左右。在赤道两侧主声道轴有弱的皱折现象,在高纬度到极地海区主声道轴有跃变上浮现象。1.2 海洋中声光电波导环境的重要性1.2.1 海洋声波导的重要性

19世纪到20世纪初,对于电磁波传播特性的研究推动了远程通信及信息传递工具的设计和应用(如电话、广播和电视等),这对于全球科技和文化领域有着深远的影响。由于电磁波既能在真空中,也能够在空气中传播,因此它的应用领域一直扩展到太空,特别是在卫星通信和卫星遥感方面得到了迅速发展。

然而,地球上还有很大一部分区域是电磁波难以达到的。水下空间占据着地球表面的70%以上,在这个空间中电磁波无法进行有效传播。从电磁波、无线电波、微波、可见光到紫外线,这些频段的波在水下的吸收和衰减都很快。近年来发展的卫星遥感系统虽然可利用可见光、红外、微波等传感器在较短的时间内探测到海洋表面的温度、波浪、海流、中尺度涡旋、内波、叶绿素等信息,能够得到以往用调查船和浮标得不到的大面积和准实时的观测数据,但这种观测仅限于水下几米或几十米的范围,要了解海洋深处的情况,声波是迄今为止唯一有效的探测方式。

海水的声波导现象早已被人们所关注。声波在水中比在空气中有着更好的传播特性,它在水下的传播速度约是空气中的4~5倍,因此能量更容易集中,并且在水中传播时的吸收衰减更小。然而受到相关领域科技发展的限制,水声学应用从近代才真正开始。目前,水下声波导的主要应用领域有以下3个方面。(1)障碍物或目标的探测和定位:主要是声呐系统,多用于反潜战和水雷探测等军事领域,也用于探鱼。(2)海洋环境特征的观测:主要包括海底地形、水下生物、海流和水文特征的观测或确定水下目标的位置和速度。(3)信号的传输:主要包括科学研究所需数据、潜艇和水面舰艇信息、远程军事系统指令等。

需要注意的是,所有的水声应用领域都与所使用声波的频段有密切的关系。例如,几百千赫兹的声波可以观测海底的热泉、礁石、沉船、飞机残骸,还可以测量海水中的悬浮泥沙、气泡的含量和分布;几十千赫兹的声波可以测量水深和探测鱼群;几百到几千赫兹的声波可以用于探测潜艇或测量几百千米海域范围内的温度场和海流场;几十赫兹的声波可以探测海底数百米的地层结构,甚至还可以反演监测到地球的升温变化。1.2.2 海洋光学波导环境的重要性

1.海洋边界层光电传播特征及其军事影响

现代海战中,小型舰船、掠海导弹、无人机等近海面低空目标对水面舰艇安全威胁日益增大,同时新时期海军承担打击国际海盗、防卫非法入侵、实施海上营救等新的作战使命,电视、红外、激光等光电装备被更多地应用于海军部队,用以侦察和探测低空来袭目标,提高舰载作战系统生存能力。

在海上实际使用中,光电系统(Electro-Optical Systems)性能的好坏已不再是装备系统本身技术的问题,而是受装备所处环境因素的影响,特别是海洋边界层0~50m空间范围内的环境制约作用。第一种重要制约表现为所有光信号在通过海气边界时都要受到海洋上的大气分子和气溶胶的吸收、散射、反射和漫射等因素的影响,造成光电信号能量的衰减,缩短了探测距离,由于海上大气分子和气溶胶颗粒分布特征较难把握,只能利用几个大气光学窗口减小对能量的吸收。第二种重要制约就是大气的光学波导效应,从时间和空间尺度上主要体现为两个方面:一方面,长期大尺度的折射率变化将引起光线的弯曲。一旦出现光学波导或反波导现象,会导致光电探测距离增大或缩短,同时可能伴随出现蜃影(mirage),即在真实目标的上方或下方出现多个目标图像,导致探测系统的虚警概率增加,影响目标的识别跟踪。另一方面,短期小尺度折射率的随机变化,即大气光学湍流。它会引起大气闪烁(scintillation)、相位起伏、光束漂移弯曲等湍流效应,致使信号强度起伏,图像分辨力减弱,图像模糊。

1977年冬季,美国海军在进行潜用红外前视系统(Darkeyes System)性能检测时,由于圣安娜焚风将强烈的干热空气从加利福尼亚南部沙漠地带吹向太平洋沿岸,在圣地亚哥科罗纳多岛海域附近的海面上形成了较强的“光波导”层,导致20km处海上舰船出现了多重蜃影,舰船图像严重扭曲,难以分辨真实目标位置,如图1.1所示。图1.1 圣安娜焚风期间圣地亚哥海域记录的20km处海上舰船的图像

