物理学的进化(全文无公式,爱因斯坦教你轻松学物理)(txt+pdf+epub+mobi电子书下载)


发布时间:2020-07-12 16:40:04

点击下载

作者:(美)阿尔伯特·爱因斯坦,(波)利奥波德·英费尔德著,胡奂晨译

出版社:文化发展出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

物理学的进化(全文无公式,爱因斯坦教你轻松学物理)

物理学的进化(全文无公式,爱因斯坦教你轻松学物理)试读:

致谢

我们要感谢所有好心帮助我们为这本书做准备的人,特别是:

美国新泽西州普林斯顿的艾伦·申斯通教授(A.G.Shenstone)及波兰利沃夫的圣·洛丽雅教授(St.Loria)为插图Ⅲ提供照片。

艾萨克·施坦伯格(I.N.Steinberg)画的插图。

菲利普博士(M.Phillips)阅读手稿及非常友好的帮助。阿尔伯特·爱因斯坦利奥波德·英费尔德PART 1 机械观的兴起大有玄机的故事

设想存在一个完美的侦探故事。这个故事提供了所有的关键性线索,激发我们对这个事件得出自己的推测。如果我们小心地跟随情节的发展,那么刚好可以在作者于书的结尾揭秘之前得到完整的解答。与那些低劣的侦探故事不同,这个解答自身不会令我们失望;不仅如此,它刚好在我们期待的那一刻出现。

我们是否可以将这样一本书的读者比作那些一代代不断在自然之书中寻找谜底的科学家呢?这个比喻是不确切的,并且会在之后被摒弃,但它多少有那么一些合理,也许加以扩充和修改,可以使其更加贴合破解宇宙奥秘的科学探索。

这个奇妙的侦探故事尚未破解。我们甚至无法确定它是否有最终的答案。但是阅读这本书已经给我们提供了很多信息:它教会了我们大自然的基本语言,它使我们了解到了很多的线索,它还常常是科学艰难进步中乐趣和激情的源泉。可是我们意识到,尽管读过并理解了所有的书卷,我们离完整的答案还有很远——如果这个答案确实存在的话。在每一个阶段,我们试着找出与已知的线索相符的解释。我们目前接受的理论虽然可以解释许多事实,但尚未发展出与所有已知线索相容的一般解。往往一个理论看似很完美了,但进一步的阅读会证明它是不合适的。新情况的出现,不是与理论矛盾就是不能被理论所解释。我们读得越多,我们就越充分地领会到这本书的完美结构,尽管随着我们前进的步伐,这个圆满的答案似乎在离我们远去。

继柯南·道尔令人交赞的故事之后,在几乎每一本侦探小说里,侦探总会在某个时期收集到他需要的所有证据,至少针对问题的某些阶段。这些证据通常看起来非常古怪,没有条理,甚至毫不相关。然而,睿智的大侦探清楚这个时候不需要进一步的侦查了,只需纯粹的思考就可以将收集的证据联系起来。于是他拉拉小提琴,或者躺在安乐椅上叼个烟斗,突然间,他灵机一动,想出来了!他不仅可以解释现有的线索,他还知道一些其他的事情肯定也已经发生了。由于他如今清楚地知道到哪儿去寻找,如果他愿意的话,他可以为他的推测去收集更多的证据。

如果容许我们说一句老生常谈:科学家读自然之书必须自己找到答案,不能像没有耐心的读者在读侦探故事那样翻到书的结尾。在这里,读者也是侦探,他得试图去解释这些事件之间的联系,哪怕只是一部分。为了得到即使是部分的解决方案,科学家必须将可用的无序的资料收集起来,并且用创造性的思考使它们有条理且合乎情理。

在接下来的几页中,我们的目的是大致描述一下物理学家的工作,这些工作与侦探的纯粹思考相对应。我们主要关注于思想与观点在探求物质世界的知识中所起的作用。第一个线索

人类自有思想以来,就想读这本奇妙的侦探故事。但是直到300多年之前,科学家们才开始理解这个故事的语言。从伽利略和牛顿的时代开始,阅读就进行得快多了。侦查技术及搜寻和跟踪线索的系统性方法都得到了发展。大自然的一些谜题已经被解开,尽管进一步的研究表明,大部分的解决方案都是暂时和肤浅的。

