KK三部曲(失控+科技想要什么+必然)(套装共3册)(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-15 13:02:11

点击下载

作者:(美)凯文·凯利(Kevin Kelly)

出版社:中信出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

KK三部曲(失控+科技想要什么+必然)(套装共3册)

KK三部曲(失控+科技想要什么+必然)(套装共3册)试读:

总目录

CONTENTS

失控

科技想要什么

必然[ 失控 ]

目录

CONTENTS

致《失控》中文版的读者们

第一章 人造与天生

1.1 新生物文明

1.2 生物逻辑的胜利

1.3 学会向我们的创造物低头

第二章 蜂群思维

2.1 蜜蜂之道:分布式管理

2.2 群氓的集体智慧

2.3 非匀质的看不见的手

2.4 认知行为的分散记忆

2.5 从量变到质变

2.6 群集的利与弊

2.7 网络是21世纪的图标

第三章 有心智的机器

3.1 取悦有身体的机器

3.2 快速、廉价、失控

3.3 众愚成智

3.4 嵌套层级的优点

3.5 利用现实世界的反馈实现交流

3.6 无躯体则无意识

3.7 心智/躯体的黑盲性精神错乱

第四章 组装复杂性

4.1 生物——机器的未来

4.2 用火和软体种子恢复草原

4.3 通往稳定生态系统的随机路线

4.4 如何同时做好一切

4.5 艰巨的“拼蛋壳”任务

第五章 共同进化

5.1 放在镜子上的变色龙是什么颜色的?

5.2 生命之无法理喻之处

5.3 在持久的摇摇欲坠状态中保持平衡

5.4 岩石乃节奏缓慢的生命

5.5 不讲交情或无远见的合作

第六章 自然之流变

6.1 均衡即死亡

6.2 谁先出现,稳定性还是多样性?

6.3 生态系统:超有机体,抑或是身份作坊?

6.4 变化的起源

6.5 生生不息的生命

6.6 负熵

6.7 第四个间断:生成之环

第七章 控制的兴起

7.1 古希腊的第一个人工自我

7.2 机械自我的成熟

7.3 抽水马桶:套套逻辑的原型

7.4 自我能动派

第八章 封闭系统

8.1 密封的瓶装生命

8.2 邮购盖亚

8.3 人与绿藻息息相关

8.4 巨大的生态技术玻璃球

8.5 在持久的混沌中进行的实验

8.6 另外一种合成生态系统

第九章 “冒出”的生态圈

9.1 一亿美元玻璃方舟的副驾驶

9.2 城市野草

9.3 有意的季节调配

9.4 生命科学的回旋加速器

9.5 终极技术

第十章 工业生态学

10.1 全天候、全方位的接入

10.2 看不见的智能

10.3 咬人的房间与不咬人的房间

10.4 规划一个共同体

10.5 闭环制造

10.6 适应的技术

第十一章 网络经济学

11.1 脱离实体

11.2 以联结取代计算

11.3 信息工厂

11.4 与错误打交道

11.5 联通所有的一切

第十二章 电子货币

12.1 密码无政府状态:加密永胜

12.2 传真机效应和收益递增定律

12.3 超级传播

12.4 带电荷的东西就可用于电子货币充值

12.5 点对点金融与超级小钱

12.6 对隐密经济的恐惧

第十三章 上帝的游戏

13.1 电子神格

13.2 有交互界面的理论

13.3 一位造访他用多边形创造出来的天地的神祗

13.4 拟像的传送

13.5 数字之战

13.6 无缝分布的军队

13.7 一个万千碎片的超真实

13.8 两厢情愿的文字超级有机体

13.9 放手则赢

第十四章 在形式的图书馆中

14.1 “大千”图书馆之旅

14.2 一切可能图像之空间

14.3 倘佯在生物形态王国

14.4 御变异体而行

14.5 形式库中也有性

14.6 三步轻松繁育艺术杰作

第十五章 人工进化

15.1 汤姆·雷的电进化机

15.2 你力所不逮的,进化能行

15.3 并行实施的盲目行为

15.4 计算中的军备竞赛

15.5 驾驭野性的进化

15.6 进化聪明分子的愚钝科学家

15.7 死亡是最好的老师

15.8 蚂蚁的算法天赋

15.9 工程霸权的终结

第十六章 控制的未来

16.1 玩具世界的卡通物理学

16.2 合成角色的诞生

16.3 没有实体的机器人

16.4 行为学架构中的代理

16.5 给自由意志强加宿命

16.6 米老鼠重装上阵

16.7 寻求协同控制

第十七章 开放的宇宙

17.1 拓展生存的空间

17.2 生成图像的基元组

17.3 无心插柳柳成荫

17.4 打破规则求生存

17.5 掌握进化工具

17.6 从滑翔意外到生命游戏

17.7 生命的动词

17.8 在超生命的国度中安家落户

第十八章 有组织的变化之结构

18.1 日常进化的革命

18.2 绕开中心法则

18.3 学习和进化之间的区别

18.4 进化的进化

第十九章 后达尔文主义

19.1 达尔文进化论不完备之处

19.2 只有自然选择还不够

19.3 生命之树上的连理枝

19.4 非随机突变的前提

19.5 怪亦有道

19.6 化抽象为具象

19.7 物以类聚

19.8 DNA并不能给所有东西编码

19.9 不确定的生物搜索空间密度

19.10 自然选择之数学原理

第二十章 沉睡的蝴蝶

20.1 无序之有序

20.2 反直觉的网络数学

20.3 迭坐,喷涌,自催化

20.4 值得一问的问题

20.5 自调节的活系统

第二十一章 水往高处流

21.1 40亿年的庞氏骗局

21.2 进化的目的是什么

21.3 超进化的7个趋势

21.4 土狼般的自我进化

第二十二章 预言机

22.1 接球的大脑

22.2 混沌的另一面

22.3 具有正面意义的短视

22.4 从可预测性范围里挣大钱

22.5 前瞻:内视行动

22.6 预测的多样性

22.7 以万变求不变

22.8 系统存在的目的就是揭示未来

22.9 全球模型的诸多问题

22.10 舵手是大家

第二十三章 整体,空洞,以及空间

23.1 控制论怎么了?

23.2 科学知识网之缺口

23.3 令人惊讶的琐碎小事

23.4 超文本:权威的终结

23.5 新的思考空间

第二十四章 九律

24.1 如何无中生有

24.2 将宇宙据为己有

附录 人名索引

译后记:“失控”的协作与进化

返回总目录致《失控》中文版的读者们

二十岁那年,我用在一家货运中心打工挣的钱买了一张从新泽西到亚洲的机票。在此之前,我只结识过一位中国人,甚至连亚洲的饮食都没沾过。我不知道在这个离家万里的地方会碰到什么。当我到达的时候,我的钱包几乎空空如也;不过,我有的是时间。

在接下来的八年里,我走遍了亚洲的许多国家,间或回到美国挣些钱,然后再去往那遥远的东方。那时候我还年轻,正是接受新事物的时候,也因此,亚洲改变了我的想法——我成了一个彻头彻尾的乐天派。飞速的发展就发生在我眼前,我开始相信,一切皆有可能。

