气象常识:天气知识百宝箱(txt+pdf+epub+mobi电子书下载)


发布时间:2020-06-21 21:53:13

点击下载

作者:马金江

出版社:安徽美术出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

气象常识:天气知识百宝箱

气象常识:天气知识百宝箱试读:

前言

科技人才的培养,基础在于教育。谁掌握了面向未来的教育,谁就能在未来的国际竞争中处于战略主动地位。青少年是祖国的未来,科学的希望,担当着科技兴国的历史重任。因此,把科技教育作为一项重要的内容,从小学抓起,为培养未来的人才打下坚实基础是势在必行。

图解科技内容,进行科学普及,对培养广大读者学习科学方法,树立科学思想和科学精神,从面成为具有创造精神的,适应未来社会发展的建设人才打下基础具有十分重要的意义。

在新的世纪,随着科学技术日益渗透于经济发展和社会生活的各个领域,成为推动现代社会发展的最活跃因素,并且是现代社会进步的决定性力量。发达国家经济的增长点、现代化的战争、通讯传媒事业的日益发达,处处都体现出高科技的威力,同时也迅速地改变着人们的传统观念,使得人们对于科学知识充满了强烈渴求。

对迅猛发展的高新科学技术知识的普及,不仅可以使广大读者了解当今科技发展的现状,而且可以使我们树立崇高的理想:学好科学知识,为人类文明作出自己应有的贡献。

为此,我们特别编辑了这套丛书,知识全面、内容精炼、图文并茂,形象生动,通俗易懂,能够培养我们的科学兴趣和爱好,达到普及科学知识的目的,具有很强的可读性、启发性和知识性,是我们广大读者了解科技、增长知识、开阔视野、提高素质、激发探索和启迪智慧的良好科普读物。

地球运动

地球是一颗赤道微凸两极略扁的行星。它以每秒18.5英里(29.8千米)的速度绕

太阳

公转。公转轨道长583,820,580英里(193,568,147千米)。这样,地球公转一周需要365天5小时48分46秒。公转轨道是椭圆形而非圆形,太阳正位于轨道中心附近,因此,北半球在1月份比7月份更接近太阳。然而,北半球在1月份却是最冷的时期。很明显,这种椭圆形的轨道结构并不是形成各种季节的决定因素。

地球在公转的同时,还绕地轴自西向东自转。地轴是一条假想的穿过南北两极点的直线。自转周期为24小时——运行一天。赤道(行星上最宽的部分)上的任何一处都是以每小时2.4万英里(39,000千米)的速度转动,这种转动速度在向两极方向上不断减弱,直到两极点线速度为零。

地轴并不垂直于它椭圆形的平面:它形成一个23.5度的倾斜角。正是由于这一角度及运转轨道,使地表的不同部分朝向太阳,形成季节的变换。

依据加热地表的太阳能能量多少,地球呈现出不同季节。除了地球两极点与太阳等距离时的春分、秋分两点外,始终是一个极点偏向太阳,另一个极点远离太阳。当北极偏向太阳时,北半球受太阳光照射更直接,每天日照更长。热能积聚的结果就形成了我们所说的夏季。与此同时,南半球正值冬天:南极偏离太阳,所受太阳光照射时间短,以低角度照射的太阳光线强度减弱。

如果地轴没有倾斜将会怎样呢?如果轴线平行于地球椭圆表面,那么长达一周白昼的最热的夏季将出现在两极;假设地轴垂直于椭圆轨道表面,赤道处得到的光线会更强烈,并伴随纬度的升高而减弱,除两极外所有的地方昼夜平分,并且不会产生季节性的变化。

无论何时,地球上一半是白昼,一半是黑夜。偏向太阳的极点每年至少在一次的自转中受到24小时照射。然而由于地球的形状、地轴的倾斜以及地表凹凸不平的影响,使得在任何一个季节里,高纬度地带都会因光线入射角过低,而很难甚至得不到一点热量。另一方面,热带地区因太阳光线终年直接照射而吸收或多或少的持续太阳能。太阳

太阳,天气的创作者,在太阳系中心已经熊熊燃烧了几十亿年。在它的核心,温度高达27,000,000°F(15,000,000℃)。无数氢核相互碰撞聚合,形成氦核并产生巨大的能量,其中的大部分以每分钟6×1027卡路里热量的速度从太阳中被释放出来。

太阳释放的总能量中,地球仅仅得到其中的大约20亿分之一,部分原因是两个星体相距大约93,000,000英里(150,000,000千米),部分是因为地球表面积比较小。剩余的能量则散失在宇宙中。那些到达地球的能量,尽管很少,但足够加热地球,它维持了生命的繁荣,并为大气提供能量,形成我们所知道的天气。

地球吸收不同波长的太阳光谱。一些是来自可见光的短波能量。一些是植物通过光合作用生长所必需的紫外线能量。这种能量一旦被吸收,一部分就会被地表和在其上的所有物体反射回大气并进入太空。对太阳能的反射能力被称为反射率。

太阳怎样使地球变热

红外波长的辐射使地球变热。光能被地球吸收,然后以长波的红外辐射形式进入大气,在那幅它被云、二氧化碳(CO2)和其他微量气体吸收。之后大气把其中一部分能量辐射向太空,一部分返射回地表,逐渐形成热量。这个自然的加热过程被称为温室效应。

地球不断运行着以平衡自身的温度,其散失与吸收的热量终将平衡。

白天地球吸收热量比散失的多,在晚上它继续放射热量,在这个过程当中地表渐渐冷却下来。从太阳吸收的能量大约有21%以这种方式散失。

大约有27%的到达地球的太阳能以传导或对流的形式传播开来。传导是当物体被加热时,物体里相对移动快的分子把能量直接传送给另一个分子的过程。土地和水就以这种方式慢慢地传播它们的热量。对流是在液体或气体里,通过分子运动进行的热量传播,也是云形成的一种方式。空气被地表加热,所以它的分子运动速度较快,传播得更远,占据更多的空间。比较温暖的轻空气上升得较高,并分散直到冷却至它的凝固点——云就形成了。大 气

我们的气候形成于包围在地球周围的多层的大气结构之中。大气层的厚度为600英里(996千米)。与地球7928英里(12,759千米)长的直径相比,大气就像对着台球呼一口气所形成的薄雾一样。然而,在地球和对人体有害的太空之间,也幸好有这一层薄薄的大气层。大气层吸纳着我们生命所必需的氧气、水汽,防止地球被太阳发出的紫外线烤干。大气层也保护着地球,防止它遭受流星雨的袭击。每年,有数十万吨的宇宙碎片以某一角度进入大气层,但其中许多碎片都在大气层中跳跃(就像打水漂时,在水面上飞行的石头一样)。而另外一些则在大气层中烧毁了。月球,正是由于没有大气的保护,不断遭受宇宙碎片的袭击,形成了坑坑洼洼的表面。