有一个基本问题,几千年来被它的复杂性所遮蔽,这个问题就是运动。我们在自然界中观察到的一切运动其实都很复杂,如石头被抛到空中,轮船在海上航行,小推车在路上运动等。要想理解这些现象,我们最好从最简单的情况着手,然后慢慢地向更复杂的情况前进。设想有一个处于静止状态的物体,它没有任何运动。为了改变这个物体的位置,我们需要对其施加一些作用,如推它或提起它,或者让马、蒸汽机等其他物体作用于它。我们的直观看法是,运动是与推动、提起、拉动的作用相关的。这种不断重复的经验让我们进一步冒险地声明,如果我们想让物体移动得更快,我们就必须推得更卖力。于是我们很自然地总结出来,施加在物体上的作用越强,物体的速度就越大。一辆四匹马拉的马车比两匹马拉的马车走得快。因此,直觉告诉我们,速度本质上是和外界作用相关的。

这和侦探小说的读者的情况很相似:一条假的线索搅乱了故事,并推迟了解决方案。由直觉决定的推理方法是错误的,并且导致错误的运动观念持续了几个世纪。亚里士多德在整个欧洲的伟大权威也许是人们长期相信这种直觉观念的主要原因。在2000多年来被认为是他所写的《力学》中,我们读到:当推动物体的力不再推它的时候,移动的物体就会停止。

伽利略的发现及他所运用的科学推理方法是人类思想史上最伟大的成就之一,而且标志着物理学的真正开端。这一发现告诉我们,根据直接观察得到的直观结论并不总是可信的,因为它们有时会把我们引到错误的线索上去。

可是,直觉在哪里出错了呢?如果说由四匹马拉的马车比仅由两匹马拉的马车跑得快,难道可能是错的吗?

让我们更仔细地检验一下运动的基本情况,首先从简单的日常经验开始,这些经验是人类自文明开始以来就熟悉的,并且在艰难的生存斗争中获得的。

设想有一个人推着一个手推车在平坦的路上行走,然后突然停止推动。这个小车会继续移动一小段距离,然后停下来。于是我们问:怎样才能增加这段距离呢?有很多方法可以实现,如在车轮上抹油,把路修得很平滑等。车轮转得越容易,路修得越平滑,小车就会移动得越远。那么,在车轮上抹油和把路修平起了什么作用呢?只有一个作用,那就是把外界的影响减小。车轮里及车轮和路之间的摩擦力减小了。这已然是对可观测证据的一种理论解释,这个解释事实上是随意的。再向前迈一大步,我们就会得到正确的线索。想象道路是绝对光滑的,车轮也完全没有摩擦。那么就没有东西阻止小车,它将永远运动下去。这个结论只有在理想化的实验中才能达成,而这个实验实际上是无法实现的,因为我们不可能消除所有的外界影响。这个理想化的实验揭示了真正构成运动力学基础的线索。

比较一下对待问题的两种方法,我们可以说,直观的想法是:施加的作用越大,速度就越大。因此,速度表明了外力是否作用于物体。而伽利略发现的新线索是:如果一个物体既没有被推、拉,也没有受到任何其他方式的影响,或者更简单地说,如果没有外力作用在物体上,它将做匀速运动,也就是说,总是以相同的速度沿着一条直线运动。因此,速度本身并不能表明外力是否作用于物体。伽利略的结论才是正确的那个,一代之后被牛顿用公式表示,被称为“惯性定律”。这通常是我们在学校里熟记的关于物理学的第一个知识,有的人可能还记得:任何一个物体,只要不受外力的影响,就会永远处于静止或

匀速直线运动状态。

我们已经看到,这个惯性定律不能直接从实验中得到,只能通过与观察一致的推断性思考。理想化的实验永远不能被真正执行,尽管它会让我们对真实的实验有深刻的理解。

从我们周围世界的各种复杂运动中,我们选择匀速运动作为第一个例子。这是最简单的情况,因为没有外力的作用。然而,匀速运动永远不可能实现。从塔上抛出的石头及沿着马路推动的小车永远不可能绝对匀速地运动,因为我们无法消除外力的影响。

在一个好的侦探故事中,最明显的线索往往引向错误的猜想上。同样地,在我们理解大自然的定律的尝试中,我们发现最明显最直观的解释常常是错误的那个。

人类的思想创造出一个变幻无穷的宇宙图景。伽利略的贡献在于颠覆直观的观念,并用新的观点取而代之。这就是伽利略这个发现的重要意义。

但是很快,关于运动的进一步问题出现了。如果速度不能表征作用在物体上的外力,那么什么才是呢?这个基本问题的答案是由伽利略发现的,而牛顿又使其更加简化,它是我们研究中的进一步线索。