随后,美国海军水面武器研究中心针对大气折射和多目标蜃影现象对水平红外探测系统(Horizon Infrared Surveillance Sensor)进行了海上试验研究,进一步证实了光学波导效应导致图像异常的存在性。分析表明,蜃影会导致错失防卫的最佳时机、危及自身安全等严重后果。

1994年,荷兰应用科学组织(TNO)防御安全研究中心的Arie N de Jong在北海沿岸进行光电(EO)探测时,记录了因近海面温度垂直变化使18km处目标平台图像出现的异常。如图1.2所示为当时利用1.25m望远镜耦合CCD相机记录的海上平台光源阵列图像。平台上是利用自上而下布设的灯光源模拟不同高度的点目标。图1.2 当时CCD记录的海上平台光源阵列图像

图1.2(b)和图1.2(c)是由于当时海水温度低于海上气温导致在近海面出现光学反波导,使得底部3个点光源出现了异常特征。图1.2(b)中右下角点光源图像在垂直方向上出现了许多相同的亮点,由于间隔较近连成一线,出现了3条光柱,严重干扰了目标的识别。图1.2(c)中同样是由于光学反波导的影响,底部的3个点光源消失,造成目标丢失。此外,图1.2(b)中反波导造成目标图像产生畸变的同时,另一方面折射使光线产生“聚焦”作用,导致目标信号强度明显增大,表光透过率超过100%。类似的现象在斯德哥尔摩的波罗的海试验中也曾多次出现。

2001年5月美国、加拿大、德国、意大利、荷兰等北大西洋公约组织(NATO)海军联合研究小组(TG16)在地中海海域的里窝那进行了近海面点目标光电探测试验。如图1.3所示,显示不同湍流强度下目标靶的图像,图板距观测位置2km。由于大气湍流的影响靶标图像逐渐模糊,其中,图1.3(c)的湍流强度大于图1.3(b),所以图像变得更加模糊,图中的标准条纹已经无法辨别。图1.3 由于大气湍流影响的海上目标靶图像(里窝那海域试验)

综上可见,大气湍流活动对海上成像产生重大影响。如何准确地掌握海上大气光学波导、湍流等环境特征,准确地预测评估异常环境下红外、电视等光电系统的实际性能,特别是低空探测性能是非常重要的。

2.海上异常光电传播特征研究的需求

红外警戒、光电跟踪仪、指控和武器系统组成的中近程光电打击通道是新一代电子战环境下,对抗生存能力强、攻防兼备的舰载作战系统的基础支柱,是不以航母编队作为依托,远离岸基支援,没有卫通、制空、制电磁权“孤军探入”的机动舰艇编队,为完成封锁与反封锁的战役使命,形成海上防空能力、中近程精确打击能力、综合电子信息作战能力的基本条件。目前,随着军事科技的发展,海军舰艇上红外警戒、光电跟踪仪、微光夜视仪等新型光电装备越来越多,环境保障研究更显重要,直接关乎舰艇作战攻击效果以及自身安全。

近年来,海上安全形势复杂,海军的使命任务更加多样,特别是近岸、海峡等近海环境下军事行动增多,近海面低空目标以及海面漂雷的威胁增大。而另一方面,近岸海域水文气象环境较为复杂,大气折射、大气光学湍流现象在近岸海域频繁出现,折射导致多目标蜃影现象发生概率更高,直接影响航海定位的精度以及光电探测系统的性能,在更高层面上要求光电装备对目标探测识别能力的大幅提升,以获取更加准确的指挥信息,争取更多的防御时间。

据文献显示,近年来美国海军开展的相关海上试验研究次数有增无减,涉及海域广阔,1990年法国土伦试验、1992年德国Sylt试验、1993年荷兰奥斯特丹MAPTIP试验、1994年美国圣地亚哥湾HISS试验、1996年波罗的海及地中海LAPTEX试验、1999圣地亚哥湾EOPACE试验、2001年波斯湾Osborne Head试验、2001年夏威夷RED试验、2001年意大利POLLEX试验、2004年德国VAMPIRA试验、2005年新加坡PROTROW试验、2007年圣地亚哥SAPPHIRE试验,以及2007年南非的福尔斯湾试验等。旨在开展不同海域不同海上环境下,EO及EO/Radar的探测性能评估,并据此对相应软件系统进行试验验证和改进,而国内相关理论和试验研究工作较少。

此外,2010年5月24日美国海军海上系统司令部(NAVSEA)在加州圣尼古拉斯岛利用舰载高能激光器第二次成功追踪并击毁了一架目标无人机,这标志着激光武器首次在水上击毁假想目标。因此,随着各国对红外和激光精确制导武器、舰载高能激光武器等高新装备的追捧,海上异常光电传播环境及其光学波导效应的研究更加具有现实意义。

目前,国内对光学设备受大气折射影响的认识还不成熟,相关的研究工作很少,与欧美发达国家存在较大差距。此外,该研究领域主要服务于军事应用,国外有价值的研究成果和技术资料较难获得。1.2.3 海洋电磁波波导环境的重要性