地球的大气层由五大层构成,层与层之间有些有明显的界限或过渡层。大气没有外边缘——只是向外逐渐变薄,直到距地表3100英里(5000千米)的地方,再向外则是真空了。以此为边界向内延伸便是外逸层,它主要是由氢原子组成。

大气中原子间由于离得很远,所以很难相互碰撞,甚至在绕地球一周之后也不会碰到其他原子。这些原子以惊人的速度运动,温度高达4500°F(2500℃)。

贴近地表处,大气密度增大,气压随各大气层气体的增多而升高。在外逸层之下是电离层。

在电离层的底部,两气体分子之间的距离超过0.5英里(0.8千米)。接下来便是中间层,由氦原子和氧原子组成。在这一层中,如果没有特殊的设备仍无法呼吸。

接下来是平流层。平流层含有能吸收来自太阳紫外线的臭氧层。在这一层中,不时的会出现一些高耸的云层,由于对流作用使得这一层很平静,适合于飞机飞行。

平流层通过对流层顶过渡到对流层。这一层顶距两极点5英里(8千米),距赤道则增厚到10英里(16千米)。99%的气体分子都集中在最低的19英里(31千米)范围内。在这个范围内,气体分子几乎每移动1/300万英寸(0.000008厘米),就要和另一分子碰撞,这些气体分子有氧分子、氮分子以及水汽,二氧化碳和其他一些气体。这些分子相互碰撞时所产生的能量不断地进行传递,从而产生了气流——风的来源,这正是全球的气候模式的根本原因。各种天气的形成

在太阳开始散发光芒之后不久,太阳系的九大行星就产生了,每颗行星都被某种特定的大气环绕着。虽然这些大气产生于相同的基本元素,但不同的运行轨道和时间的推移产生了很大的差异。包围着水星的氦气层包含太少的分子以至于不能形成某种气候。最外层的行星是小冥王星,然而当它运行到离太阳较近时,它就有一个由氮和甲烷组成的薄薄的大气层。然而当它运行到离太阳较远时,它的大气层却是一层静态的,不能形成气候的霜冻薄层。气体巨人上的天气

被如此称谓的气体巨人——木星、土星、海王星和天王星——它们的大气主要由氢和氦组成的。木星的大气或许延伸到了它的核心(大约43,000英里即69,000千米深)——虽然在大约600英里(1000千米)的深度,氢气压缩变成液态。越往深处气体变得越密集以致像金属一样。在晴朗的夜晚,能够看见木星上被称为大红斑的台风覆盖了三倍于地球面积的地区。在太阳系的强风行星:土星和海王星上,旋转的台风也是如此猛烈——每小时1200英里(1900千米)。天王星,完全倾斜到一边,有20年长的季节:当温度达到-300°F(-184℃)的大面积的寒冷的风暴爆发时,标志着春天的融化开始了。陆地上的天气

金星和火星上有我们所认知的天气。因为金星的轴线几乎不倾斜,它缺少季节变化:它在任何时候都是炎热的。大气有95%是二氧化碳,通过温室效应加热着金星地表,平均温度达到885°F(457℃)。

金星的地表气压是90标准大气压(91,192毫巴),而地球地表气压为1标准大气压(1013毫巴),猛烈的东风以每小时200英里(322千米)的速度绕着金星运行,使那里狂风大作。光线透过厚厚的硫酸云层倾泻出来,使金星在夜空中闪闪发光。

火星大气中含有95%的二氧化碳,但是它有一个相对小的引力。它的大部分原始气体已经被太阳风吹散了。火星平均地表压力是0.008标准大气压(8毫巴)。气压低,加之极度的干燥,就阻止了水的形成积聚。这意味着火星几乎没有云,薄薄的大气还使火星对于太阳的热量相当敏感:例如,赤道的温度全年在-193°F至+72°F(-125℃至+22℃)之间变动。冰层覆盖了火星的两极,它们的融化和冻结受到火星与太阳远近距离的影响,也受到速度为每小时125英里(200千米)的风的影响,它产生了强大的尘埃云,阻挡了太阳光,使冰层的融化慢下来。这些灰尘风暴时常侵袭着整个星体。天气的创造者

即使在南极洲——地球上最干燥的地方,空气中也含有水分。如果空气是完全干燥的,将会有更多的从地表辐射的热量散失在太空中。值得地球上的生命庆幸的是,空气包含能很好地吸收能量的水汽。更值得庆幸的是,空气中的水汽能够持续不断地得到补充。在不断的循环中,水从陆地和海洋蒸发并聚集成云。然后产生雨、雪或其他形式的降水,其整个过程都是自我循环的。

空气有施加压力的重量。空气越多,重量越大,压力越强。空气的深度——大气层厚度,依据地球的地势而变化。在山巅处空气就比较少,因此大气压就比山谷中气压低。

气压还受温度的影响,温度的高低标志着分子运动的程度。空气分子不停地彼此来回运动,周围的任一分子都可能会碰巧与之相撞。这种撞击继而产生热量。因此气压越强一也就是说,有更多的分子彼此相互碰撞,空气温度就高。此外,运动的分子数量越多,为其所占据的空间就越大。所以,对于给定的同体积的暖空气和冷空气,前者含有的分子数量要少于后者。暖空气较小的密度意味着它比较轻,相对于密度较大,较重的易于下沉的冷空气而言更易于上升。

大气中的水分子在三种状态之间不停地来回转化:气态、液态和固态。雨从云中降落意味着更多的水分子脱离气态并形成小水滴(凝结),相对于水分子从小水滴状态进入气体状态(蒸发)。

这两个过程,凝结和蒸发,在我们周围空气中时时刻刻都在进行着,但因温度不同,进行的速度也会有所不同。例如,在一个晴朗无云阳光灿烂的日子里,热量会加速蒸发的速度,防止空气中的小水滴存活太久。所以,返回水汽的水分子比以小水滴形式存在的水分子要多。空气冷却,蒸发的速度会下降直至蒸发的水分子少于凝结的水分子:在这一点上,我们说空气饱和,水汽通常会凝结成小微滴,形成云、薄雾和浓雾。云

云彩是空中的城堡——有时,又是花椰菜,是风中飘舞的少女的长发,是旋转的飞盘,或是毛绒绒的绵羊。尽管它们的形状千变万化,然而物质构成却是相同的——都是水和冰。同样情况下,大部分云是因空气的冷却或水汽的增加而形成的。它们的变化并非质变,而是由于我们周围的空气的无止境的流动。云揭示大气的工作状态。

大气中的所有空气都含水。但是水通常是看不见的,直到空气冷却到饱和状态,或者有更多的水分加入。气流上升是发生此种情形的最普通方式。在晴朗的天气中,一个地区会很好的吸收太阳光线,致使当地气温比周围地区高出1~2°F。一个被称为热气流的隐形的气泡开始膨胀并上升。最终,它的空气饱和并开始凝结。一朵积云便诞生了。