为了找到正确的答案,我们必须更深入地考虑在绝对光滑道路上的小车。在我们的理想化实验中,运动的匀速性是由于没有任何外力的影响。现在我们设想这个匀速运动的小车在其运动的方向上被推了一下。这时会发生什么呢?很明显,小车的速度会加快。同样明显地,朝与之运动相反的方向推一下,它的速度会减慢。在第一种情况下,小车由于推动而加速;在第二种情况下,小车由于推动而减速。我们可以立刻总结出来:外力的作用改变了速度。因此,速度本身不是推或者拉的结果,速度的改变才是它们的结果。力究竟使速度增加还是减少,取决于它是作用在运动的方向上还是与运动相反的方向上。伽利略很清楚这一点,并在他的《关于两门新科学的对谈》中写道:……一个运动的物体一旦获得某个速度,只要不受到外界的

加速或减速作用,就会一直保持不变——这种情况只发生在水

平平面上。向下的斜面会导致加速,而向上的斜面会导致减速。

由此可见,只有沿着水平面的运动才是永无休止的。因为,如果

速度是均匀的,它不会减弱或放慢,更不会被消灭。

沿着这条正确的线索,我们对运动问题有了更深刻的理解。力与速度变化之间的联系(而不是根据直觉思考得来的力与速度之间的联系),是牛顿提出的经典力学的基础。

在这里,我们用到了在经典力学中扮演重要角色的两个概念:力和速度的变化。在科学的进一步发展中,这两个概念都得到了延伸和推广。因此,它们必须被检查得更仔细些。

力是什么?直观上说,我们可以从这个词感受到它的含义。这个概念来源于推、抛或者拉所花的力气——从这些作用伴随着的肌肉感觉而来。但是广泛意义上的力远远不止这些简单的例子。即使不去想象一匹马拉着马车,我们也能感受到力的存在!我们谈论太阳与地球、地球与月球之间的吸引力,还有那些产生潮汐的力。我们谈论地球迫使我们和我们周围的所有物体都保持在它影响范围内的力,还有风在海上掀起浪花的力,或者舞动树叶的力。无论何时何地我们观察到速度的改变,就应该有一个广泛意义上的外力对其负责。牛顿在他的《自然哲学的数学原理》中写道:力是施加在物体上的一种作用,使其改变静止或者匀速直线

运动的状态。

这个力仅存在于作用中,当作用终止时,它不会停留在物体上。因为物体仅凭它的惯性,就可以保持它所获得的每一个新状态。作用力有不同的来源,如击打、压力和向心力。

如果一块石头从塔顶上坠落下来,它的运动就不是匀速的;速度随着石头的下落而增加。我们可以得出结论:外力作用在运动的方向上。或者换句话说:地球吸引着石头。让我们再举个例子。把一块石头向上竖直抛出,会是什么情况呢?它的速度不断地减小,直到石头到达最高点并开始下落。速度的减小与下落物体的加速都是由相同的力造成的。在一种情况中,力作用在运动的方向上;在另一种情况中,力作用在与运动相反的方向上。力是一样的,但根据石头是下落还是向上抛出,会造成加速或者减速的效果。矢量

我们之前考虑的所有运动都是直线的,也就是沿直线进行的运动。现在,我们要向前走得更远。我们通过分析最简单的情况,并放下对所有错综复杂情况的尝试来了解自然定律。一条直线比一条曲线简单。因此,仅仅理解直线运动是不可能让我们满足的。那些力学原理应用得十分成功的运动——月球、地球及其他行星的运动,都是沿着曲线的运动。从直线运动过渡到曲线运动会遇到新的困难。如果我们想要理解经典力学的原理,我们就必须有勇气去克服这些困难。经典力学给我们提供了第一条线索,因而成为科学发展的起始点。

我们来考虑另一个理想实验,一个完美的小圆球在光滑的桌子上匀速滚动。我们知道,如果小球被推了一下,也就是说,如果有外力作用于它,它的速度就会改变。现在,设想推动小球的方向不是像小车的例子一样在运动的直线上,而是在一个完全不同的方向,譬如那条线垂直的方向。这个小球会发生什么呢?运动可分为三个阶段:初始运动,外力作用,以及外力停止后的最终运动。根据惯性定律,外力作用之前和之后的速度都是完全均匀的。但是,外力作用前后的匀速运动有一点不同:运动的方向改变了。小球的初始路线和力的方向相互垂直。最终的运动不会沿着这二者的任何一个方向,而是在二者之间。如果推力强且小球的初速度小,它就靠近力的方向;如果推力弱且小球的初速度大,它就靠近原始运动的方向。基于惯性定律,我们的新结论是:一般来说,外力的作用不仅可以改变速度,也能改变运动的方向。对这一事实的理解为我们在物理学中引入“矢量”这个概念做好了准备。