1.大气波导重要的应用价值

雷达、通信和电子对抗等系统是实现信息获取和对抗的重要装备和手段,在现代战争中的重要性毋庸置疑,这些电子系统存在一个共同点,即发射、接收等过程都是通过电磁波在大气中的传播来完成的,这一过程必然受到不同大气折射环境的影响。海洋大气环境中普遍存在大气波导现象,它能改变电磁波的传播路径,并“陷获”电磁波在波导层内传播,形成类似金属波导管中传播特征,这种特征对雷达等电子系统的性能具有重要的影响,在军事中具有极其重要的应用前景。

科索沃、伊拉克战争以来,随着雷达、通信、电子对抗设备和制导武器的广泛使用,电磁对抗异常激烈,对战场电磁领域的争夺已成为未来战场信息战、电子战的根本,成为争夺战场制空权和制海权的先决条件,进而成为影响现代战争胜负的关键因素之一。对流层大气波导环境改变了电磁波正常的传播路径,影响雷达、通信、电子战设备的正常使用。因此,如何利用对流层大气波导环境,保障军事活动的顺利开展,已成为各国军事作战应用研究的重点内容。

如图1.4所示,显示了雷达在大气波导环境下的异常探测性能及其对作战的影响。大气波导能够使雷达突破地球曲率的限制,形成超视距探测能力。早期一个著名的实例是:在第二次世界大战中,位于印度孟买的一部200MHz雷达能够发现1700英里外阿拉伯海域的目标回波。雷达的超视距探测性能在海上试验过程中也被多次观测到,大气波导的这种特性使得远距离电子侦察与电子干扰成为可能,由图1.4可知,潜艇在波导环境下能够实现远距离电子侦查。

与此同时,大气波导改变了电磁波的正常传播规律,使得正常大气条件下雷达的部分可探测区域在波导环境下变成盲区,雷达盲区在现代战争中具有极其重要的军事价值。2000年10月俄罗斯Su-27等战机利用大气波导环境下形成的异常电磁盲区,多次侦察、拍照正在演习过程中的美国小鹰号航空母舰。图1.4 中还显示了波导环境下雷达在目标跟踪定位精度方面产生的问题。图1.4 大气波导对雷达、作战的影响示意图

近年来的几次局部战争都表明,舰艇海上作战过程中,低空突袭的战机、导弹已成为威胁舰艇安全的重要因素,如英阿“马岛之战”中阿空军使用“飞鱼”导弹击沉英“谢菲尔德”号驱逐舰事件,反低空突袭已成为现代军事技术、军事战术研究的重要内容,这其中重要的一环就是如何实现对低空目标的有效探测和精确跟踪。大气波导环境下,电磁波射线发生异常的弯曲,这使得波导环境下雷达对目标的定位存在明显偏差,同时由于波导环境对电磁波的“陷获”作用,更多的电磁波能量集中在波导层内,使得大量的电磁波在海面形成异常的后向散射(海杂波),海杂波是雷达低空目标检测的主要噪声环境,这对雷达低空探测性能的影响是致命的。

如何准确地掌握大气波导环境,如何准确地预测评估大气波导环境下雷达等电子系统的实际性能,尤其是低空探测性能,是极其至关重要的,因此,大气波导研究具有极其重要的军事应用背景。

2.大气波导相关研究的现实需求背景

大气波导是一种自然现象,具有重要的军事应用背景。目前,国内对大气波导的认识还不深入,大气波导相关研究工作开展时间不长,与美国、俄罗斯等国家存在较大差距,我国对大气波导及其应用研究有着较强的现实需求。

一方面,国内大气波导的监测、预报及统计特征等研究还不能满足我国的需求,主要表现在大气波导的机理研究、大气波导环境天气学模型,以及大气波导的调查统计等研究方面。

另一方面,大气波导的应用研究还不完善,主要表现在大气波导环境对雷达、通信等电子系统及作战的综合影响效应评估研究等方面。尤其是近年来,随着舰载相控阵雷达的投入使用,相控阵雷达在海上常常遇到与大气波导环境相关的异常现象,如美海军宙斯盾系统(以AN/SPS-1系列相控阵雷达为核心)在波斯湾海域(波导多发海域)工作时常常遇到的强杂波问题等,此类问题尤其在近岸的大气波导环境中经常出现。

另外,国内在雷达的超视距探测和异常盲区分布定量评估、雷达极低仰角异常定位误差修正等问题的研究还不深入,这些都制约了雷达性能的充分发挥。

可见,开展大气波导相关研究具有极其重要的现实意义,由于大气波导主要应用于军事领域,使得国外有价值的研究成果和技术资料较难获得,这也决定了大气波导研究主要依靠国内的研究力量来实现。1.3 海洋中声光电异常传播效应的研究现状1.3.1 声波导的研究现状