更重要的是,我开始换一种方式思考。我开始领会到大型任务如何通过去中心化的方法并借助最少的规则来完成;我懂得了并非所有的事情都要事先计划好。印度街道上车水马龙的画面始终浮现在我脑海里:熙熙攘攘的人群,伫立不动的牛群,钻来钻去的自行车,慢慢悠悠的牛车,飞驰而过的摩托车,体积庞大的货车,横冲直撞的公交车——车流混杂着羊群、牛群在仅有两条车道的路面上蠕动,却彼此相安无事。亚洲给了我新的视角。

没有人知道他们的理念究竟从何而来;我也不敢确定地说,这本书中的想法就来自于亚洲,但我想,是亚洲使我准备好了接受这些想法。我认为其中的一些想法与传统的亚洲理念是有共鸣的,譬如说,自底向上而非自顶向下地构建事物,去中心化系统的优势,人造与天生之间的连续性,等等。正因为如此,当这本思想之书被翻译成中文时,我感到万分高兴。

更令我感到高兴的是,正是我在书中所讨论的一些想法,催生了你手中的这本中文版。它并非由一位专业的作者(自顶)来完成,而是由一些业余爱好者通过一个非常松散的去中心化的网络协作(自底)完成的。我称这个过程为“蜂群思维”的体现,或者用一个更时髦的词——“众包”。虽然我在书中描绘了 这种方法在自然界中是如何行之有效的,但当它成功用于我的这本书时,我仍然感到惊讶不已。

我是在1990年开始写这本书的,距今刚好有20年左右的时间。经常有人问我,在这20年中发生了什么变化,我需要做哪些更新?对于我亲爱的读者来说,好消息是,这本书在今天与在20年前同样有效,需要更新的仅仅是一些事例。研究人员们发现了越来越多的证据来更好地证明我在20年前提出的想法,而这些想法本身却很是令人惊奇地“与时俱进”。

事实上,这本书在今天比在20年前更应景。当我开始写这本书的时候,还没有万维网,因特网刚刚进入实用阶段;仿真处于初级阶段;计算机绘图还很少见;电子货币尚不为人知。虚拟生活、去中心化的力量以及由机器构成的生态等概念,即使是在美国,也没有太多意义。这些故事和逻辑看上去太抽象、太遥远。

而今天,一切都改变了。万维网,遍布全球的网络,由电话、iPad和个人计算机组成的实时网络,还有可以自动驾驶的汽车,都出现在我们眼前。我在这本书中所概括的原则显得更加必要和重要。事实上,这本书如今在美国的销量要比它当初发行时的销量还要好。

这就是我说的好消息。坏消息是,在过了20年之后,我们对于如何使大规模复杂事物运作起来的理解仍然少有进展。我很遗憾地告知大家,不论是在人工生命还是机器人技术,抑或是生态学或仿真学领域中,并没有出现新的重大思想。我们今天所知的,绝大多数是我们20年前就已知的,并且都在这本书中提及了。

我很高兴这本书得以被翻译成中文。我寄望于一些中国读者在读完本书后,可以追本溯源到原始的研究论文,并继续深入下去,发明或发现全新的理念,从而使这本书彻底“过时”。若果真如此的话,我会认为我的作品是成功的。

希望你能开卷有益,并喜欢我的下一本书:《

科技想要什么

》(What Technology Wants)。凯文·凯利2010年11月于美国加州帕西菲卡市第一章人造与天生1.1 新生物文明

我被关闭在密不透气的玻璃小屋里。在这里,我吸入的是自己呼出的气体,不过,在风扇的吹动下,空气依然清新。由众多导管、线缆、植物和沼泽微生物构成的系统回收了我的尿液和粪便,并将其还原成水和食物供我食用。说真的,食物的味道不错,水也很好喝。

昨夜,外面下了雪。玻璃小屋里却依然温暖、湿润而舒适。今天早上,厚厚的内窗上挂满了凝结的水珠。小屋里到处都是植物。大片大片的香蕉叶环绕在我的四周,那鲜亮的黄绿色暖人心房。纤细的青豆藤缠绕着,爬满了所有的墙面。屋内大约一半的植物都可食用,而我的每一顿大餐都来源于它们。

这个小屋实际上是一个太空生活试验舱。我周边大气的循环再利用完全依赖于植物及其扎根的土壤,以及那些在树叶间穿来穿去的、嗡嗡作响的管道系统。不管是这些绿色植物,还是那些笨重的机器,单靠它们自己,都不足以保证我在这个空间的生存。确切地说,是阳光供养的生物和燃油驱动的机械共同确保了我的生存。在这个小屋内,生物和人造物已经融合成为一个稳定的系统,其目的就是养育更高级的复杂物——当下而言,就是我。

在这个千年临近结束的时候,发生在这个玻璃小屋里的事情,也正在地球上大规模地上演着,只不过不那么明晰。造化所生的自然王国和人类建造的人造国度正在融为一体。机器,正在生物化;而生物,正在工程化。

这种趋势正验证着某些古老的隐喻——将机器比喻为生物,将生物比喻为机器。那些比喻由来已久,古老到第一台机器诞生之时。如今,那些久远的隐喻不再只是诗意的遐想,它们正在变为现实——一种积极有益的现实。

人造与天生的联姻正是本书的主题。技术人员归纳总结了生命体和机器之间的逻辑规律,并一一应用于建造极度复杂的系统;他们正在如魔法师一般召唤出制造物和生命体并存的新奇装置。从某种程度上来说,是现有技术的局限性迫使生命与机械联姻,为我们提供有益的帮助。由于我们自己创造的这个世界变得过于复杂,我们不得不求助于自然世界以了解管理它的方法。这也就意味着,要想保证一切正常运转,我们最终制造出来的环境越机械化,可能越需要生物化。我们的未来是技术性的,但这并不意味着未来的世界一定会是灰色冰冷的钢铁世界。相反,我们的技术所引导的未来,朝向的正是一种新生物文明。1.2 生物逻辑的胜利

自然一直在用她的血肉供养着人类。最早,我们从自然那里获取食物、衣着和居所。之后,我们学会了从她的生物圈里提取原材料来创造出我们自己的新的合成材料。而现在,自然又向我们敞开她的心智,让我们学习她的内在逻辑。

钟表般的精确逻辑,也即机械的逻辑,只能用来建造简单的装置。真正复杂的系统,比如细胞、草原、经济体或者大脑(不管是自然的还是人工的)都需要一种地道的非技术的逻辑。我们现在意识到,除了生物逻辑之外,没有任何一种逻辑能够让我们组装出一台能够思想的设备,甚至不可能组装出一套可运行的大型系统。

人类能够从生物学中提取自然的逻辑并用以制造出一些有用的东西,这个发现真令人惊奇。尽管过去有很多哲学家都觉得人类能够抽象出生命的法则并将其应用到其他领域,但直到最近,当计算机以及人造系统的复杂性能够与生命体相媲美时,这种设想才有了得到验证的可能。生命中到底有多少东西是能被转化的,仍然是一个神奇的谜团。到目前为止,那些原属于生命体却成功被移植到机械系统中的特质有:自我复制、自我管理、有限的自我修复、适度进化以及局部学习。我们有理由相信,还会有更多的特质被人工合成出来,并转化成新的东西。