我们可以继续使用这种直接的推理方法。起始点依旧是伽利略的惯性定律。我们还远没有讨论完这一宝贵的线索对运动之谜的影响。

我们来考虑两个小球在一个光滑的桌子上沿不同的方向运动。为了得到一幅清楚的画面,我们假设这两个方向相互垂直。由于没有外力的作用,小球的运动是绝对均匀的。我们进一步假设它们的速度是一样的,也就是说,它们在相同的时间间隔内运动了相同的距离。但如果说这两个小球具有相同的速度,是否正确呢?可以答是,也可以答否!如果两辆车的速度计都显示为每小时40英里,我们经常会说它们有着相同的速率或速度,不管它们驶向的是哪里。可是,科学必须创造出它自己的语言和自己的概念,供自己使用。科学的概念往往源自日常生活中用到的普通概念,但它们发展得非常不一样。它们经过转变,失去了普通语言中带有的模糊性质,并得到了严格的定义,从而能够应用于科学思辨中。图1-1

从物理学家的角度来看,说这两个朝着不同方向运动的小球的速度不一样是有好处的。尽管只是习惯问题,但这样说更加方便:从同一点出发的四辆车沿不同的道路行驶,虽然它们的速度计上显示的速率都是每小时40英里,但它们的速度不同。速率和速度的区分表明了物理是如何从日常生活的概念出发,然后加以改变,使其更适合未来的科学发展。

如果长度被测定了,那么这个结果可以用多个单位表示出来。一根棍的长度可能是3英尺7英寸,某个物品的重量可能是2磅3盎司,而时间间隔是多少分多少秒。在每一种情况下,测量的结果都是由一个数字表达的。但是,仅凭一个数字是不足以描述一些物理概念的。对这一事实的认识是科学研究的一大进步。比如,对表征速度来说,方向和数值大小都是同样重要的。像这样同时具有大小和方向的量,叫作“矢量”。它通常是由一根箭头表示的。速度可以用箭头来表示,简单地说,速度是由矢量表示的,其长度在某个选定的单位上代表速度的数值大小,其方向就是运动的方向。

如果四辆汽车以相同的速率从一个交通环岛驶离,它们的速度可以用四个相同长度的矢量表示,如图1-1所示。在所使用的比例中,1英寸代表每小时40英里。这样,任何速度都可以用矢量表示出来;反之,如果比例是已知的,我们就可以从这样的矢量图确定速度。

如果两辆车在高速上擦肩而过,且它们的速度计显示的都是每小时40英里,那么我们用两个箭头指向相反的矢量来表示它们的速率(图1-2)。所以就连纽约地铁里指向“郊区”和“市区”的箭头也必须指向相反的方向。但是所有以相同速率向市区行驶的列车,无论是在不同车站还是在不同车道上,它们都具有相同的速度,这可以用同一个矢量表示。矢量不会告诉我们火车经过了哪些站,或者它行驶在众多平行轨道中的哪一个上。换句话说,依据惯例,所有像图1-3中所画的矢量都可以看作相等的;它们沿着相同或者平行的线,有着相同的长度,而且,它们的箭头指向同一个方向。图1-4中的矢量各不相同,它们或者长度不同,或者方向不同,又或者二者皆不同。同样的四个矢量可以换一个方式画出来,它们都从同一个点发射出来(图1-5)。由于起点无关紧要,因此这些矢量既可以表示四个汽车远离同一个交通环岛的速度,也可以表示四个位于不同地方的汽车向指定的方向以指定的速率行驶的速度。图1-2图1-3图1-4图1-5

现在,我们可以使用这种矢量图来描述我们之前讨论的关于直线运动的事。我们谈到了一个手推车,它在一条直线上匀速移动,并在其运动的方向上受到了推力,使它的速度增加。这可以在图画上用两个矢量表示出来,较短的那个表示推动前的速度,而在相同的方向上较长的那个则表示推动后的速度(图1-6)。虚线矢量的含义很清楚;它表示速度的变化,正如我们所料,推力对其负责。对于力与运动方向相反的情况,运动减慢了,示意图有所不同(图1-7)。虚线矢量再次对应于速度的变化,但此时,它的方向是不同的。很明显,不仅速度本身是矢量,而且它们的变化也是矢量。但速度的每一次改变都是由于受到外力的作用;因此,力也必须用矢量表示。为了描述一个力,仅仅指出我们推车的力度是不够的,我们还必须说明推动的方向。就像速度或速度的变化一样,力也必须由一个矢量来表示,而不仅仅只是一个数字。所以,外力也是一个矢量,而且它与速度的变化有着相同的方向。在这两幅图中,虚线矢量表示力的方向,因为它们表示速度的变化。图1-6图1-7