1.历史背景

通过测听水中的噪声来探测舰船的方法已有很长的历史,但近代水声学的发展通常认为是以1826年在日内瓦湖中测量声速为起点的。一直到了近代,水声学设备才开始进行实质性的应用阶段。1912年豪华巨轮“泰坦尼克号”的沉没引起了世人的注意。随后美国科学家费森登研制出了第一台测量水下目标的回声测深仪,并于1914年在试验中成功探测到了远处的冰山。

在第一次世界大战期间,水声设备的发展有了明显的改观,为了抵御德军潜艇的威胁,盟军发展了被动探测系统。法国物理学家朗之万在1915—1918年间取得了突破性的成果,他提出了利用声信号主动探测潜艇的概念,并发明了压电式换能器。这项技术很快导致了声呐的诞生,然而这对于第一次世界大战的支持已经太迟了。而在第二次世界大战中,声呐已经成为海军必不可少的探测装备,不但用于探测潜艇,而且还用于探测鱼雷、水雷,除了使用回声探测的主动声呐之外,根据噪声确定目标的被动声呐也被广泛使用。声呐在大西洋战争中起到了重要作用,对盟军护航舰队对抗德军潜艇形成了较大支持。战后有关海洋声学的研究逐渐解密,期间围绕着声呐技术改进的研究形成了海洋声传播理论的基本框架。

第二次世界大战结束之后,东西方大国之间的冷战使得关于水声学的研究仍然继续。在西方和苏联,都开展了大量的研究和试验项目。20世纪50年代末,战略核潜艇和攻击核潜艇的出现为水声学注入了新的研究动力,并重新激起了水下战场的争夺。20世纪60年代,被动探测技术得到了进一步发展,能够实现比主动系统更远的探测距离。20世纪60年代末期出现的技术革新带动了数字信号处理技术的发展,使声呐系统的计算和预报能力显著提高。然而,被动声呐精密程度提高的同时,潜艇噪声辐射水平也不断减小。因此,20世纪90年代出现了相反的发展趋势,主动声呐技术再次被重视起来,特别是在低频领域。20世纪末出现的海上冲突进一步证实了掌握声呐技术对于对抗攻击潜艇(马岛战争)和水雷(海湾战争)威胁的重要性。

在发展军用的同时,海洋声学的理论体系不断完善,相关的研究更加细致,新技术和新方法不断涌现。测深仪很快取代了传统钢丝绳的测深方法,侧扫声呐和多波束测深仪的出现极大地改进了海底地形地貌的观测。20世纪70年代声传播理论模型发展迅速,适用于非均匀复杂海洋环境条件的水声学模型和方法相继提出。同时,海底对声传播影响方面的研究也不断深入,测量了各种底质类型的声学参数和衰减特性,系统性地发展了相关的地声学模型。20世纪80~90年代,计算机领域的快速发展带动了数值计算方法和数值模型的进展,各种类型的声传播问题几乎都可以由数值计算程序解决。此外,声传播反演问题的研究(声层析技术)也取得了突破性的进展。20世纪90年代开展的实验中,使用几十赫兹的声波在大洋声道中传播20 000km,通过计算传播时间的变化,可以得出较大范围海域的温度场和海流场。利用这种声层析技术可监测区域海洋的中尺度现象。

2.水声传播模型

第二次世界大战期间,为了满足海军水下战声呐性能预报的需求,水声传播模型应运而生(Etter,2003)。20世纪60年代以前,水声传播模型主要是几何射线模型和水平层化简正波模型。Hardin和Tappert于20世纪70年代将抛物模型引入水声学领域,这对于水平非均匀环境下的声传播计算有着重要的推动意义。此后的二三十年间,射线模型、简正波模型、抛物模型,以及快速场模型等水声学模型都有很大程度的改进和扩展,模型的准确性大大提高。同时,大量基于不同理论方法的水声学数值模式也应运而生。进入20世纪90年代之后,水声学理论模型和数值方法进一步发展,数值模式与仿真分析趋于精细化,扩展的模型与模式能够较为有效地处理复杂水文环境及地形、底质条件下的三维声传播问题。Jenson,Etter等曾对不同海洋声学模型的优缺点和适用性进行过系统性地总结。他们的研究表明,任何一种模型都不能解决所有的水声学问题,各类模型在使用时都有一定的限定条件和适用范围。

传统射线模型不仅受到高频近似的限制,而且存在着声线焦散的问题。Sachs等提出了用高阶近似的方法控制焦散线附近的声能变化幅度,同时较好地处理了影区中的能量衰减变化。Boyles详细分析了焦散线的形成机制,并通过衍射修正方法将其适用性扩展到更低的频段。张仁和通过广义相积分近似给出了反转点汇聚区声场的广义射线解,较好地克服了传统近似方法在反转点发散的问题。Porter等将高斯声线近似技术引入水声领域,用于改进射线模型的能量场计算。这种方法经过不断地改进与验证,能够较好地解决声能焦散和完全影区的问题,而且成功地扩展到了距离相关问题和三维声传播问题的处理。近年来,射线模型经过不断改进,在精度和适用性方面都有了很大的提高。根据射线模型开发的经典水声学数值模式主要有:适用于处理一般性距离相关问题及宽带信号传播的RAY模式,以三维Hamiltonian方程的数值积分形式计算传播损耗的HARPO模式,以及根据动态追踪技术和高斯近似计算声线轨迹和声压场的BELLHOP模式等。