人们在将自然逻辑输入机器的同时,也把技术逻辑带到了生命之中。

生物工程的源动因,就是希望充分控制有机体,以便对其改进。被驯化的动植物,便正是将技术逻辑应用于生命的范例。野生胡萝卜芳香的根,经由草本植物采集者一代代的精心选培,才最终成为菜园里甜美的胡萝卜;野生牛的乳房也是通过“非自然”的方式进行了选择性增大,以满足人类而不是小牛的需求。所以说,奶牛与胡萝卜跟蒸汽机与火药一样,都是人类的发明。只不过,奶牛和胡萝卜更能代表人类在未来所要发明的东西:它们是生长出来而非被制造出来的。

基因工程所做的事情,恰如养牛人挑选更好的种牛,只不过基因工程师们运用了一种更精确并且更强大的控制手段。当胡萝卜和奶牛的培育者们不得不在冗长的自然进化基础上进行优选时,现代的基因工程师们却可以利用定向人工进化,通过目标明确的设计而大大加快物种改进的过程。

机械与生命体之间的重叠在一年年增加。这种仿生学上的融合也体现在词语上。“机械”与“生命”这两个词的含义在不断延展,直到某一天,所有结构复杂的东西都可以被看作是机器,而所有能够自维持的机器都可以被看作是有生命的。除了语义的变化,还有两种具体趋势正在发生:(1)人造物表现得越来越像生命体;(2)生命变得越来越工程化。遮在有机体与人造物之间的那层纱已经撩开,显示出两者的真面目。其实它们是,而且也一直都是本质相同的。我们知道生物领域中有诸如有机体和生态系统这样的概念,而与之相对应的人造物则包括机器人、公司、经济体、计算机回路,等等。而对于两者共有的灵魂,我们该如何命名呢?由于两者都具备生命属性,我将这些人造或天然的系统统称为 “活系统”。

在以后的章节中,我会对这个大一统的仿生学前沿进行一次巡礼。我所描述的活系统,有很多是“人造”的,即人类制造的机巧之物。它们真实地存在于我们周围,而绝非泛泛的理论空谈。这些活系统都是复杂且宏大的系统:全球电话系统,计算机病毒孵化器,机器人原型机,虚拟现实世界,合成的动画角色,各种人工生态系统,还有模拟整个地球的计算机模型。

自然的野性是我们深刻认识活系统的主要信息来源,也许还将是未来深入了解活系统的最重要的源泉。我要报道的新实验包括了组装生态系统、复原生物学、复制珊瑚礁、探索昆虫(蜜蜂和蚂蚁)的社会性,以及建立像我在本书开场白中所描述的那个亚利桑那州生态圈II号的复杂封闭系统。

本书所研究的活系统深奥复杂,涉及范围广泛,差别也十分巨大。从这些特殊的大系统中,我提取出了一套适用于所有大型活系统的统一原则,称之为“神律”。这套神律是所有自我维持和自我完善系统共同遵循的基本原则。

人类在创造复杂机械的进程中,一次又一次地回归自然去寻求指引。因此自然绝不仅仅是一个储量丰富的生物基因库,为我们保存一些尚未面世的能够救治未来疾患的药物。自然还是一个“文化基因库”,是一个创意工厂。丛林中的每一个蚁丘中,都隐藏着鲜活的、后工业时代的壮丽蓝图。那些飞鸟鸣虫,那些奇花异草,还有那些从这些生命中汲取了能量的原生态的人类文化,都值得我们去呵护——不为别的,就为那些它们所蕴含着的后现代隐喻。对新生物文明来说,摧毁一片草原,毁掉的不仅仅是一个生物基因库,还毁掉了一座蕴藏着各种启示、洞见和新生物文明模型的宝藏。1.3 学会向我们的创造物低头

向机器中大规模地植入生物逻辑有可能使我们满怀敬畏。当人造与天生最终完全统一的时候,那些由我们制造出来的东西将会具备学习、适应、自我治愈,甚至是进化的能力。这是一种我们还很难想象的力量。数以百万计的生物机器汇聚在一起的智能,也许某天可以与人类自己的创新能力相匹敌。人类的创造力,也许总是属于那种华丽绚烂的类型,但还有另外一种类型的创造力值得一提——一种由无数默默无闻的“零件”通过永不停歇的工作而形成的缓慢而宽广的创造力。

在将生命的力量释放到我们所创造的机器中的同时,我们也丧失了对他们的控制。他们获得了野性,并因野性而获得一些意外和惊喜。之后,就是所有造物主都必须面对的两难窘境:他们将不再完全拥有自己最得意的创造物。

人造世界就像天然世界一样,很快就会具有自治力、适应力以及创造力,也随之失去我们的控制。但在我看来,这却是个最美妙的结局。第二章蜂群思维2.1 蜜蜂之道:分布式管理

在我办公室的窗下,蜂箱静静地任由忙碌的蜜蜂进进出出。夏日的午后,阳光透过树影映衬着蜂箱。阳光照射下的蜜蜂如弧形的曳光弹,发出嗡嗡的声音,钻进那黑暗的小洞口。此刻,我看着它们将熊果树花朵今年最后的花蜜零星采集回家。不久雨季将至,蜜蜂们就会躲藏起来。写作时,我会眺望窗外,而这时它们仍会继续辛勤劳作,不过是在黑暗的家中。只有在晴朗的日子里,我才能幸运地看到阳光下成千上万的蜜蜂。

养蜂多年,我曾亲手把蜂群从建筑物和树林中搬出来,以这种快捷而廉价的方式在家中建起新的蜂箱。有一年秋天,邻居砍倒了一棵空心树,我用链锯切入那倒下的老山茱萸。这可怜的树里长满了癌瘤似的蜂巢。切入树身越深,发现的蜜蜂越多。蜜蜂挤满了和我一样大小的洞。那是一个阴沉凉爽的秋日,所有的蜜蜂都待在家里,正被我的手术扰得不得安宁。最后我将手插入到蜂巢中。好热!至少有华氏95度(摄氏36度左右)。拥挤了十万只冷血蜜蜂的蜂巢已经变成热血的机体,加热了的蜂蜜像温暖稀薄的血一样流淌着。我感到仿佛刚刚把手插进了垂死的动物。

将蜜蜂群集的蜂巢视同动物的想法姗姗来迟。希腊人和罗马人都是著名的养蜂人,他们能够从自制的蜂箱收获到数量可观的蜂蜜,但尽管如此,这些古人对蜜蜂所有的认识却几乎都是错误的。其原因要归咎于蜜蜂生活的隐密性,这是一个由上万只狂热而忠诚的武装卫士守护着的秘密。德谟克利特认为蜜蜂的孵化和蛆如出一辙。色诺芬分辨出了蜂后,却错误地赋予她监督的职责,而她并没有这个任务。亚里士多德在纠正错误认识方面取得了不错的成果,包括他对于“蜜蜂统治者”将幼虫放入蜂巢隔间的精确观察。(实际上,蜜蜂初生时的确是卵,但他至少纠正了德谟克利特的蜜蜂始于蛆的误导。)文艺复兴时期,蜂后的雌性基因才得到证明,蜜蜂下腹分泌蜂蜡的秘密也才被发现。直到现代遗传学出现后,才有线索指出蜂群是彻底的母权制,而且是姐妹关系:除了少数无用的雄蜂,所有的蜜蜂都是雌性姐妹。蜂群曾经如同日蚀一样神秘、一样深不可测。