在这里,怀疑论者可能会说他没有看出矢量的引入有什么好处。我们所做的一切只不过是将先前公认的事实翻译成不熟悉且复杂的语言。在这个阶段,确实很难让他相信自己错了。事实上,他目前是对的。但我们很快会看到,正是这个奇怪的语言使我们得到一个重要的推广,其中矢量似乎是必不可少的。运动之谜

如果我们只与直线运动打交道,我们就不能理解自然界中看到的运动。我们必须考虑沿弯曲路径的运动,而我们的下一步就是确定掌控这些运动的规律。这不是一件容易的事。在直线运动的情况下,我们的速度、速度的变化和力的概念是很有用的。但是我们不能马上看出来如何将它们应用到曲线运动上。可以想象,旧概念确实有可能不适用于一般运动的描述,因此必须创建新的概念。我们应该沿着老路走吗?还是寻求一条新路?

把概念进行推广(或一般化)是科学中常用的手段。推广的方法并不是唯一确定的,通常有很多方法可以实现它。但无论是哪种,都必须严格满足一个要求:当达到原始条件时,推广了的概念必须还原到原始的概念。

我们可以通过目前所使用的例子来很好地解释这一点。我们可以试着将速度、速度的变化和力这些旧概念推广到曲线运动的情况上去。确切地说,当我们说曲线的时候,就已经包括直线在内了。直线是曲线的一个特殊而简单的例子。因此,如果速度、速度的变化和力被引入曲线运动中,那么它们就自动被引入了直线运动中。但是这个结果不应该与先前得到的结果相矛盾。如果曲线变成直线,那么所有推广了的概念必须还原到描述直线运动的熟识的概念。但是这个限制不足以唯一地确定概念的推广,还有多种可能性。科学史实表明,即使是最简单的推广也会有时成功,有时失败。我们必须先猜一猜。在我们当前的情况中,很容易猜出正确的推广方法。事实证明,新概念非常成功,它帮助我们理解石头被抛在空中的运动,以及行星的运动。

那么,速度、速度的变化和力在曲线运动这种普遍情况下是什么意思呢?我们首先从速度说起。假如有一个很小的物体正沿着曲线从左向右移动。这样的小物体通常被称为质点。在图1-8中,曲线上的圆点表示质点在某一时刻的位置。与这个时刻和位置相对应的速度是多少呢?伽利略的线索再次暗示了引入速度的方式。我们须再次发挥想象力,考虑一个理想化的实验。在外力的作用下,质点沿着曲线从左向右移动。想象一下,在给定的时间,以及圆点所标记的地方,所有外力突然停止作用。那么,根据惯性定律,运动必须是匀速的。当然,在实践中,我们永远不能使物体完全摆脱所有的外部影响。我们只能揣测:“如果……,会发生什么?”然后通过从中得出的结论及它们与实验的一致性来判断我们猜测的相关性。图1-8

图1-9中的矢量表示当所有外力消失时我们猜测的匀速运动的方向。这就是所谓的“切线方向”。通过显微镜观察移动的质点,人们可以看到曲线上很小的一部分,它看起来像一小段直线。切线就是它的延长线。因此,图中画的矢量表示给定时刻的速度。速度矢量就在切线上。切线的长度表示速度的大小,或者说汽车的速度计上所示的速率。图1-9

我们不能把这个以破坏运动来寻找速度矢量的理想化实验看得太认真。它只能帮助我们理解什么是速度矢量,并让我们能够在给定的位置和时刻确定它。

图1-10展示了一个沿曲线运动的质点在三个不同位置上的速度矢量。在这个例子中,速度的方向和大小(由矢量的长度表示)都随着运动而变化。图1-10

这个新的速度概念是否满足为一切推广所制定的要求呢?换句话说:如果曲线变成了直线,这个速度会还原到我们熟悉的概念吗?显然是这样的。直线的切线就是直线本身。速度矢量位于运动的路线上,就像移动的手推车或是滚动的球体一样。

下一步是介绍质点沿曲线运动时速度的变化。这也可以靠多种方式完成,我们从中选择最简单和最方便的那个。图1-10中所示的几个速度矢量表示路线上不同点处的运动。我们可以再次画出前两个速度矢量,使它们具有共同的起点(图1-11),我们已经知道这样做是可以的。我们把虚线矢量称为“速度的变化”。它的起点是矢量1的末端,而终点是矢量2的末端。乍一看,这个速度的变化的定义似乎是人为的,毫无意义的。在矢量1和矢量2方向相同这一特殊情况下(图1-12),这个定义就更加清楚了。当然,这意味着又回到了直线运动的情况。如果两个矢量具有相同的起点,那么虚线矢量依然连接它们的末端。这与图1-6的情况相同,而以前的概念再次成为新概念的一种特殊情况。可以注意到,在图中我们必须将两条线分开画,否则它们会重合在一起,变得难以分辨。图1-11图1-12