简正波模型能够给出分层介质声场的精确解,因此常作为其他近似方法的验证参考。传统的WKB近似方法在求解简正波声场时往往存在反转点发散的问题,一些近似方法的引入使这个问题逐步得以解决,如WKBJ近似、一致收敛的WKB近似,以及WKBZ近似等。绝热近似方法和波模耦合方法的提出使简正波模型能够扩展到处理水平变化的海洋环境。Evans提出了阶梯和多层近似的耦合方法,对不同环境中每一个阶梯的边界进行匹配处理。Evans等还提出了一种波模逐步耦合的方法,使能量能够在倾斜的海底上保持守恒。此后,Porter等在阶梯法的基础上发展了一个有效的单向耦合方法。Stotts以差分方程的形式给出了双向耦合模方程的精确解,将简正波模型扩展到可处理一般意义的水平非均匀海洋环境问题。目前,简正波模型在算法上较为完善,已有多种根据这种模型开发的数值模式,如SNAP模式、MOATL模式、KRAKEN模式等。

抛物方程模型最初由Hardin和Tappert于20世纪70年代引入水声学,并由Tapper首先提出了分裂-步进的求解方法。由于抛物模型在处理水平变化的海洋介质问题方面具有明显的优势,因此相关的数值技术发展迅速,如Lee等提出的常微分方法、Lee等和Robertson等提出的隐式有限差分法等。但抛物模型也存在着固有的问题,如“窄角近似”。针对这个问题,出现了很多宽角扩展方面的研究,如Thomson等对分裂-步进算法的窄角限制进行了扩展,Vefring等用三次有理分式近似平方根算子将窄角扩展为宽角等。Lee等对抛物方程模型在水声领域的发展作了详细的评述。根据抛物模型开发的经典水声学数值模式主要有IFD模式、FOR3D模式、FEPE模式等。

3.声波导与海洋环境

Ewing和Worzel最早研究了深海声波导的特性,他们发现典型中纬度深海区域的声速剖面多为混合层、主跃层和深海等温层3层结构,这种类型的声波能够产生深海声道,从声道轴附近发出的声波可出现波导式的传播。Hale进一步指出,在这种环境下若声波从近表层海洋发出,能够在几十海里之外形成环带状的汇聚区。由于汇聚区声道能实现水下目标的远距离探测,因此具有重要的应用价值。根据大量理论模型、数值模式及观测试验的结果,许多学者在不同程度上讨论了不同类型的海洋环境变化对汇聚区声传播的影响。Bongiovanni等给出了一个有广义性的例子,他们根据射线理论建立了指数型海洋水温结构与汇聚区位置和宽度的几何关系模型,通过改变水温参数讨论了藻海汇聚区特征参数对环境变化的敏感性。中国周边海域,南海和西北太平洋的声速场结构都具备产生深海声道和汇聚区声道的条件,张仁和提出的反转点汇聚区的简正波解和广义射线解能够较为准确地计算南海和西北太平洋的汇聚区声场,并在试验中得到了验证。

声波在浅海中传播时,由于与海底有较强的交互作用,因此声传播特性与深海有着本质的不同。声速剖面结构以及海底地形和底质特性是影响浅海声传播的两个重要因素。中国近海浅海大陆架海区声速结构的季节性差异显著,在春、夏、秋三季为负梯度声速结构,而在冬季为混合层环境下的正梯度声速结构。根据Rogers提出的经验模型,对浅海声场产生重要影响的是声速剖面结构而不是具体水层的声速值,不同类型剖面声场条件下的平均传播损耗最大值与最小值相差可达20dB以上。实验表明,负梯度声速结构条件下声传播的能量衰减速度明显快于正梯度声速结构。张仁和提出了适用于正梯度、负梯度、温跃层等几类声速结构的平滑平均声场计算方法,这些方法对于中国近海典型浅海环境具有较好的适用性。

当海洋近表层出现一定厚度的混合层时,声波以表面声道的形式传播。此类声道能够明显减小声能的衰减,因此对于声呐探测有重要意义。早期的一些研究根据大量的试验数据建立了一些用于声呐作用距离预报的经验模型,Baker进一步考虑了体积吸收和泄漏损耗等因素,提出了更完善的经验模型。但根据Hall的评估,目前经验模型都不能令人满意地预测实际海洋表面声道中的传播损耗,最大误差可达10~15dB。造成这些误差的原因可能与海-气边界层物理过程及混合层环境的变化有关。张仁和提出了浅海表面声道声场的简正波近似解,对中国近海的混合层环境有较好的适应性。