积云有一个扁平的底部,它是饱和状态形成的标志,潮湿的条件一下,大约在3000英尺(900米)高,但是,在干旱的沙漠地区,有时不超过15,000英尺(4600米)。气象学者通过测量大气温度和湿度的剖面图,来预测哪里处于饱和状态,哪里就有云出现。如果在高处的大气相对较暖和,上升的热气流就永远不会远离地表,天空仍会保持晴朗。

云还会从其他方面揭示上升的气流特征。例如,在冷热气团交汇的地方,互撞的气团会根据密度的不同而自动分类。暖气团会向上滑。如果遇到的是冷锋,这种上升会相对加剧,导致大量的云朵堆积,如果遇到的是暖锋,这种上升则较缓,可能仅仅40英尺/英里(12米/千米),结果导致大片大片斜坡云的产生,称为卷云,它出现在锋前大约30,000英尺(9000米)处。

山也能抬升气流。一些山脉常年云雾环绕,在那里,气流在迎风的斜坡上爬升。少数情况下,高耸的山峰,像珠穆朗玛峰,竟然将气流压向四周,使之终年环绕着整座山脉。

气流顺山势下滑的同时,下风向低压吮吸着下风向的那一面顺坡上升的气流;形成了一种萦绕山峦飘动迂回的流云。

然而,尽管云通常是流动的;大多数山间的云却是保持静止的,而且即使在变也是缓慢地改变着形状。然而那并不意味着空气不在流动,它恰恰是在云层间流动。虽然强风通常裹携着积云、使之远离其生成热点,但越过山峦的气流在大气中通常呈静态模式。在云头的另一端空气下沉并且渐渐晴朗,但是新的空气会以相同的模式进入并凝结,这是由于山脉的作用。

在1980年圣海伦山火山喷发后,原来在它周围的著名的圆形水晶体状的云被一种不规则的碟状云取代。山峰的外观失去了它原有的对称,也因此改变了它周围空气的流向。

气流并不一定要上升而形成云,当气流侧向运动时,它有时也能改变气温和大气中水分的含量。如众所周知的袭击美国东海岸的“东北大风暴”常携气流向南越过大西洋直扑内陆区域。

冷气流离开陆地流向温暖的墨西哥湾并开始上升,形成层状积云。与此同时,水面空气开始气化成看不见的呈螺旋上升的水汽,在暴风雨来临之前,潮湿的海洋空气到达寒冷的新英格兰海岸,就会凝结成厚厚的,经常是浓密的像雪状的阴云,称为层云。当空气滞留在山谷中(并且在晚上通过散热而冷却)时,层云便会形成。如果空气不流动,甚至连层云也不会形成。那是因为云里包含着气溶胶——一种微小的尘埃、烟花粉或盐的颗粒,被风力形成的小漩涡刮起,并散布开来。气溶胶的直径平均约0.0001英寸(0.000254厘米),小到可以凭借空气分子的正常碰撞,而在大气中自由自在的飘浮。如果没有气溶胶,空气只有达到700%的相对湿度,水汽才会凝结。多亏了气溶胶,使得云的形成不必达到极大的湿度,它在液化过程中起凝结核作用。在海洋上空,每夸脱的空气大约含有100万的云凝结核;在陆地大约500或600万。他们的踪迹随处可见,撒哈拉的尘埃和气泡在加勒比地区帮助云的形成,远在加拿大大西洋海岸也可看到。一小朵云可能仅有一盎司(28克)的气溶胶,但是扩散开来,那已经足够大到容纳其数以兆计的水滴。

云中的水滴并不比气溶胶大很多。一些小到三十个排成一排也不及人的发丝的宽度。液滴降落的速度非常缓慢——可能每小时30英尺(9米)以致于最轻微的空气流动都能够使其受阻。大一点的气溶胶通常能促成冰晶的形成。一朵积云也不得不向上涨浮到1万英尺(3000米)或者更高的高度,才能达到形成冰晶的温度,通常约-4°F(-20℃)。当水汽和水滴在云的顶端变成冰时,积云分明的轮廓会暗淡下来而渐渐模糊不清。这时,云塔会触及射流层面快速流动的空气,同时,结晶体铁砧般以100英里(160千米)的速度沿下风向倾泻而下。

由于上升气流形成的云通常仅能持续15分钟左右,潮湿的空气在上升时,会不同程度地吸收较干空气,直到最终水分都蒸发,气温下降为止,幸免于这一过程并形成铁砧般冰晶的上升气流至此变成了风暴雨——一群反复无常的披着羊皮的气体狼。露、霜、雾

在一个晴朗的晚上,地面因向上散热而冷却。到了早晨,草叶和其他地面上缀有晶莹的水珠——露,在早晨时,草叶的温度低于露点温度,从而使空气中的水汽液化,直接凝结在植被上,好像是附在一个巨大的气溶胶上一样。一些草坪每年可以通过这种方式,一滴一滴的收集到相当于2英寸(5厘米)深的雨水。

当地面冷却到冰点以下,大气中的水汽就会沉积成冰霜。如果玻璃窗达到足够的低温,窗玻璃内壁就会收集室内的水汽,形成纹路清晰的冰花。另外,在一个有霜的天气里,树干的底部可能会形成一个无霜圈。树叶和枝干吸收了下面反射上来的热量,并将其反射回周围的土壤中,从而使地表的温度得以保持,而霜无法在其表面形成。

当空气在散发热量的地面上空经历了一个漫长而又寒冷的夜晚而冷却后,它就会凝结成一种水平流动的层云,气象学称之为辐射雾。这种雾,裹携着其所有在空气中生成的液滴,在距地面半英里(1千米)或者更短的距离内,能见度递减。当轻拂的微风足以带动气流致使空气中的水汽能有效地与寒冷的地面进行热量互换和循环时,如果有太多的风,水汽就会分散。

山谷之间能产生平流雾之类的浓雾,当密度较大的冷空气从山的侧面滑落继而垂悬在山谷或湖泊之上时,此种雾形成。当像这样的雾一旦形成于宽阔的加利福尼亚中部大山谷中,便在山谷上方的相对较温气流之下滞留数日。这种雾的,厚度可达1700英尺(500米),在白天里可能还会出现短暂的上升。只有延长了的强烈的日照才会使地面达到足够温度,使云消散。一种类似的地面空气的冷热转化促进了薄雾的生成,其中的气溶胶浓缩成雾一般的水汽,但是不能达到云彩中液滴的规模。潮湿的气溶胶能分散光线以至于干扰视线,但很少像雾那样使之透明。

并不是所有的雾都代表滞留的空气。雾在某处寒冷的地表上方凝结,然后再移至别处,或者当冷空气经过时,在水面上形成。海洋上的雾通常向内陆流动,尤其是在夏天,当气压笼罩着炎热的大地而引来海风时。这种过程在华盛顿州的失望角造成每年长达2500小时的厚雾,而在纽芬兰和阿根廷则每年长达206天有雾。雨