现在我们来进行推广过程的最后一步。这是迄今为止我们所有猜测中最重要的一个。我们需要建立力与速度的变化之间的联系,以便我们可以得到线索来理解运动的一般性问题。

解释直线运动的线索很简单:外力造成了速度的变化,外力矢量的方向与速度的变化相同。那么现在,我们应该把什么看作是曲线运动的线索呢?与之前完全一样!唯一不同的是速度的变化如今有了比以前更宽广的含义。上面两张图中的虚线矢量清晰地展示了这一点。如果我们知道在曲线上任意一点处的速度,那么就可以马上得出在任意一点处力的方向。我们画出在两个时间间隔很短的时刻上的速度矢量,它们对应的位置也很靠近。连接第一个速度矢量末端和第二个速度矢量末端的矢量表示作用力的方向。但重要的是,两个速度矢量应该只相距“非常短”的时间间隔。对“非常近”“非常短”这些词语做严格分析没那么简单。事实上,正是这样的分析使牛顿和莱布尼茨发明了微积分。

把伽利略的线索进行推广是一条冗长而曲折的路。我们在这里无法展示这个推广的结果是多么的丰富而卓有成效。有了它以后,许多之前不相关和不能理解的事实都得到了简单且令人信服的解释。

从丰富多样的运动中,我们只选最简单的,并用刚刚制定的定律来解释它。

枪中射出的子弹、以某个角度抛出的石头、水管中喷出的水,它们都沿着我们所熟知的路径——抛物线。假如在石头上装一个速度计,那么石头在任一时刻的速度矢量都可以画出来。这一结果可以在图1-13中充分地体现出来。作用在石头上的力的方向就是速度变化的方向,而我们已经知道应当如何确定它。图1-14指出作用在石头上的力是垂直且朝下的。这和石头从塔顶掉落的情况一样。路径和速度是完全不同的,但速度的变化有着相同的方向,那就是朝着地球的中心。图1-13图1-14

一个拴在绳子末端并在水平面上转动的石头做圆周运动。如果速率不变,那么图1-15中所有表示运动的矢量都有相同的长度。但速度不是不变的,因为运动路径不是一条直线。只有在匀速直线运动中才没有力的参与,而在这里是有的。速度的大小并没有改变,但是方向变了。根据运动定律,这一改变一定是由某些力引起的,在这个例子中是由石头和握绳的手之间的力引起的。那么,另一个问题出现了:力作用的方向是什么?矢量图再次给出了答案。图1-16画出了两个邻近点的速度矢量,速度的变化就可以找到了。我们看到,最后一个矢量沿着绳子指向圆心的方向,并且始终垂直于速度矢量或切线。换句话说,手通过绳子在石头上施加力。图1-15图1-16

还有一个更重要的例子与此非常相似,那就是月球绕地球的公转。它可以近似表示为匀速圆周运动。力指向地球的原因与前一个例子指向手的原因相同。地球和月球之间没有绳子连接,但是我们可以想象两个天体的中心之间有一条线;力沿着这条线,并且指向地球的中心,就像抛在空中或从塔上掉下来的石头所受的力一样。

我们之前说过与运动相关的一切都可以用一句话来总结:力和速度的变化是具有相同方向的矢量。这是运动问题的初步线索,当然,它不足以完全解释所有观察到的运动。从亚里士多德的想法到伽利略的想法的转变,形成了科学基础中最重要的基石。这一突破一旦实现,进一步的发展路线就很清楚了。这里我们感兴趣的是发展的第一阶段、追随最初的线索和展示新的物理概念是如何在与旧观念的痛苦斗争中诞生的。我们只关注科学领域的先驱工作,其中包括寻找新的和意想不到的发展道路;我们只关注科学思想中的冒险,它们创造了一幅不断变化的宇宙图景。最初的基本阶段总是具有革命性的。科学的想象力认为旧的概念太过局限,于是用新的概念取而代之。沿着任一条已经开辟的思想继续发展是带有进化性的,直到到达下一个需要征服的新领域的转折点。然而,为了理解是什么原因和什么困难促成了重要概念的改变,我们不仅要知道最初的线索,还要知道从这些线索中可以得出什么结论。