4.复杂海洋环境下的声波导

海洋中的中尺度现象非常普遍,这些现象能够使水文和声速场环境出现水平非均匀分布,进而对声传播产生明显的影响,如汇聚区的偏移、多路径到达次序的改变和水平折射等。关于中尺度环境下声传播效应的研究开始于20世纪七八十年代,主要的研究方法有两种:一种是通过理论模型研究海洋现象与声传播的变化关系;另一种是根据具体的海洋环境应用水声学数值模型研究声传播效应和变异特征。

在理论研究方面,Henrick等分析了理想涡旋的大小、强度以及涡流流速对声传播的影响。Bear讨论了理想环境下涡的位置、强度以及声源-接收深度的配置与三维声传播的相关性,Hall等应用绝热简正波模型对这个问题进行了更深入的探讨。Rousseau等构建了一个理想海洋锋面模型,并研究了短距离声传播与锋区特征的关系。

在不同海区环境下的声传播效应研究方面,Lawrence分析了塔斯曼海冬季暖涡引起的声学效应,指出穿过涡锋面的过程使汇聚区位置出现了明显的偏移,同时还造成了汇聚区声道的分叉。Heathershaw等根据距离相关的GRASS射线模型和三维海洋学模型讨论了冰岛东部极地海洋锋面系统中的声传播效应,发现声源-接收深度配置的不同以及锋面环境变化的影响能够使传播损耗10~20dB的变化。Mellberg等分析了湾流流系中曲流和中尺度涡的时间变化和方位变化引起的声学效应,这些变化造成的汇聚区位置偏移最大可超过10km,同时使增益能级出现3~5dB的变化。Carman等在水平非均匀海洋环境的基础上进一步考虑了地形因素,应用抛物模型分析了湾流附近的大陆坡与藻海之间强锋区中的复杂声传播效应,并讨论了海洋环境变化和真实海底地形变化交互作用对低频-远程声传播的影响。

近年来,一些报道中探讨了黑潮附近的中尺度涡、海洋锋、浅海陆架冷热水团、内波等多种中尺度环境引起的声传播变异特征,得出了一些具有典型意义的规律。但整体而言,对于锋面及涡旋与地形共同引起的复杂声波导效应的研究则有待进一步深入。1.3.2 海洋中光学波导效应的研究现状

1.国内外在海洋边界层光电异常折射环境方面的研究状况

研究海洋边界层异常折射环境关键在于通过对形成机理及模型的研究,实现对负折射、超折射等异常折射环境的监测、评估以及统计特征分析等。国外,如美国、加拿大在这方面的研究工作开展得非常早。

国外海军研发的折射环境评估模型都是基于Monin-Obukhov海气通量参数方案确定温度、湿度的垂直廓线分布,进而得到大气折射廓线。不同模型之间的差别主要在于粗糙长度和普适函数不同。(1)Liu、Katsaros和Businger利用M-O相似理论和风速、温度、湿度的非绝热结构方程组来描述海洋大气表面层各要素的尺度通量和廓线,形成大气表层的LKB通量算法以及蒸发波导的LKB模式,这种模式的精度比PJ模式有所提高,但在强稳定层结及极低风速条件下的应用存在较大误差。(2)Chris Fairall通过对(Tropical Ocean Global Atmosphere,TOGA)program中的大量海上试验数据分析,提出了Bluk Flux Algorithm,用来计算海洋热量收支以及海气通量。模型中应用了Beljaars and Holtslag(1991)的普适函数代替了Businger et al.1991的形式,并采用Godfrey和Beljaars(1991)技术拓展莫宁-奥布霍夫理论对低风速的有效性,其方法已经被美国海军研究生院(Naval Postgraduate School)采用并嵌入NPS模型中。(3)加拿大海军作战研究实验室提出的LWKD模型提供给用户两个可选择的普适函数形式,分别为Konodo和WKD关系式,后者考虑了海浪效应。用户可以根据实际的环境情况和试验观测数据,选择适合的函数形式。(4)G J Kunz提出的A Bulk model模型建立的基础依然是M-O相似理论和通量算法,并利用相似理论对风速、温度、湿度特征尺度进行参数化处理,选取Panofsky和Dutton提出的普适函数关系,利用初始给定的风、感热和潜热输送系数通过迭代计算得到风速、温度、湿度的垂直分布廓线。(5)乌克兰海军基于Gavrilov的算法在LKB普适函数形式的基础上进行了一些修正,建立电磁传播评估模型(RSHMU)。

以上所有模型都是利用迭代计算最终确定各要素的特征尺度。美国、加拿大以及乌克兰海军都将自己的模型与其他的模型进行过比较,并没有得到有力的证据说明哪个模型的适用性和精度最好,仅仅指出在各自关心的海域,使用各自的模型效果总体上较好。