一场典型的降雨可在每平方英里(2.6平方公里)的面积上降下大约200万加仑(8,000,000升)的水,这样的降雨量约为1英寸(2.5厘米)。据查有些大暴雨可在很小的区域内产生非常大的降雨量。1977年8月1日在内蒙古木多才当下的一场大暴雨,在一小时的时间内降雨量约达16英寸(41厘米),每平方码(0.8平方米)面积上落下了约5亿滴雨。

除了雨滴的体积之外,雨的形成受到最不确定的大气交换过程之一——微粒间交换过程的影响。一个云层中的小水滴必须形成雨滴,通常约1/12英寸(2毫米)大小,才能落到地面。只有一些持续时间较长的云层才能通过凝结产生足够大的雨滴。事实上凝结只是形成雨滴的许多过程之一,在大部分的中纬度地区,雨滴是在含冰水混合物的普通稀薄云层中生成的。水和冰

云团能在温度低达-35°F(-39℃)时含有液态水。当冰晶在小水滴周围形成时,这些小水滴就会失去水分。由于水汽对冰和水的饱和度有细微的差别,使这种条件下的水汽更容易沉淀在冰晶上而不是凝结在水滴上。当冰晶吸收水蒸气不断长大时,失水的空气通过从小水滴中吸收蒸发的水汽来弥补。几分钟后,每个冰晶冻成相当于100万个小水滴那么大,而云中的小水滴却不断缩小直至消失。

较大的冰晶降落下来并且经常同较慢、较小的冰晶发生碰撞。一连串的反应使原来冰粒的碎片形成新的冰晶。随着他们在较低处融化并变潮湿,这些冰晶便拼在一起形成雪花。当加速到每小时20英里(32千米)时,雪花便融化形成雨滴。

最大的雨滴下降最快,在一个被称作并合的过程中,它并合了其他小水滴(在热带地区以及有时在其他地方,即使云团不含冰晶,这种小水滴的并合也足以产生雨滴)。当直径大到约1/15英寸(0.5厘米)时,空气阻力会把雨滴从紧缩的球形变成类似宽汉堡包的形状。最终空气阻力将大的雨滴扯碎,使之不能变得更大。从来没有云团能下泪珠状的雨滴。

天气预报者并不是总能预测出究竟是下雨还是下雪。高空的雪有时会在一股温暖的气流中融化,只是在地表附近重新凝结,产生叫做雨加雪或冰雹的冰粒。如果雨水温度降至零下仍是液态,就形成过冷的冰雨。当冰雨落到已冰冻的地面,就会迅速形成叫做雨淞的冰面。这样,仅仅几度的气温变化或几百英尺的冷空气,就能使给人们带来不便的泥泞地面变成危险光滑的冰冻路面。气团

在同一温度、压力和温度下含有或多或少的空气分子的巨大实体称为气团。气团非常大,通常覆盖数万平方千米的面积。它们控制了其形成和途径地区的天气特征。大陆气团比较干燥,海洋气团则比较潮湿,极地气团比较寒冷,热带气团则比较温暖。一个气团或许以一种类型开始,而慢慢变成另一种类型。在前页的地图上描绘出了地球上的最显著的主要气团。气压系统

在气象图上,被标有一个“高”字的气团比周围的气团有一个较高的地面气压。低压气团则在气团相互磨擦和混合的空白处被找到(记住,“高”和“低”就如同“热”和“冷”,是相对的词)。一般说来,气团不是很容易就可以相互混合的。当密度差异很大的气团相遇时,它们之间的低压区通常发展成为极不稳定的区域,使气团间的过渡变得剧烈起来,形成狭窄的多雨地带,称为锋。

高压和低压受制于高空急流,而急流的形成又始于高压和低压。在地表,空气运动得相对比较慢,由于科里奥利效应呈圆周运动。

巨大的半永久性的低压气团和高压气团产生并引导移动的气压系统。在一定地区它们对天气的影响占主导地位,它们的位置和强度随着季节的变迁而变化。在7月份这些气压系统的位置,而此时正值印度雨季。然而在1月份一个称作“阿留申”的低压区沿着阿拉斯加沿岸移动,在夏季则消失,再次引起亚洲风暴,并使其移至太平洋的高空,影响北美。

类似地,使北美风暴移至亚热带大西洋上空,在冰岛加强形成低压(冰岛低压);重新进入欧洲。在这样的情况下,所有影响天气的物理因素——水汽、气压和气团正在同时发挥作用,造成巨大影响。风

尽管空气看不见,虚无缥缈,但它却时时刻刻的存在着,它吹拂我们的脸颊,使旗帜飘扬,使船帆涨满,使云飘过天空。有时它却发出狂啸,就像在华盛顿山上,在那儿,1934年4月12日,山顶阵阵狂风,以每时233英里(373千米)的速度被载人世界纪录。

当空气在旋转着的地球上空移动时,它就被称为风。地球的运动不是风产生的原因。大气自身与地球相伴,并围绕着地球旋转。是气压使空气处于运动状态。气压不均衡地分布在地球周围。为达到全球均衡,空气从高压地区移向空气密度较小的低压地区。这个运动以各种各样的形式体现,从夏季的和风到大陆季风,诸如印度季风。

气象学家通过标出压力绘制大气图。联接等压点的线称为等压线。它们形成类似地势图上等高线的同心圆或光滑的曲线,而且正如等高线表示河流流过地面的快慢一样,等压线则表示了风吹动的强弱。等压线越密,压力梯度越大,风速就越大。

在地势图上,河流从高地向低地直接穿过海拔线。但是在等压线图上,空气并不直接穿过等压线,因为地球旋转影响着风从高压吹向低压。

当空气环绕着旋转的地球表面远距离移动时,它最初的向东的动量在地表开始改变。设想空气移向北极:当空气接近极点时,在那儿地球转动为零,风更加缓慢地向东越过大片土地。结果是,这股空气继续保持它相对地表转向东的动量。这样,即使空气以相当直的路线越过纬线向极地方向移动,相对于向东旋转的地球,它看起来也是向东转向越过经线。

一个叫做古斯塔·加斯佩德·科里奥利的法国人在1835年最先用数学方法来描述这种效应,所以气象学家用他的姓氏命名此种效应。在北半球,科里奥利效应使风向右偏离其原始的路线;在南半球,这种效应使风向左偏离。风速越快,产生的偏离越大。于是,在北半球,空气移向低压中心并向右弯曲,形成了一个逆时针方向的气旋式气流。从高压地区或从反气旋移动出来的空气,也向右弯曲,形成了一个顺时针方向的旋风。在南半球,则正相反。