我曾观看过几次日蚀,也曾多次观察过蜂群。我观看日蚀是把它当作风景,兴趣并不大,多半是出于责任——由于它们的罕见与传说,那感觉更像是参加国庆游行。而蜂群唤起的是另一种敬畏。我见过不少次蜜蜂分群,每一次都令我痴呆若狂,也令其他所有目击者目瞪口呆。

即将离巢的蜂群是疯狂的,在蜂巢的入口处明显地躁动不安,喧闹的嗡嗡声此起彼伏,振动邻里。蜂巢开始吐出成群的蜜蜂,仿佛不仅要倾空其肠胃,还要倾空其灵魂。那微小的精灵在蜂巢上空形成喧嚣的风暴,渐渐成长为有目的、有生命、不透明的黑色小云朵。在震耳欲聋的喧闹声里,幻影慢慢升入空中,留下空空的蜂巢和令人困惑的静谧。德国神智学学者鲁道夫·斯坦纳在其另类怪僻的《关于蜜蜂的九个讲座》(Nine Lectures on Bees)中写道:“正如人类的灵魂脱离人体……通过飞行的蜂群,你可以真实地看到人类灵魂分离的影像。”

许多年来,和我同区的养蜂人马克·汤普森一直有个强烈的怪诞愿望,建立一个同居蜂巢——一个你可以把头伸进去探访的活生生的蜜蜂之家。有一次,他正在院子里干活,突然一个蜂箱涌出一大群蜜蜂,“像流淌的黑色熔岩,渐渐消溶,然后腾空而起”。由三万只蜜蜂聚结成的黑色云团形成直径20英尺(约6.1米)的黑晕,像 UFO 似的离地6英尺(约1.8米),正好在我们眼睛的高度。忽隐忽现的昆虫黑晕开始慢慢地漂移,一直保持离地6英尺的高度。马克终于有机会让他的同居蜂巢梦想成真了。

马克没有犹豫。他扔下工具迅速进入蜂群,光着的脑袋立刻就处在了蜜蜂旋风的中心。他小跑着与蜂群同步穿过院子,戴着蜜蜂光环,跳过一个又一个篱笆。此刻,他正跑步跟上那响声如雷的动物,他的头在它的腹部晃荡。他们一起穿过公路,迅速通过一片开阔地,接着,他又跳过一个篱笆。他累了,蜜蜂却不累,它们加快了速度。这个载着蜂群的男人滑下山岗,滑进一片沼泽。他和蜜蜂犹如一头沼泽魔鬼,嗡嗡叫着,盘旋着,在瘴气中翻腾。马克在污泥中拼命摇晃着,努力保持平衡。这时,蜜蜂仿佛得到某种信号,又加快了速度。它们除去了马克头上的光环,留下湿漉漉的他独自站在那里,“气喘吁吁,快乐而惊愕”。蜂群依旧保持着齐眼的高度,从地面漂过,好似被释放的精灵,越过高速公路,消失在昏暗的松树林中。“‘蜂群的灵魂’在哪里……它在何处驻留?”早在1901年,作家墨利斯·梅特林克就发出了这样的疑问:“这里由谁统治,由谁发布命令,由谁预见未来……?” 现在我们已经可以确定,统治者并不是蜂后。当蜂群从蜂巢前面的狭小出口涌出时,蜂后只能跟着。蜂后的女儿负责选择蜂群应该何时何地安顿下来。五六只无名工蜂在前方侦察,核查可能安置蜂巢的树洞和墙洞。他们回来后,用圈子越缩越小的舞蹈向休息的蜂群报告。在报告中,侦察员的舞蹈越夸张,说明她主张使用的地点越好。接着,一些头目们根据舞蹈的强烈程度核查几个备选地点,并以加入侦察员旋转舞蹈的方式表示同意。这就引导更多跟风者前往占上风的候选地点视察,回来之后再加入看法一致的侦察员的喧闹舞蹈,表达自己的选择。

除去侦查员外,极少有蜜蜂会去探查多个地点。蜜蜂看到一条信息:“去那儿,那儿是个好地方。”它们去看过之后便回来舞蹈说:“是的,真是个好地方。”通过这种重复强调,大家中意的地点便会吸引更多探访者,由此又有更多的探访者加入进来。按照收益递增的法则,得票越多,反对越少。渐渐地,一个大的群舞会以滚雪球的方式形成,并成为舞曲终章的主宰。最大的蜂群获胜。

这是一个白痴有、白痴享、白痴治的选举大厅,其产生的效果却极为惊人。这是民主制度的真髓,是彻底的分布式管理。曲终幕闭,按照民众的选择,蜂群挟带着蜂后和雷鸣般的嗡嗡声,向着通过群选确定的目标前进。蜂后非常谦恭地跟随着。如果她能思考,她可能会记得自己只不过是个村姑,与受命(谁的命令?)选择她的保姆是血亲姐妹。最初她只不过是个普通幼体,然后由其保姆以蜂王浆作为食物来喂养,从灰姑娘变成了蜂后。是什么样的因缘选择这个幼体作为女王呢?又是谁选择了负责挑选者呢?“是由蜂群选择的。”威廉·莫顿·惠勒的回答解答了人们的疑惑。威廉·莫顿·惠勒是古典学派自然哲学家和昆虫学家,最早创立了社会性昆虫研究领域。在1911年写的一篇爆炸性短文(刊登在《形态学杂志》上的《作为有机体的蚁群》)中,惠勒断言,无论从哪个重要且科学的层面上来看,昆虫群体都不仅仅是类似于有机体,而就是一个有机体。他写道:“就像一个细胞或者一个人,它表现为一个一元整体,在空间中保持自己的特性以抗拒解体……既不是一种物事,也不是一个概念,而是一种持续的波涌或进程。”

这是一个由两万个群氓合并成的整体。2.2 群氓的集体智慧

拉斯维加斯,一间漆黑的会堂里,一群观众兴高采烈地挥舞着硬纸棒。纸棒的一端是红色,另一端是绿色。大会堂的最后面,有一架摄像机摄录着疯狂的参与者。摄像机将纸棒上的彩色点阵和由制图奇才罗伦·卡彭特设置的一套计算机连接起来。卡彭特定制的软件会对会堂中每个红色和绿色的纸棒进行定位。今晚到场的有将近五千人。计算机将每个纸棒的位置及颜色精确地显示在一幅巨大而详细的视频地图上。地图就挂在前台,人人都能看到。更重要的是,计算机要计算出红色和绿色纸棒的总数,并以此数值来控制软件。观众挥舞纸棒时,屏幕上显示出一片在黑暗中疯狂舞动的光之海洋,宛如一场朋克风格的烛光游行。观众在地图上看见的自己要么是红色像素,要么是绿色像素。翻转自己的纸棒,就能在瞬间改变自己所投映出的像素颜色。

罗伦·卡彭特在大屏幕上启动了老式的视频游戏“乒乓”。“乒乓”是第一款流行的商业化视频游戏。其设置极其简单:一个白色的圆点在一个方框里跳来跳去,两边各有一个可移动的长方形,模拟球拍的作用。简单地说,就是电子乒乓球。在这个版本里,如果你举起纸棒红色的一端,则球拍上移,反之则球拍下移。更确切地说,球拍随着会场中红色纸棒的平均数的增减而上下移动。你的纸棒只是参与总体决定中的一票。

卡彭特不需要作过多解释,因为出现在这场于 1991 年举办的计算机图形专家会议上的与会者们可能都曾经迷恋过“乒乓”游戏。卡彭特的声音通过扬声器在大厅中回荡:“好了,伙计们。会场左边的人控制左球拍,右边的人控制右球拍。假如你认为自己在左边,那么你就是在左边。明白了?开始!”