已知环境要素(温度、湿度、气压)通过折射率计算公式可以得到折射场的分布特征,光波段的大气折射率计算公式主要有两种:考虑色散效应的计算公式(M E Thomas 和D D Duncan,1993)和没有考虑色散的计算公式(Edlén,B(1966),Owens(1967),Hill R J(1986),Ciddor(1996))。J Claverie和D Dion对利用两种计算公式得到的EO传输性能特征(最大探测距离,抬升角变化)进行了对比,结果指出两者的计算结果差距不大,更加全面的研究有待在实际试验中进一步进行。

国内开展海上光学波导环境的研究目前主要局限在大气波导对雷达的影响。已在大气波导监测、预报以及统计规律等方面取得了许多的研究成果,然而光学波导环境对光电设备的影响研究则很少看到。

2.国内外在大气光学湍流方面的研究状况

光波在湍流大气中传输的问题是光波与大气相互作用的一个重要方面。湍流主要会引起光波强度、相位与传播方向的起伏变化。这种起伏是由于大气折射率的随机变化引起的。1883年雷诺最早进行了关于湍流的实验,柯尔莫哥洛夫于1941年在建立湍流统计理论的过程中,提出了3个基本的假设,假定流体为局部均匀各向同性的,形成了大气光学湍流的基础理论——柯尔莫哥洛夫理论。该理论引入了折射率结构常数作为光学湍流强度的关键特征量。

大气光学湍流监测方面。由于大气湍流中含有不同尺度的涡旋,且变化的频率各有不同,所以需要很高频率的监测设备才能较全面的捕获其特征。目前,可以利用超声风速仪以及高频温度和湿度仪进行估算,一般要求其采样率在20Hz以上。但是这种方法只能记录某一点的湍流强度,只有在大气分布均匀,满足一定假设条件时,其测量值才具有代表性。相比之下,利用大口径大气闪烁记录仪可以更加准确地反映整个传播路径上的大气湍流累积效应。它需要在路径的两端分别架设发射、接收装置,通过光强信号的起伏反演大气湍流强度。但是该方法也有自身的限制,即最大传播路径只能在5km以内,最大不会超过10km,而且对安装平台的要求较高,设备昂贵。加拿大的Campbell Scientific公司是世界著名的气象监测仪器生产商,其生产的Young、Csat3系列三维超声风速仪被科研院所广泛采用。美国Optical Scientific公司的长基线光学风速计及大气湍流探测器(LOA)、德国Scintec公司的表面层激光闪烁仪(Surface Layer Scintillometer,SLS)和边界层闪烁仪(Boundary Layer Scintillometer,BLS),以及荷兰Kipp&Zonen公司的大口径闪烁仪LAS被美国、加拿大等国家海军研究机构大量采用,用于大气湍流通量和大气光学湍流的研究工作。

我国在1988年前后,使用三维超声风速仪等设备建立了涡动相关通量观测系统。随着测量(包括超声风温仪和快速气体分析仪等)和计算技术的迅猛发展,涡动相关法已经在有关野外试验台站得到相当普遍的使用。20世纪90年代北京大学环境科学中心以及中科院大气环境研究所等单位也进行了温度、风速脉动监测仪的研制。2007年中科院安徽光机所研发了HTP型铂丝温度脉动仪、便携式三波长激光闪烁仪,达到了国外同类产品的技术指标。

大气光学湍流的计算模型方面。伴随光学仪器的研发以及场地试验的开展,国外在20世纪70年代开始探索环境要素信息与大气光学湍流的关系,建立对应的数值计算模型。Wyngaard等给出利用地面气象观测数据估算温度结构参量的相似理论模型。Friehe、Davidson等利用海上实测资料检验了该模型在海面的应用。Edgar L Andreas针对0.36~3μm、7.8~19μm、0.3~3mm、3mm→∞四个波段研究了雪地、海冰环境下各个波段内与环境特征尺度的相关性,并进行了敏感性分析。与闪烁记录仪相比,利用数学模型计算大气湍流强度,更适于海上移动平台实时的信息需求,因此引起了各国海军光电武器研究单位的关注。美国海军光电环境专家Frederickson等基于边界层相似理论,建立了NSLOT模型(Navy Surface Layer Optical Turbulence Model),通过与海上同期闪烁仪观测的大气折射率结构常数的对比,指出大气折射率结构参量模型的改进需要对不同海上大气层结环境下MO相似理论的进一步认识,Steve Doss Hammel利用陆上和海上试验详细对比了PAMELA模型与NSLOT模型,指出NSLOT更加适合海上使用。此外,加拿大海军的LWKD模型、荷兰GJKunz的湍流计算模型也都是基于相似理论利用常规气象要素数据计算湍流结构常数。基于以上的成果,法国气候专家SCheinet和荷兰气候专家APSiebesma利用中尺度数值预报模式实现了的预报,美国陆军武器研究中心的ATunick利用计算流体力学方法评估了复杂陆地地形的空间分布特征。由于模型都是基于相似理论,其适用性的问题不可避免,特别是近海地区光学湍流特征有待进一步的研究。美国海军研究单位以及北约组织进行了多次的海上试验,进行模型验证以及军事影响研究,旨在提升模型的计算精度,分析不同海洋环境下模型的性能。