科里奥利效应在极地最显著,逐渐变弱直到在赤道处完全消失,在那儿,地球的转动达到最高点。这就是为什么飓风和台风只能仅仅使云形成在5纬度以上的地区。

然而,地球的旋转对个别的雷暴和龙卷风产生的影响是极小的——它们的半径太小了——地球的旋转使飓风产生了很小的转动。科里奥利效应不仅仅对风产生了影响,任何一个环绕地表的远距离的运动都会公平地受到大气捉弄。例如,在第一次世界大战期间,德国军队用它引以自豪的射程为70英里(113千米)的大炮轰击巴黎时,就受到了科里奥利效应的严重影响。使他们懊恼的是,他们发现他们的炮弹远远地向右偏离目标。直到那时为止,他们从来没有担心科里奥利效应,因为,他们从来没有这样远距离地开火。

甚至连能够把球从场地一边抛向另一边的篮球运动员,也不得不因为科里奥利效应的影响来调整自己的投球达半英寸(1.3厘米)。在另一方面,与当今许多书本上教授的相关内容相反的是,从洗涤槽排出的水不受这种效应的影响。如果在澳大利亚,水以顺时针方向旋转而下,这仅仅是因为水槽的形状或者水龙头喷射的角度。科里奥利效应,只在这种情况下,没有足够的时间来影响水的运动。

在大气高处,在环绕地球的气流中,科里奥利效应是一个重要的因素。在大约180,000英尺(5500米)和更高处,空气没有与大山、树林和丘陵的磨擦,它能不断地增强力量并达到惊人的速度。当气压差不断地把这些柔和的风推向低压地区时,空气就会受科里奥利效应的影响而转向,最终沿着等压线和低压附近吹动。在任何地方,这种现象都没有在地球气压梯度最大的地方效果明显:形成风速很大的急流。巨风

急流在对流层顶部环绕着地球,决定着风暴的路径。了解它们的速度和力量对提前几天预测天气是很关键的。气象学家在二战期间对这些柔和的风的存在第一次有了一些了解,当轰炸机驾驶员穿过日本向西飞时,报导了高空处奇怪的现象。在30,000英尺(9100千米)高空附近,他们遇到了始料不及的湍流。当机组人员向地面望下去时,他们发现他们竟然几乎没有靠近目标。

阻碍了轰炸机路线的高空风是一条风速集中的带状气流,出现在中纬度地区。它们通常有几百英里长,速度可达每小时200英里(322千米)。那些位于极地的急流是地表冷热空气相遇时形成的,在更高处产生了一个明显的气压梯度。这种现象发生是因为较冷的向极地方向运动的空气分子在地表被更紧密地压缩,在高空处仅留下少量的空气分子。少量的空气分子意味着更稀薄的大气和更低的气压。因此在赤道边界一侧的高空暖气流抵达极地方向的低压地区后,暖空气转向东形成急流核。极地的急流来回环绕着越过纬线。它那惊人的速度意味着一个小小的加速或减速都能影响下面的天气。在急流加速的地方,上空的空气大面积地辐散,以致产生一个相对低压的地区,空气辐合,地表风不断地汇集;在急流减速的地方,空气堆积,气压下降,并抑制上升的气流。

虽然我们对于急流是怎样发挥作用的了解是相当有限的,但气象学家研究地表怎样影响空气已有很长一段时间了。

追溯至1735年,一个叫乔治·哈得来的英国律师十分详细地描述了它们之间的联系。他论证说,热空气在赤道上升,而冷空气在极地下降。赤道的空气上升到大气高处,远离赤道大约30纬度冷却。在那里下沉并沿地表辐散开来。

空气不断下沉至30纬度左右形成了半永久性的高压区。其中之一百慕大高压区有时几乎有半个美国那么大,通常控制大西洋台风。在北太平洋上方一个更大的半永久性高压区随着季节的变化而迁移,就像急流在夏季移向极地,在冬季转向赤道一样,对极地空气的扩散和收缩作出相应反应。在夏季,在最北处的太平洋高压试图阻止风暴到达美国西海岸;高压系在冬季向南方撤退,通常为大陆的持续的降雨打开了阀门。风和洋流

风对波浪的形成有很大的影响,但是它们也驾驭着世界上的海洋洋流。例如,当空气顺时针方向在太平洋高压周围运动时,它会沿着加利福尼亚海岸南下。沿岸的北风使水向南移动,但是受科里奥利效应的影响,近海的水会转向西。结果是深海的冰冷的营养丰富的水连续上升——有利于鱼的生息繁殖,但对游泳者来说是很糟糕的。这股冷洋流还产生了经常出现在旧金山海湾近海雾带。

在冬天,急流有时是形成在半永久性的副热带上空,并向极地方向发展,它把湿空气带进像南欧或美国海湾这样的地区。在热带高压地区,空气受科里奥利效应影响转向西,形成一股持续的风。这股风最初被命名为“贸易风”,是因为它曾经影响那些横越大西洋和太平洋向西方寻求财富的探索者和商人。“信风”完成了哈得来环流圈的环流。它们在部分雷雨地区的赤道附近辐合,被称为赤道低压槽或ITCZ(热带辐合带)。在这儿,空气上升到对流层顶部,又一次经过哈得来环流圈的环流。

哈得来环流圈,像所有的风一样,根据气压的变化有不同的反应。但是在热带地区和中纬度地区之间变化,它显示了风的特性:对从太阳吸收的热量进行再分配。每天海岸线上的微风也在进行着小规模的热量再分配。在晚上或在黎明,海洋比陆地温暖,空气吹向海面。作为回应,仅在海面上方几千英尺或更低处,空气返回陆地,完成循环。当空气在陆地上方以很强的力量上升时,风的传送会转向,当空气像在白天被烘烤一样迅速地变暖,到下午,在地表,陆风已经变为海风,空气在高处转变方向来进行自我补充。

有时风使它们自己的温度产生了异常。许多有着恶劣影响的暖风沿着山坡下滑。当在大盆地形成高压时,例如,南加利福尼亚的东部,温暖干燥的空气被迫穿过洛杉矶盆地附近的山脉。当它上升时,它会稍微冷却下来,然后,它会沿着背风坡快速下沉,形成圣安娜风。当它到达低海拔地区时,会再一次被压缩而加热升温。最终的温度,有时接近100°F(38℃),比在背风坡处最初温度要高得多。

圣安娜风有时会使火势蔓延,产生灾难性的影响。类似的沿斜坡下沉的西风在1995年扇燃了奥吉兰伯克利山火,夺去了25条人命,烧毁了成千上万所房子。另一场于热的下坡风,阿尔卑斯焚风,因为火灾而以“GOTH”(意为哥特人,暗指野蛮)命名。与之有密切联系的能够使雪融化的风是奇努克风,沿着落基山的东斜坡下滑。1943年在南达科他,奇努克风在两分钟内使温度升至44°F(27℃)。许多正在驾车的人们遇到突如其来的热流突然转向摔进沟里,因为突然结冻的防风玻璃上的厚雾使他们看不清事物。