现代物理学的一个最重要的特征是:从最初线索中得出的结论不仅是定性的,而且是定量的。让我们再次考虑从塔上掉下来的石头。我们已经知道它的速度随着下降而增大,但我们还想了解更多。速度的变化有多大?石头开始下降后在任一时刻的位置和速度是多少?我们希望可以预测事件,并通过实验来确定观测是否证实了这些预测,从而确定初始的假设。

为了得出定量的结论,我们必须使用数学语言。大多数科学的基本思想本质上都是简单的,且常常可以用通俗的语言来表达。要想跟进这些想法,需要高深的研究技术知识。如果我们希望得到的结论可以与实验进行比较,那么数学是必要的推理工具。我们如果仅仅关注基本的物理观念,数学语言就可以避免。由于在本书中我们始终是这样做的,所以有时必须允许自己引用一些结果,而不提供证明,因为这些结果对于理解进一步发展中出现的重要线索是必需的。放弃数学语言所付出的代价,就是失去了精确性,以及有的时候引用了一些结果,却不能展示它们的来龙去脉。图1-17

关于运动有一个非常重要的例子,那就是地球绕太阳的运动。众所周知,它的路线是一条闭合的曲线,称为椭圆。速度变化矢量图(图1-17)的构造表明,作用在地球上的力指向太阳。但无论如何,仅有这些信息是不够的。我们希望可以在任意时刻预测地球和其他行星的位置,我们希望预测下一次日食的日期和持续时间,还有许多其他天文事件。这些事情是可以做到的,但不能仅凭最初的那条线索,我们现在不仅需要知道力的方向,还要知道它的绝对值——力的大小。牛顿在这一点上做出了有启发性的猜测。根据他的万有引力定律,两个物体之间的吸引力在很大程度上取决于它们之间的距离。当距离增加时吸引力会变小。具体地说,如果距离变为原来的2倍,那么吸引力会变小2×2=4倍;如果距离变为原来的3倍,那么吸引力就变小3×3=9倍。

因此,对于万有引力,我们已经成功地用简单的方式表达了它与运动物体间距离的依赖关系。我们接着用同样的方式处理有不同的力作用的情况,如电力、磁力等。我们尝试用一个简单的方式来表达力。只有当得到的结论被实验证实时,这种表达才是合理的。

不过,仅凭对万有引力的了解并不足以描述行星的运动。我们已经看到,在任一短时间间隔内表示力和速度的变化的矢量具有相同的方向,但是我们必须更进一步地跟随牛顿的脚步,假设它们的长度之间存在简单的关系。鉴于所有其他条件都相同,即在相等的时间间隔内,我们考虑同一个运动物体和相同的变化,那么,根据牛顿的发现,速度的变化与力成正比。

因此,关于行星运动的定量结论只需要有两个互补的猜测。一个是一般性的,说明力与速度的变化之间的联系。另一个是特殊的,说明一种特定的力和两个物体间距离的明确依赖关系。前者是牛顿的一般运动定律,后者是他的万有引力定律。它们共同决定运动。这一点可以通过下面拗口的推理变得更加清楚。假设在一个给定时间,我们可以确定行星的位置和速度,并且力是已知的;那么,根据牛顿定律,我们就可以知道速度在短时间间隔内的变化。知道了初始速度及其变化,我们就可以算出在这段时间结束时行星的速度和位置。不断地重复这一过程,我们可以追踪运动的整条路线,无须更多地依赖于观测数据。原则上说,这就是力学预测物体运动状态的方式,但在这里使用的方法几乎不实用。实际上,这种一步接着一步的过程是非常烦琐和不准确的。幸运的是,这个过程是没有必要的;数学提供了一个捷径,并且不费笔墨就可以精确地描述运动。以这种方式得出的结论可以通过观察来证实或推翻。

在石头在空气中下落,以及月球在其轨道上的公转运动中,我们可以识别出同一种力:地球对物体的吸引力。牛顿认识到下落的石头、月球和行星的运动都只是万有引力作用在任意两个物体之间的特殊表现。在简单的情况下,我们可以借助数学来描述和预测运动。在距离远和非常复杂的情况下——涉及多个物体相互作用,数学描述并不是那么简单,但基本原则是相同的。

我们通过跟随最初的线索,在抛出的石头、月球、地球及行星的运动中得出了结论。

这就是我们的全部猜测,有待实验的证实或者否定。没有任何一个假设可以被隔离进行单独测试。我们发现,在行星围绕太阳运动的情况下,力学系统运转得很好。尽管如此,我们可以想象,基于不同假设的另一个系统可能也可以正常工作。