国内的相关研究起步较晚,海上的专项试验也较少。安徽光机所主要侧重于大气光学湍流仪器设备研制、监测手段等研究,多为陆上试验,近年来在沿海地区进行了一些观测试验。王英俭、袁仁民等研究员对近地面光学湍流计算模型进行了研究,通过陆上试验进行了验证分析。吴晓庆通过得到地表温度、表面层的动量通量、显热通量和潜热通量,再由相似理论从湍流通量和温度结构常数的经验关系计算出折射率结构常数,并对近海面气层温度结构常数的模式和测量进行了研究。聂群基于Frederickson的工作,通过合肥以及东南沿海的试验在一定程度上说明了利用Bulk算法计算的有效性。但由于东南沿海试验仪器架设高度距地面仅为2m,地气温差为零,并未真正反映海气温差对湍流交换的影响。总参大气环境研究所的戴福山等人对极端层结环境下近地层相似关系进行了修正,给出了海面光学湍流估算模型并进行了数值预报,但缺乏海上试验数据的验证,其计算能力有待海上光学湍流观测试验的检验。因此,更加深入和系统的试验与模型验证还有待完善。

3.国内外海上光学波导环境对光电探测影响的研究状况

海上光学波导环境会导致光电探测距离发生变化,产生多目标的干扰,出现超视距的传播、聚焦、散焦等影响,这对于光电设备的使用至关重要。其中,光波超折射形成的波导层高度很低,仅仅几米,出现的概率较低。而反波导现象则在海上高发,导致视距缩短,伴随出现下现蜃影。因此,反波导导致的视距限制、蜃影导致的多目标干扰尤为值得关注。

上述问题的研究必须准确地掌握光线的传播路径,因此,光线跟踪技术是解决这一问题的关键。光线跟踪技术的理论基础都是几何光学理论,遵循分层介质的Snell法则,其差别主要是计算程序的处理方法上。B D Nener等提出了适合复杂折射率环境下精确的光线路径解析模型。WHLehn提出了平面坐标系下抛物线近似的光线传播模型,利用计算机图形语言揭示了自然环境下的多种蜃影现象。考虑到目标大小、传感器的孔径以及水平温度分布的变化,Arie N de Jong提出了一个新的高精度的光线跟踪模型(Ray-Tracing Model),描述了试验中出现的异常折射现象。通过海上实际应用,Claverie,J指出不同光线跟踪技术对折射环境评估的影响不及气象环境模型的影响作用。

多目标现象蜃影(mirage)的研究方面。20世纪70年代美国海军作战试验中心RFeinberg,HVHitney等开展了红外光波在海洋边界层传播折射效应的研究,利用简单的数值模型,模拟了试验中出现的上现蜃影特征。WHLehn帮助美国军方分析了Wallops岛试验中重力波导致出现的蜃影图像的周期特征。Eberhard Tr¨ankle假设了多种温度廓线形式,模拟了Halligen Sea出现的蜃影现象。Andrew T Young总结出海气温差、观测高度与太阳蜃影的对应关系。SPAWAR的Doss Hammel在WHLehn和Siebren研究的基础上利用几何光学方法建立了大气折射传播模型,并引入了放大因子和折射因子,可以评估目标的大小和蜃影的多少,并利用蜃影被动定位。美国海军在切萨皮克湾建立了长年的观测站点,记录岸上灯塔光源位置的变化,评估大气折射的影响效果。LeeUMartin统计分析了海气温差与目标位置变化的关系,并评估了观测中出现的蜃影现象为美军方的红外跟踪搜索系统IRST提供了技术支持。加拿大国防技术研究办公室环境光学专家Denis Dion提出了蜃影出现的距离评估方法,可以评估蜃影出现的空间距离。J Luc Forand、Arie N de Jong指出了大气水平分布的不均匀性对蜃影区域的影响。

光学应用评估软件研究方面。1995年,考虑到海上大气折射环境对SIRST系统(Shipboard InfRared Search and Tracking)对掠海导弹等低空小目标探测识别的影响,美国海军水面武器研究中心NSWC/DD资助研发了IRTooL分析工具,主要评估光线折射影响以及大气图像扭曲。1996年左右,荷兰TNO公司开发ARTEAM模型(Advanced Ray Tracing with Earth Atmospheric Models),它增加了GUI用户界面,操作更加灵活,便于与各种数据源对接,适合军事应

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载