在最近几年,一些风不断侵扰人们。古罗马时期人们几乎不用担心那不勒斯西罗科风,但是现在由于小山丘的树木已被伐光,风的流动不被阻碍,它通常把那些令人讨厌的热空气带向低海拔地区。而且它被指责为引发疾病的罪魁祸首,其症状有情绪低落、困倦、过敏和严重的周期性偏头痛。以色列的沙拉尔风被认为能引起类似的病态;一些科学家相信它影响了内分泌的平衡。一股干燥的下滑的风,法国的罗纳大山谷的密史脱拉风,实际上是一股冷空气,它有时以每小时接近100英里(160千米)的速度向里昂湾狂啸而去。雹

风暴云带着多种多样的过冷水滴在大气层的高处集结,当二个被称为软雹的晶体或小雪球接触到水时,水就会在冰上凝结,形成雹胚。

雹胚会层层地变大。在高空的过冷水滴集结的地方,水会慢慢冻结成透明光滑的一层,称为薄冰层。当集结体在低处时,水一接触到冰球立即会冻结,形成白霜,即一个结霜的带有许多条状气泡的表层不透明的物体。科学家们曾打开了一个雹体,并用这种方法数出了25层独立的冰层。

最终,在每小时100英里。(160千米)的速度中,冰雹会达到像葡萄柚和铅锤一样的尺寸。杀伤力可以想象:在德国的慕尼黑,1984年的一场雹暴导致了10亿美元的损失,另一场同样的雹暴则是1995年发生在得克萨斯州的福特沃斯和达拉斯。

最糟糕的雹暴能够降下接近一亿立方英尺(300,000,000立方米)的冰。科学家们对一场雹暴能够产生如此多的冰或像记录中的在1970年降落于堪萨斯的柯非威尔地区的1.67磅(0.76千克)重的冰块,仍持异议。一些雷暴有许多短期的上升气流,能够使冰雹在上空保持长一点时间。但是对于大部分晶体,每运动1/4英寸(0.6厘米)需花费10分钟的时间。形成大冰雹的最好的条件是带有强劲的能够承受重物的上升气流的水分很多的风暴。只有最猛烈的带有每小时40英里(64千米)的上升气流的风暴,才能维持更大尺寸的冰雹。长时期旋转的上升气流,能够把雹胚带到湿空气地带,并使其滞留在那最终快速增长,形成过冷液滴滑落。

肯尼亚的克里罗高地,在维多利亚湖的附近,由于其过度潮湿、空气的易挥发和高空冷却,每年有132天要遭遇冰雹。在美国,雹暴经常出现在春天的平原地区。在夏天,冰雹北移到艾伯塔。在1953年,一场艾伯塔的雹暴使36,000只鸭子死亡;四天后,又一场雹暴杀死了28,000多只鸭子。所有的这些可悲的灾害都缘于水的过冷凝固。雪

没有两片雪花是完全相同的。因而它们每一片都显得十分珍贵,值得让我们在寒冷的冬天里,抓住它们去放在舌头上慢慢品味。但是,大气层实际上制造每一片新雪花都是用相同的冰模,有像工厂一样的精度。雪花之间差别是它们从大气层飘落时产生的。

每一片雪花都是从一颗独立的雪晶开始,它是当水汽凝结在大的空气尘埃或其他的气溶胶上而形成的。尽管在32°F(0℃),一些冰晶就会形成,但只有随着气温的下降大量冰晶形成才会加快。在-31°F(-35℃)生成的冰晶比在-27°F(-33℃)生成的数量多1000倍。在非常寒冷的空气中,水汽含量很少,因此,许多冰晶在形成过程中每一颗仅能获得很少份额的水分。这时生成的冰晶太小,以至于不能生成厚厚的云。它们在地面上被称为“菱形尘埃”,在充满阳光的寒冷的冬天里,它们会产生晕和小型的虹。

用显微镜来观察,会发现每一个冰晶都是一个不同的六角形。冰晶在乱层云含有少量雨水的云中接近凝固点的地方形成——通常以薄的六角形碟子形状出现。在3~10°F(-16~-20℃)的空气中形成的冰晶,会呈树枝状的向前伸展。

冰晶的纤细的手臂可能会在降落时融化或挥发,形成奇特的各种各样的六角星。即使在较冷的温度下雪花也经常是以像铅笔状的柱状晶或三棱镜状的合成物形成开始的。

许多高入天际的卷云,是棱镜状冰晶的摇篮,在大气层中部,悬垂着枝状的雪,被称为垂带。当冰以每小时2英里(3千米)的速度缓降时,它还没走很远,就会直接汽化。除非空气在1000英尺(300米)以下达到冰点的温度,否则雪没有机会能到达地面。在1887年,蒙大拿州的福特堡下了一场15英寸(38厘米)厚的大雪。每一片雪花都是难以置信的100多个冰晶组成的柱状体。

在地面上,可以将雪花堆积在一起用来实现一个好的滑雪方案,或者可以用它们来堆雪人。而在干燥的寒冷的高地或高原上,粉末状的雪十分典型。在科罗拉多,一英尺的雪通常会融化成不足一英寸(2.5厘米)的水,而在大西洋沿岸,则会融化成足足达3英寸(8厘米)的水。在冬天,厚重的、潮湿的雪花也会很快地结合,用不了一小时,便会将灰白的像宝石般的天空的整体性破坏。冷凝的雾淞和雨淞

雾淞和雨淞俗称“树挂”。在寒冷的冬季,近地面有雾,而且雾内小水滴的温度已在0℃以下时,一些树枝、电线或近地面物体的突出部位,有类似霜一样的乳白色凝结物,这就是雾淞。

雾淞有两种。一种是过冷却雾滴碰到冷的地面物体后迅速冻结成粒状的小冰块,叫粒状雾淞,它的结构较为紧密。另一种是由过冷却雾滴凝华而形成的晶状雾淞,结构较松散,稍有震动就会脱落。

如果在近地面存在一个逆温层,即温度自地面向空中有逐渐递增的趋势,那么当云中的过冷雨滴降至温度低于0℃的地面及树枝、电线等物体上时,会立即冻结成透明或半透明的冰层,使树枝或电线等变成粗粗的冰棍,有时还边滴淌、边冻结,结成一条条长长的冰柱,这就是雨淞。雨淞也叫冰凌、树凝,形成雨淞的雨称为冻雨。

我国大部分地区雨淞都在12月至次年3月出现。雨淞最多的地方是四川的峨眉山,平均每年出现135.2天,最多的年份出现167天。雾淞出现最多的地方是在吉林省的长白山,年平均出现178.9天,最多的年份有187天。

严重的雨淞会压断树枝、作物、电线,影响交通。如河北承德于1977年10月27-28日出现了一次罕见的雨淞,使60多万棵树折断。电荷碰撞生雷电

闪电和打雷是大气中的一种放电现象。在人们不知道雷电发生的原因之前,以为天上有“雷公”、“电母”之神,还杜撰了“雷劈孽子”的故事来警告那些忤逆不孝的人。

1752年7月的一天,美国科学家富兰克林冒着生命危险,在雷雨中将一只带有铁丝尖端的丝绸风筝放上了天,结果把天雷引到了地面。这次实验揭开了千百年来的雷电之迷:原来,天上的雷电和我们平时看到的两个物体摩擦生电完全是一回事。