观众们兴高采烈地欢呼起来。近五千人没有片刻犹豫,玩起了乒乓大家乐,玩得还相当不错。球拍的每次移动都反应了数千玩家意向的平均值。这种感觉有时会令人茫然。球拍一般会按照你的意愿移动,但并不总是如此。当它不合你的意向时,你会发现自己花在对球拍动向作预判上的关注力堪比对付那只正跳过来的乒乓球。每一个人都清晰地体察到,游戏里别人的智慧也在起作用:一群大呼小叫的群氓。

群体的智慧能把“乒乓”玩得这么好,促使卡彭特决定加大难度。在没有提示的情况下,球跳动得更快了。参与者齐声尖叫起来。但在一两秒之内,众人就立刻调整并加快了节奏,玩得比以前更好了。卡彭特进一步加快游戏速度,大家也立刻跟着加快速度。“我们来试试别的,”卡彭特建议道。屏幕上显示出一张会堂座位图。他用白线在中央画了一个大圈。“你们能在圈里摆个绿色的‘5’吗?”他问观众。观众们瞪眼看着一排排红色像素。这个游戏有点像在体育场举着广告牌拼成画面,但还没有预先设置好的顺序,只有一个虚拟的映象。红色背景中立即零落地出现了绿色像素,歪歪扭扭,毫无规则地扩大,因为那些认为自己的座位在“5”的路径上的人把纸棒翻成了绿色。一个原本模糊的图形越来越清晰了。喧闹声中,观众们开始共同辨认出一个“5”。这个“5”一经认出,便陡然清晰起来。坐在图形模糊边缘的纸棒挥舞者确定了自己“应该”处的位置,使“5”字显得更加清晰。数字自己把自己拼搭出来了。“现在,显示4!”声音响起来。瞬时出现一个“4”。“3”,眨眼功夫“3”也显示出来。接着迅速地、不断地一个个显现出“2……1……0”。

罗伦·卡彭特在屏幕上启动了一个飞机飞行模拟器。他简洁地说明玩法:“左边的人控制翻滚,右边的人控制机头倾角。如果你们把飞机指向任何有趣的东西,我就会向它发射火箭。”飞机初始态是在空中。飞行员则是五千名新手。会堂第一次完全静了下来。随着飞机挡风玻璃外面的情景展现出来,所有人都在研究导航仪。飞机正朝着粉色小山之间的粉色山谷中降落。跑道看上去非常窄小。

让飞机乘客共同驾驶飞机的想法既令人兴奋,又荒唐可笑。这种粗蛮的民主感觉真带劲儿。作为乘客,你有权来参与表决每个细节,不仅可以决定飞机航向,而且可以决定何时调整襟翼以改变升力。

但是,群体智慧在飞机着陆的关键时刻似乎成了不利条件,这时可没空均衡众意。当五千名与会者开始为着陆降低高度时,安静的大厅暴发出高声呼喝和急迫的口令。会堂仿佛变成了危难关头的驾驶员座舱。“绿,绿,绿!”一小部分人大声喊道。“红色再多点!”一会儿,另一大群人又喊道:“红色,红色,红——色!”飞机令人晕眩地向左倾斜。显然,它将错过跑道,机翼先着地了。飞行模拟器不像“乒乓”游戏,它从液压杆动作到机身反应,从轻推副翼杆到机身侧转,设定了一段时间的延迟反馈。这些隐藏起来的信号扰乱了群体的思维。受矫枉过正的影响,机身陷入俯仰震荡。飞机东扭西歪。但是,众人不知怎么又中断了着陆程序,理智地拉起机头复飞。他们将飞机转向,重新试着着陆。

他们是如何掉转方向的?没有人决定飞机左转还是右转,甚至转不转都没人能决定,没人作主。然而,仿佛是万众一心,飞机侧转并离场。再次试图着陆,再次摇摆不定。这次没经过沟通,众人又像群鸟乍起,再次拉起飞机。飞机在上升过程中稍稍摇摆了一下,然后又侧滚了一点。在这不可思议的时刻,五千人同时有了同样坚定的想法:“不知道能否翻转 360 度?”

众人没说一句话,继续翻转飞机。这下没有回头路了。随着地平线令人眼花缭乱的上下翻转,五千名外行飞行员在第一次单飞中让飞机打了个滚。那动作真是非常优美。他们起立为自己长时间鼓掌喝彩。

参与者做到了鸟儿做的事:他们成功地结成了一群。不过,他们的结群行为是自觉的。当合作形成“5”字或操纵飞机的时候,他们是对自己的总体概貌做出反应。而飞行途中的一只鸟对自己的鸟群形态并没有全局概念。结队飞行的鸟儿对鸟群的飞行姿态和聚合是视而不见的。“群态”正是从这样一群完全罔顾其群体形状、大小或队列的生物中涌现出来的。

拂晓时分,在杂草丛生的密歇根湖上,上万只野鸭躁动不安。在清晨柔和的淡红色光辉的映照下,野鸭们吱吱嘎嘎地叫着,抖动着自己的翅膀,将头插进水里寻找早餐。它们散布在各处。突然,受到某种人类感觉不到的信号的提示,一千只鸭子如一个整体似的腾空而起。它们轰然飞上天空,随之带动湖面上另外千来只野鸭一起腾飞,仿佛它们就是一个躺着的巨人,现在翻身坐起了。这头令人震惊的巨兽在空中盘旋着,转向东方的太阳,眨眼间又急转,前队变为后队。不一会儿,仿佛受到某种单一想法的控制,整群野鸭转向西方,飞走了。17世纪的一位无名诗人写道:“……成千上万条鱼如一头巨兽游动,破浪前进。它们如同一个整体,似乎受到不可抗拒的共同命运的约束。这种一致从何而来?”

一个鸟群并不是一只硕大的鸟。科学报道记者詹姆斯·格雷克写道:“单只鸟或一条鱼的运动,无论怎样流畅,都不能带给我们像玉米地上空满天打旋的燕八哥或百万鲰鱼鱼贯而行的密集队列所带来的震撼……(鸟群疾转逃离掠食者的)高速电影显示出,转向的动作以波状传感的方式,以大约1/70秒的速度从一只鸟传到另一只鸟,比单只鸟的反应要快得多。”鸟群远非鸟的简单聚合。

在电影《蝙蝠侠归来》中有一个场景,一大群黑色大蝙蝠一窝蜂地穿越水淹的隧道涌向纽约市中心。这些蝙蝠是由电脑制作的。动画绘制者先制作一只蝙蝠,并赋予它一定的空间,以使之能自动地扇动翅膀;然后再复制出几十个蝙蝠,直至成群。之后,让每只蝙蝠独自在屏幕上四处飞动,但要遵循算法中植入的几条简单规则:不要撞上其他的蝙蝠,跟上自己旁边的蝙蝠,离队不要太远。当这些“算法蝙蝠”在屏幕上运行起来时,就如同真的蝙蝠一样成群结队而行了。

群体规律是由克雷格·雷诺兹发现的。他是在图像硬件制造商Symbolics 工作的计算机科学家。他有一个简单的方程,通过对其中各种作用力的调整——例如多一点聚力、少一点延迟,雷诺德便能使群体的动作形态像活生生的蝙蝠群、麻雀群或鱼群。甚至《蝙蝠侠归来》中行进的企鹅群也是根据雷诺兹的运算法则聚合的。像蝙蝠一样,先一古脑地复制很多计算机建模的三维企鹅,然后把它们释放到一个朝向特定方向的场景中。当它们行进在积雪的街道上,就很容易地显现出推推搡搡拥挤的样子,不受任何人控制。

雷诺兹的简单算法所生成的群体是如此真实,以至于当生物学家们回顾自己所拍摄的高速电影后断定,真实的鸟类和鱼类的群体行为必然源自于一套相似的简单规则。群体曾被看作是生命体的决定性象征,某些壮观的队列只有生命体才能实现。如今根据雷诺兹的算法,群体被看作是一种自适应的技巧,适用于任何分布式的活系统,无论是有机的还是人造的。2.3 非匀质的看不见的手

蚂蚁研究的先驱者惠勒率先使用“超级有机体”来称呼昆虫群体的繁忙协作,以便清楚地和“有机体”所代表的含义区分开来。惠勒受到世纪之交(1900年左右)的哲学潮流影响。该潮流主张通过观察组成部分的个体行为去理解其上层的整体模式。当时的科学发展正一头扎入对物理学、生物学以及所有自然科学之微观细节的研究之中。这种一窝蜂上的将整体还原为其组成部分的研究方式,在当时被看作是能够理解整体规律的最实际做法,而且将会持续整个世纪(指20世纪),至今仍是科学探索的主要模式。惠勒和他的同事们是这种还原观点的主要拥护者,并身体力行地写就了50篇关于神秘的蚂蚁行为的专题论文。但在同一时刻,惠勒还从超越了蚂蚁群体固有特征的超级有机体中看到了“涌现的特征 ”。惠勒认为,集群所形成的超级有机体,是从大量聚集的普通昆虫有机体中“涌现”出来的。他指出,这种涌现是一种科学,一种技术性的、理性的解释,而不是什么神秘主义或炼金术。

惠勒认为,这种涌现的观念为调和“将之分解为部分”和“将之视为一个整体”两种不同的方法提供了一条途径。当整体行为从各部分的有限行为里有规律地涌现时,身体与心智、整体与部分的二元性就真正烟消云散了。不过当时,人们并不清楚这种超越原有的属性是如何从底层涌现出来的。现在也依然如此。

惠勒团队清楚的是:“涌现”是一种非常普遍的自然现象。与之相对应的是日常可见的普遍因果关系,就是那种A引发B,B引发C,或者2+2=4 这样的因果关系。化学家援引普遍的因果关系来解释实验观察到的硫原子和铁原子化合为硫化铁分子的现象。而按照当时的哲学家劳埃德·摩根的说法,“涌现”这个概念表现的是一种与之不同类型的因果关系。在这里,2+2 并不等于4,甚至不可能意外地等于5。在“涌现”的逻辑里,2+2=苹果。“对于‘涌现’——尽管看上去多少都有点跃进(跳跃)——的最佳诠释是,它是事件发展过程中方向上的质变,是关键的转折点。”这是摩根 1923年的著作《涌现式的进化》中的一段话。那是一本非常有胆识的书,书中接着引用了布朗宁的一段诗,这段诗佐证了音乐是如何从和弦中涌现出来的:而我不知道,除此(音乐)之外,人类还能拥有什么更好的天赋因为他从三个音符(三和弦)中所构造出的,不是第四个音符,而是星辰。

我们可以声称,是大脑的复杂性使我们能够从音符中精炼出音乐——显然,木头疙瘩是不可能听懂巴赫的。当聆听巴赫时,充溢我们身心的所有“巴赫的气息”,就是一幅富有诗意的图景,恰如其分地展现出富有含义的模式是如何从音符以及其他信息中涌现出来的。

一只小蜜蜂的机体所代表的模式,只适用于其1/10克重的更细小的翅室、组织和壳质。而一个蜂巢的机体,则将工蜂、雄蜂以及花粉和蜂窝组成了一个统一的整体。一个重达50磅的蜂巢机构,是从蜜蜂的个体部分涌现出来的。蜂巢拥有大量其任何组成部分所没有的东西。一个斑点大的蜜蜂大脑,只有 6 天的记忆,而作为整体的蜂巢所拥有的记忆时间是 3个月,是一只蜜蜂平均寿命的两倍。

蚂蚁也拥有一种蜂群思维。从一个定居点搬到另一个定居点的蚁群,会展示出涌现控制下的“卡夫卡式噩梦”效应。你会看到,当一群蚂蚁用嘴拖着卵、幼虫和蛹拔营西去的时候,另一群热忱的工蚁却在以同样的速度拖着那些家当掉头东行。而与此同时,还有一些蚂蚁,也许是意识到了信号的混乱和冲突,正空着手一会儿向东一会儿向西地乱跑,简直是典型的办公室场面。不过,尽管如此,整个蚁群还是成功地转移了。在没有上级作出任何明确决策的情况下,蚁群选定一个新的地点,发出信号让工蚁开始建巢,然后就开始进行自我管理。“蜂群思维”的神奇在于,没有一只蜜蜂在控制它,但是有一只看不见的手,一只从大量愚钝的成员中涌现出来的手,控制着整个群体。它的神奇还在于,量变引起质变。要想从单个虫子的机体过渡到集群机体,只需要增加虫子的数量,使大量的虫子聚集在一起,使它们能够相互交流。等到某一阶段,当复杂度达到某一程度时,“集群”就会从“虫子”中涌现出来。虫子的固有属性就蕴涵了集群,蕴涵了这种神奇。我们在蜂箱中发现的一切,都潜藏在蜜蜂的个体之中。不过,你尽管可以用回旋加速器和X光机来探查一只蜜蜂,但是永远也不能从中找出蜂巢的特性。

这里有一个关于活系统的普遍规律:低层级的存在无法推断出高层级的复杂性。不管是计算机还是大脑,也不管是哪一种方法——数学、物理或哲学——如果不实际地运行它,就无法揭示融于个体部分的涌现模式。只有实际存在的蜂群才能揭示单个蜜蜂体内是否融合着蜂群特性。理论家们是这样说的:要想洞悉一个系统所蕴藏的涌现结构,最快捷、最直接也是唯一可靠的方法就是运行它。要想真正“表述”一个复杂的非线性方程,以揭示其实际行为,是没有捷径可走的。因为它有太多的行为被隐藏起来了。

这就使我们更想知道,蜜蜂体内还裹藏着什么别的东西是我们还没见过的?或者,蜂巢内部还裹藏着什么,因为没有足够的蜂巢同时展示,所以还没有显露出来?就此而言,又有什么潜藏在人类个体中没有涌现出来,除非所有的人都通过人际交流或政治管理联系起来?在这种类似于蜂巢的仿生超级思维中,一定酝酿着某种最出人意料的东西。2.4 认知行为的分散记忆