在夏季闷热的午后及傍晚,地面的热空气携带着大量的水气不断上升到天空,形成大块大块的积雨云。积雨云的不同部位聚集着正负两种电荷,这时地面因受到近地面积雨云中的电荷感应,也带上了与云底不同的电荷。我们知道,不同的电荷是会相互吸引的。但是空气的导电性能很差,它阻挡着正负两种电荷的会合。当云层里的电荷越聚越多,达到一定强度时,就会把阻挡它们会合的空气层击穿,打开一条狭窄的通道,强行会合。由于云中的电流很强,通道上的空气就会被烧得炽热,温度比太阳表面还要高好几倍,所以会发出耀眼的白光,这就是闪电。雷声是因为通道上的空气和云滴受热而突然膨胀后发生的巨大声响。闪电和雷声是同时发出的,但由于闪电是光,它的速度(每秒30万公里)要比是声音的雷的速度(每秒340米)快得多,所以我们平时总是先看到闪电,后听到雷声。

雷电可以击毁房屋,造成人畜伤亡,还会引起森林火灾,破坏高压输电线路。雷电更是安全飞行的大敌。如飞机误入雷雨云中,易遭受强烈颠簸,使飞机外壳结冰,甚至遭受直接电击,造成飞行事故。

当然,雷电并不都是坏事。仲夏季节产生雷电的雷雨云往往伴随着降雨,能给农作物提供充分的水分。雷雨将大气中的灰尘、烟雾等污染物冲刷一光,起着净化大气的作用,使雨后的空气变得更加清新。另外,闪电产生的高温,能使空气中氮气和氧气直接化合成二氧化氮,随雨水渗入土壤中变成硝酸盐,它是肥田的上等肥料。全球同纬度最冷的国家

我国最北部的冬季是很冷的,你如果在冬季到那里去旅行,就会看到原野上遍地积雪(积雪期长达6~7个月,其中11月到来年3月天天都有积雪),大地一片洁白,好象是到了北极一般。

那么,世界同纬度上的国家是不是也都这么冷呢?

不,不是的。我国冬季恰恰是世界同纬度上最冷的地方。如果把我国1月平均气温和世界同纬度上的国家比一下,那么,我国东北地区要比同纬度平均偏低15~20℃,黄淮地区偏低10~15℃,长江以南偏低6~10℃,就是华南沿海也要偏低5℃上下。我国最北的黑龙江省的一个县城呼玛镇和英国首都伦敦所处的纬度基本相同,但是,呼玛1月平均气温是-28.6℃,而伦敦却高达4.0℃,伦敦不仅没有几米深的冻土和遍地积雪,而且冬草常青,绿水常流,平均气温就像在我国呼玛5000里以南的杭州一般。再比如,我国的天津市和葡萄牙首都里斯本纬度相近,里斯本1月平均气温已近10℃,和我国广东广西北部一样,一派郁郁葱葱的大好春光,而天津的1月气温-4.2℃,只有田里越冬的小麦和公园里的松柏才使大地点缀上斑斑点点的绿色。再说,我国广西的桂林1月平均气温是8.0℃,虽然这里冬季也是青山绿水,景色秀丽,可是每年还有2~3天下雪,9~10天有霜,而同纬度上的美国迈阿密1月平均气温却高达19.9℃,霜雪罕见,海滨的椰子和槟榔树高插蓝天,是一派绮丽的热带风光。

为什么我国冬季成为世界同纬度上最冷的国家呢?

大家不都有这样的生活经验吗?冬季里,当寒潮大风停止以后,在温暖太阳的照耀下,天气渐渐回暖,可是好景不长,常常第二次寒潮又接踵南下,气温重又猛降。如果把每天的平均气温依次点成曲线,那曲线的形状就好比大海的波涛或是陡峻的群峰一般。可见,我国冬季所以特别冷,主要是因为冬季里常常从北方刮来的寒潮冷空气的缘故。如果没有寒潮南下,气温达到纬圈平均水平,哈尔滨就可以暖得像徐州、郑州一般,北京比南昌、长沙还要暖和,上海更温暖得象无冬的南宁、广州一样了!

这些寒潮是从哪儿来的呢?它们来自苏联的西伯利亚。有些寒潮还来自北冰洋畔,不过,它们也是要经过西伯利亚的。而西伯利亚正是北半球冬季中最冷的地方。北极圈上的维尔霍扬斯克和奥伊米亚康地方,1月平均气温近-50℃,绝对最低气温低到过-72℃,这样严寒的空气刮到我国来(虽然一路上在高太阳和暖地面的烘烤下,气温有所升高),当然就使我国东部地区成了同纬度上的低温“冠军”。但是,我国四川省西南和云南省大部分地区冬季处在来自西南亚的干暖西南西风气流里,气候便十分温暖:海拔1891米的昆明市1月平均气温高达7.8℃,它和东部同纬度上海拔只有1167米,但却处在寒潮冷气流控制下的桂林(1月平均气温8.0℃)一样温暖;再如云南省金沙江干暖河谷中海拔1118米的元谋,1月气温高达15.5℃,却比同纬度海拔仅185米的湖南林县高出9.7℃之多……。可是,要知道在冬季中我国南方地区每升高1公里气温平均要降低4~5℃之多。我国雨量知多少

在我国的气象台站里,都有一个直径20厘米的雨量筒,有的还有自记的雨量计,用来测量雨量,大多数一天测量2次,2次相加的雨量称为日雨量。把一个月和全年的日雨量相加就是这个月和这一年的总雨量。再对观测以来各年(或月)的雨量进行平均,就是这个地方的年(或月)平均雨量。例如,上海的年平均雨量(简称年雨量)1128.5毫米,北京年雨量682.9毫米。

我国各地的雨量主要是东从太平洋,南从印度洋和南海上来的夏季风带来的,所以我国年雨量从东南向西北减少。大致淮河,汉水以南的南方地区年雨量都在1000毫米以上,东南沿海还普遍在2000毫米左右。大陆上雨量最多的地方,是西藏雅鲁藏布江河谷中墨脱以南的巴昔卡,这里面迎潮湿的印度洋西南季风,1931~1960年30年平均年雨量高达4495.0毫米。但我国年雨量最多的地方是台湾省北部基隆港以南的火烧寮,这里面向从东海上来的潮湿东北季风,平均年雨量高达6489.0毫米,1912年甚至下了8409.0毫米之多!不过,巴昔卡的雨季在夏天,火烧寮的雨季却在冬天。巴昔卡7、8月份的雨量都超过800毫米,当然是大陆上气象站中雨量最多的了(北京最多雨的7月份平均雨量也才243.5毫米,上海最多雨的6月份平均雨量只有178毫米)。不过,火烧寮年雨量虽多,分布却较为均匀,因此月雨量的冠军让给了年雨量和巴昔卡相仿、但夏雨更加集中的台湾阿里山气象站了。阿里山7月份平均雨量高达1044.0毫米,约占年雨量的四分之一。