任何思维都会酝酿出令人费解的观念。

因为人体就是一个由术有专攻的器官们组成的集合体——心脏负责泵送,肾脏负责清扫——所以,当发现思维也将认知行为委派给大脑不同区域时,人们并没有感到过分惊讶。

19世纪晚期,内科医生们注意到刚去世的病人在临死之前,其受损的大脑区域和明显丧失的心智能力之间存在着某种关联。这种关联已经超出了学术意义:神智错乱在本源上是属于生物学的范畴吗?1873年,在伦敦西赖丁精神病院,一位对此心存怀疑的年轻内科医生用外科手术的方式取出两只活猴的一小部分大脑组织。其中一例造成猴子右侧肢体瘫痪,另一例造成猴子耳聋。而在其他所有方面,两只猴子都是正常的。该实验表明:大脑一定是经过划分的,即使部分失灵,整体也不会遭遇灭顶之灾。

如果大脑按部门划分,那么记忆在哪一科室储存?复杂的大脑以何种方式分摊工作?答案出乎意料。

1888 年,一位曾经谈吐流利、记忆灵敏的男人,慌恐不安地出现在朗道尔特博士的办公室,因为他说不出字母表里任何字母的名字了。在听写一条消息的时候,这位困惑的男人写得只字不差。然而,他却怎么也读不出所写的内容。即使写错了,也找不出错的地方。朗道尔特博士记录道:“请他看视力检查表,他一个字母也说不出。尽管他声称看得很清楚……他把 A 比作画架,把 Z 比作蛇,把 P 比作搭扣。”

四年后这个男人死的时候,他的诵读困难变成彻底的读写失语症。不出所料,解剖尸体时发现了两处损伤:老伤在枕叶(视力)附近区域,新伤则可能在语言中枢附近。

这是大脑官僚化(即按片分管)的有力证明。它暗示着,不同的大脑区域分管不同的功能。如果要说话,则由这个科室进行相应的字母处理;而如果要书写,则归那个科室管。要说出一个字母(输出),你还需要向另一个地方申请。数字则由另一幢楼里的另一个完全不同的部门处理。如果你想骂人,就要像滑稽短剧《巨蟒剧团之飞翔的马戏团》里提示的那样,必须沿着大厅走另一头。

早期的大脑研究员约翰·休林-杰克逊讲述了一个关于他的一名女病人的故事。这个病人在生活中完全失语。有一次,她所住病房的街对面有一堆倾倒在那里的垃圾着火了,这位病人清晰地发出了一个字——也是休林-杰克逊所听到的她讲的绝无仅有的一个字——“火!”

怎么会这样?他感到有点不可思议,难道“火”是她的语言中枢记得的唯一一个字?难不成大脑有自己的“火”字部门?

随着大脑研究的进一步深入,思维之谜向人们展示出其极具特定性的一面。在有关记忆的文献中,有一类人能正常区分具体的名词——对他们说“肘部”,他们就会指着自己的肘部,但非常奇怪的是,他们无力识别抽象名词——问他们“自由”或“天资”,他们会茫然地瞪着眼睛,耸耸肩。与此相反,另一类看上去很正常的人则失去了记住具体名词的能力,却能完全识别抽象的东西。伊斯雷尔·罗森费尔德在其精彩却太不引人注目的著作《记忆的发明》(e Invention of Memory)中写道:有这么一个病人,当让他给干草下定义时,他回答:“我忘了。”当请他给海报下定义时,他说:“不知道。”然而,给他“恳求”这个词时,他说:“真诚地请求帮助。”说到“公约”,则回答:“友好的协定。”

古代哲学家说,记忆是个宫殿,每个房间都停放着一个思想。随着临床上一例例特别的健忘症被发现和研究,记忆房间的数量呈爆炸式增长,且无穷无尽。已经被划分为套间的记忆堡垒,又被分割为由极小的秘室组成的巨大迷宫。

有一项研究的对象是四个病人,他们能辨明无生命的物体(雨伞、毛巾),却会混淆生物,包括食品!其中一个病人能毫不含糊地谈论无生命的物体,但对他来说,蜘蛛的定义却是“一个为国家工作的找东西的人”。还有许多记录,是关于受过去时态困扰的失语症病人的。我听说过另一个传闻(我不能证实,但毫不怀疑),说患某种疾病的患者能够分辨所有食物,但蔬菜除外。

南美文学名家博尔赫斯在他的小说中杜撰了一部名为“天朝仁学广览”(Celestial Emporium of Benevolent Knowledge)的古代中国百科全书。其中的分类体系恰如其分地代表了这种潜藏在记忆系统下的怪诞不经。

在那本年代久远的百科全书中,动物被划分为:a)属于皇帝的,b)防腐处理的,c)驯养的,d)乳臭未干的小猪,e)半人半鱼的,f)赏心悦目的,g)离家的狗,h)归入此类的,i)发疯般抽搐的,j)不可胜数的,k)用驼毛细笔描绘的,l)除此之外的,m)刚刚打破花瓶的,n)远看如苍蝇的。

天朝分类法确实过于牵强,不过任何分类过程都有其逻辑问题。除非每一个记忆都能有不同的地方存放,否则就一定会有令人困惑的重叠。举例来说,一只喋喋不休的、淘气的小猪,就可能被归为上述类别中的三个里面。尽管可以将一个想法插入到三个记忆槽里,但其效率却非常低。

在计算机科学家试图创立人工智能的过程中,知识如何存入大脑,已经不仅仅是个学术问题了。那么,蜂群思维中的记忆架构是什么样的呢?

过去,多数研究人员倾向于认为,(记忆的存储)就如同人类管理其自制的文件柜一样,直观而自然:每个存档文件占用一个地方,彼此间有多重交叉引用,就像图书馆一样。活跃于20世纪30年代的加拿大神经外科医生怀尔德·潘菲尔德通过一系列著名的精彩实验,将这种认为每条记忆都对应于大脑中一个单独位置的理论发展到了顶峰。潘菲尔德通过大胆的开颅术,在病人清醒的状态下利用电激探查其小脑活体,请他们讲述自己的感受。病人们能够回忆起非常生动的往事,而电激的最微小移动都能引发截然不同的想法。潘菲尔德在用探测器扫描小脑表面的同时,绘制出每个记忆在大脑中的对应位置。

他的第一个意外发现是,那些往事是可以重播的,就如同在若干年后播放录音机一般——“摁下重播键”。潘菲尔德在描述一位26岁妇女癫痫发作后的幻觉时用了 “回闪”这个词:“同样的回闪出现了几次,都与她表亲的家或去那里的旅行有关——她已经有10到15年没有去那里了,但小时候常去。”

潘菲尔德对活脑这块处女地的探索使得人们形成了根深蒂固的印象:脑半球就好比出色的记录装置,其精彩的回放功能似乎更胜过时下流行的留声机。我们的每个记忆都被精确地刻划在它自己的唱片上,由不偏不倚的大脑忠实地将其分类归档,并能像自动点唱机中的歌曲一样,摁动正确的按扭就能播放出来,除非受到暴力的损伤。

然而仔细查看潘菲尔德实验的原始记录会发现,记忆并不是十分机械的过程。有一个例子,是一位29岁的妇女在潘菲尔德刺激其左颞叶时的反应:“有什么东西从某个地方朝我来了。是一个梦。”4分钟以后,当刺激完全相同的点时:“景色似乎和刚才的不一样……”而刺激附近的点:“等等,什么东西从我上面闪过去了,我梦到过的东西。”在第三个刺激点——在大脑的更深处,“我不停地做梦。”对同一点重复刺激:“我不停地看到东西——我不停地梦到东西。”