我国年雨量最少的地区是西北内陆的吐鲁番、塔里木和柴达木等盆地。这里大部分地区年雨量都在20毫米以下。例如塔里木盆地东南缘的若羌年雨量15.6毫米,吐鲁番盆地中的吐鲁番16.0毫米,柴达木盆地中的冷湖15.4毫米,新疆东部伊吾盆地中的淖毛湖气象站本世纪六十年代平均雨量只有12.5毫米。我国年雨量最少的气象站是吐鲁番盆地中的托克逊,只有5.9毫米!不过干旱地区雨量变化很大,平均年雨量随资料年代而有显著不同。例如若羌附近的且末,五十年代平均年雨量只有9,2毫米,六十年代竟多至24.7毫米,1968年多到54.9毫米,而1960年又只有3.6毫米。而且沙漠中一年的雨量往往主要是一场或几场大雨所下的,例如,吐鲁番1958年8月14日一场雨下了36.0毫米,相当于两年多的雨量!

我国气象部门规定,日雨量在50毫米以上称为暴雨。这样,我国30个省市都出现过暴雨,不过日雨量200毫米以上的大暴雨就只有在东南部各省才有,日雨量超过400毫米的特大暴雨就很少了,东北只有丹东地区曾经有过。大陆上罕见的最大两场暴雨发生在1963年8月上旬太行山东坡和1975年8月上旬豫西山区东部这两处,最大日雨量竟高达1000毫米左右。例如河北省石家庄地区内丘县獐犭么公社1963年8月4日日雨量950毫米,比平均年雨量多了一半;1975年8月受第3号台风影响,河南方城县郭林7日日雨量达到了1054.76毫米,其中泌阳县林庄从8月7日14时到8日2时的12小时中就下了954.4毫米!这场大暴雨刷新了大陆上从1小时到3天的最大雨量记录。

但是我国暴雨最大的地方,还是在雨量最多的台湾省。根据50年中71次台风暴雨统计,日雨量出现500毫米以上的就有32次59个测站,例如,阿里山1104毫米,百新1248毫米,新寮1967年10月17日出现了日雨量1672米的全国记录,已经相当接近于非洲印度洋中留尼旺岛1870毫米的世界记录了。“三大火炉”烧死人

重庆、武汉、南京一向是我国著名的夏季炎热中心,向来有长江流域“三大火炉”之称。它们的炎热程度仅次于新疆的吐鲁番。每年到7月盛夏时节,烈日当空,四野里没有一点风,温度总在30℃以上,最热时重庆达44℃,武汉达42.2℃,南京达43℃。到了夜晚,虽日落西山,炎暑仍然不消,不象上海,虽然白天很热,但晚上却有凉风消暑。这些地方即使有一点风,也是热呼呼的,叫人感觉很不舒服。

那么,究竟为什么这些地方那么热呢?造成重庆和武汉夏季特别热的主要原因是地势的影响。这两个地方都在长江流域的河谷盆地里,四周山地环抱,中间是不大的平原,地势相当闭塞。从海洋上吹来的东南风,由于来到这些盆地的路途上,遇到许多山地、丘陵阻拦,所含水蒸气有相当大的部分变成雨降下去了,到达盆地时,水蒸气已经不多,加上它是从山地向盆地吹,由高处往低处吹,气流下沉不但不能凝成雨,反而变得愈来愈干,温度也愈来愈高,盆地内云少天晴,日射特别强烈。

另外一个原因是盆地中风速很小,(重庆7月份平均风速是每秒1.1米,武汉是每秒2.2米。)不利于透风,盆地内热气发散困难,更增加了暑威。

除了重庆和武汉之外,九江的夏季也特别热,原因同上述两地相似。

至于南京夏季特别热的原因,主要是由于盛夏7月梅雨期已过,天气晴朗,日照强烈,同时又长时间处在副热带高气压(就是太平洋高气压的尖端)控制下,高空有下沉气流,加上地处长江河谷,周围有丘陵环绕,地面热量不易散失,因此气候炎热。怪异的气候反差

陕西省的西安和汉中,离得不远,只隔着一条秦岭,而气候却大不相同。

西安,冬天冷,夏天热,多风沙,雨水少,雨期也比较短,有北国风光之称。汉中,隆冬难看到冰雪,盛夏比西安还凉快,一年到头很少刮风,从春末到秋季常常阴雨连绵,副热带出产的甘蔗、茶、橘和柑,样样都有。这儿很象四川,是江南景象。

这是什么道理呢?

影响气候的条件很多,有纬度、距海远近,海拔、地形、山障和季风等。西安和汉中的纬度、距海远近,海拔都差不多。两地气候之所以相差很大,问题在于后三个条件。特别是“秦岭一山之隔”这个条件。

横亘〔gèn〕陕西南部的秦岭,既高且宽,北坡又陡(南坡斜缓)。它的宽度在100公里以上,海拔1000~3000米,最高的山峰太白山海拔3666米。从西安向北看,一片平野,向南望,高山突起,峰插云霄。秦岭是一条天然的巨大气候屏障。

西安位在秦岭北坡山脚下,附近是渭河平原,向北慢慢升高通向黄土高原,形势开广。每年从西北内陆吹来的冬季风,风大,又冷又干,顺着黄土高原的南坡,直袭渭河平原,所以西安最冷的时候(绝对低温),冷到-14℃以下,往往滴水成冰。汉中恰恰相反,它位于秦岭南麓,在秦岭和大巴山中间的汉水河谷里,几乎受不到冬季冷风的影响。西安秋冬多风沙,汉中四季风都比较小,也主要是由于秦岭屏障的作用。

汉中北有高大的秦岭,向东南有像走廊一样的汉水河谷通往长江中下游平原。每年夏季,从东南海洋上吹来的温暖湿润气团,顺汉江峡谷西上,直达陕南,再向前碰到秦岭,被阻上升,结云降雨,所以汉中的年降水量超过了800毫米,这里属于湿润区。夏季风爬过秦岭以后,一方面水蒸气减少了,另方面爬过山后沿着陡坡向下吹拂,温度越来越增高,下雨的机会减少了,因此,西安的年降水量还不到600毫米,比汉中差得多,这里属半湿润区。

从地理位置上来说,汉中比西安偏南些,受太阳的光热要多一些,它又处在群山环抱,热气容易积聚的汉中盆地里,照理说,汉中的夏天要比西安热一点,但拿最热月(7月)的平均温度来说,西安在27℃以上,汉中只有26℃左右。这是什么缘故呢?

大家都知道,天再热,下雨时总是凉快些。俗话说得好,“三伏

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载