这些文字所谈及的,与其说是从记忆档案馆的底层文件架上翻出的杂乱无章的昨日重现,倒不如说是梦一般的模糊闪现。这些过往经历的主人把它们当作是零碎的半记忆片段。它们带有生硬的“拼凑”色彩,漫无目的地飘荡;梦境由此而生——那些关于过去的、星星点点的、没有中心的故事被重组成梦中的拼贴画。并没有所谓似曾相识的感觉,也没有“当时情形正是如此”的强烈意识。没有人会被这些重播所蒙蔽。

人类的记忆的确会不管用。其不管用的方式十分特别,比如在杂货店里记不起购物清单中的蔬菜或是干脆就忘掉了蔬菜这码事。记忆的损伤往往和大脑的物理损伤有关,据此我们猜测,记忆在某种程度上是与时间和空间捆绑在一起的,而与时间和空间捆绑在一起则正是真实的一种定义。

然而现代认知科学更倾向于一个新的观点:记忆好比由储存在脑中的许多离散的、非记忆似的碎片汇总起来而从中涌现出来的事件。这些半意识的碎片没有固定的位置,它们分散在大脑中。其储存方式在不同的意识之间有本质的不同——对洗牌技能的掌握与对玻利维亚首都的了解就是按完全不同的方式组织的,并且这种方式在人与人之间会有所不同,上一次与下一次之间也会有所不同。

由于可能存在的想法或经历要比大脑中神经元的组合方式多,因此,记忆必须以某种方式进行组织,以尽可能容纳超过其存储空间的想法。它不可能有一个架子来存放过去所有的念头,也无法为将来可能出现的每一个想法预留位置。

记得20年前在中国台湾的一个夜晚,我坐在敞篷卡车的后面,行进在满是灰尘的山路上。山上空气很冷,我穿上了夹克。我搭的是顺风车,要在黎明前到达山区一座高峰。卡车在陡峭黑暗的山路上一圈圈艰难地向上爬升,而我在清新的空气中仰望星空。天空如此清澈,我能看见接近地平线的小星星。突然,一颗流星嗖地滑落,因为我在山里的角度特别,所以看见它在大气层里跳动。它跳啊,跳啊,跳啊,像粒石子。

现在,当我回忆起这一幕时,那颗跳动的流星已经不再是我记忆的重播——尽管它是如此的生动。它的影像并不存在于我记忆中任何特别的地方。当我重现这段经历时,实际上对其重新进行了组合,并且每次回忆起来都会重新进行组合。所用的材料是散布在我大脑中的细小的证据碎片:在寒风中瑟瑟发抖,在崎岖的山路上颠簸前进,在夜空中闪烁的无数星星,还有在路旁伸手拦车的场景。这些记录的颗粒甚至更细小:冷,颠簸,光点,等候。这些正是我们通过感官所接收到的原始印象,并由此组合成了我们当前的感知。

我们的意识正是通过这许许多多散布在记忆中的线索创造了现在,如同它创造了过去一样。站在博物馆的一个展品面前,其所具有的平行直线让我在头脑中将它与“ 椅子”的概念联系起来,尽管这个展品只有三条腿。我的记忆中从未见过这样一把椅子,但它符合所有(与椅子)相关联的事物——它是直立的,有水平的座位,是稳定的,有若干条腿——并随之产生了视觉映像。这个过程非常快。事实上,在察觉其所特有的细节之前,我会首先注意到其所具备的一般“椅性”。

我们的记忆(以及我们的蜂群思维)是以同样模糊而偶然的方式创造出来的。要(在记忆中)找到那颗跳动的流星,我的意识首先抓住了一条移动的光的线索,然后收集一连串与星星、寒冷、颠簸有关的感觉。创造出什么样的记忆,有赖于最近我往记忆里塞入了什么,也包括上次重组这段记忆时所加进去的感觉或其他事情。这就是为什么每次回忆起来都有些微不同的原因,因为每次它都是真正意义上的完全不同的经历。感知的行为和记忆的行为是相同的。两者都是将许多分布的碎片组合成一个自然涌现出的整体。

认知科学家道格拉斯·霍夫施塔特说道:“记忆,是高度重建的。在记忆中进行搜取,需要从数目庞大的事件中挑选出什么是重要的,什么是不重要的,强调重要的东西,忽略不重要的东西。”这种选择的过程实际上就是感知。“我非常非常相信,”霍夫施塔特告诉我,“认知的核心过程与感知的关系非常非常紧密。”

在过去20年里,一些认知科学家已经勾画出了创造分布式记忆的方法。20世纪70年代,心理学家戴维·马尔提出一种人类小脑的新模型,在这个模型中,记忆是随机地存储在整个神经元网络中的。1974 年,计算机科学家彭蒂·卡内尔瓦提出了类似的数学网络模型。借助这个模型,长字符串的数据能随机地储存在计算机内存中。卡内尔瓦的算法是一种将有限数量的数据点储存进非常巨大的潜在的内存空间的绝妙方法。换句话说,卡内尔瓦指出了一种能够将思维所拥有的任何感知存入有限记忆机制的方法。由于宇宙中可能存在的思想要比原子或粒子更多,人类思维所能接触到的只是其中非常稀疏的一部分,因此,卡内尔瓦称他的算法为“稀疏分布记忆”算法。

在一个稀疏分布式网络中,记忆是感知的一种。回忆行为和感知行为都是在一个非常巨大的模式可选集中探查所需要的一种模式。我们在回忆的时候,实际上是重现了原来的感知行为,也就是说,我们按照原来感知这种模式的过程,重新定位了该模式。

卡内尔瓦的算法是如此简洁清晰,以至于某个计算机高手用一个下午就能大致地实现它。20世纪80年代中期,在美国宇航局艾姆斯研究中心,卡内尔瓦和同事们在一台计算机上设计出非常稳定的实用版本,对他的稀疏分布记忆结构进行了细调。卡内尔瓦的记忆算法能做一些可媲美于人类思维的不可思议的事情。研究者事先向稀疏内存中放入几个画在 20×20格子里的低画质数字图像(1至9)。内存保存了这些图像。然后,他们拿一个比第一批样本画质更低的数字图像给内存,看它是否能“回忆”起这个数字是什么。结果它做到了!它意识到了隐藏在所有低画质图像背后的原型。从本质上来说,它记起的是以前从未见过的形象!

这个突破不仅仅使找到或重现过去成为可能,更重要的是,当只给定最模糊的线索时,它也能够从无数的可能性中发掘出一些东西。对一个记忆体来说,仅仅能调出祖母的容貌是不够的,在不同的光线下以及从不同的角度去看祖母的样子时,它都应该能辨认出来。

蜂群思维是能同时进行感知和记忆的分布式内存。人类的思维多半也是分布式的,至少在人工思维中,分布式思维肯定是占优势的。计算机科学家越是用蜂群思维的方式来思考分布式问题,就越发现其合理性。他们指出,大多数个人电脑在开机状态的绝大部分时间里并没有真正投入使用。当你在计算机上写信时,敲击键盘产生的短脉冲

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载