物理概念是人类思维的自由创造,而不是由外部世界唯一决定的——尽管它看似如此。在我们努力理解现实的过程中,我们就像一个试图理解手表内部机械结构的人。他看到了表盘和移动的指针,甚至听到了嘀嗒声,但就是无法打开它。如果他很机智,那么他可以根据观察到的一切在脑海中勾勒出机械装置的画面,但他可能永远无法确定他的画面是唯一一个可以解释这些观察的。他永远不能将他的画面和真正的机械装置做比较,他甚至无法想象这种比较的可能性或者有何意义。但是他坚信,随着他知识的增多,他对现实的描绘将会变得越来越简单,并能解释越来越丰富的感观印象。他可能会相信,知识是存在理想极限的,而人类的思想正在接近它。他或许会将这个理想极限称为客观真理。还有一个线索

在最初研究力学的时候,人们会产生这样的印象:在这个科学分支上,一切都是简单的、基本的,并且是一直稳定的。人们几乎不会怀疑存在着一个300年来都没有人注意到的重要线索。这个被忽视的线索与力学的一个基本概念有关,那就是质量。

我们再次回到那个简单的理想化实验——在完全光滑道路上的手推车。如果小车最初处于静止状态,然后被推了一下,那它随后就会以一定的速度匀速移动。假设力的作用可以根据需要重复多次,推动机制以相同的方式作用,并在同一个小车上施加相同的力。然而,实验重复了多次,最终速度却没有变。但是,如果改变一下实验——之前空的手推车现在载满了物品,会怎么样呢?载物手推车的最终速度会比空的手推车小。于是,我们得出结论:如果相同的力作用于两个不同的物体,它们最初都处于静止状态,但最终的速度将不相同。我们说,速度取决于物体的质量,质量越大则速度越小。

因此,至少在理论上,我们知道如何确定一个物体的质量,或者更确切地说,一个质量比另一个质量大多少倍。用相同的力作用在两个静止的质量上,我们发现,第一个质量的速度是第二个质量的三倍,我们得出结论:第一个质量比第二个质量小三倍。这当然不是确定两个质量比的实用的方法。尽管如此,我们可以想象用这种方法或者基于惯性定律的其他类似方法来实现它。

我们如何在实践中真正确定质量呢?当然,不是用刚刚描述的那种方式。大家都知道正确答案是什么。我们通过称重来衡量。

让我们更详细地讨论一下确定质量的两种不同方法。

第一个实验与重力(即地球的吸引力)无关。在推动之后,手推车沿着完全光滑的水平面移动。重力使手推车停留在平面上,它是不变的,而且在确定质量时不起作用。这与称重完全不同。如果地球不吸引物体,如果重力不存在的话,我们就永远不会用到秤。这两种确定质量方法的不同之处在于,第一种方法与重力无关,而第二种主要基于它的存在。

我们问:如果我们用上述两种方式来确定两个质量之比,我们是否得到相同的结果呢?实验给出的答案非常明确:结果完全一样!这个结论是不可预见的,而且是基于观察的,而非理性思考。为了简单起见,我们将第一种方式确定的质量称为惯性质量,第二种方式确定的称为引力质量。在我们的世界中,它们是等价的,但我们可以想象,还有其他的情况。于是另一个问题出现了:这两种质量的同一性是纯粹偶然的,还是具有更深层次的意义?从经典物理学的角度来看,答案是:两种质量的同一性是偶然的,不附带更深层的意义。现代物理学的答案则恰恰相反:两种质量的同一性是根本的,而且是通往更深理解的一个新的必要线索。事实上,这就是广义相对论得以发展的最重要的线索之一。

如果一个侦探故事把奇怪的事解释为偶然,那么它就不像是一个好故事。让故事的发展遵循理性的模式肯定会更令人满意。同样地,一个解释引力质量和惯性质量同一性的理论优于将它们的同一性解释为偶然的理论,当然,前提是这两种理论与观察到的事实相符。

由于惯性质量和引力质量的同一性是相对论构想的基础,我们有理由在这里对它更仔细地考察一番。哪些实验令人信服地证明了两个质量是一样的?答案已经在伽利略从塔上抛下不同质量物体的古老实验中给出了。他注意到,不同质量物体的下落时间总是一样的,也就是说,下落物体的运动与其质量无关。要想把这个简单但非常重要的实验结果与两种质量的同一性联系起来,还需要一些相当复杂的推理。

一个静止的物体受到外力的作用之后就开始运动,并达到一定的速度。它抵抗运动的程度与它的惯性质量有关。质量大时,便不容易动;质量小时,则容易动。不十分严格地说:物体对外力的响应程度取决于它的惯性质量。如果地球以同样的力吸引所有的物体,那么惯性质量最大的物体将比其他任何物体都下降的慢。然而事实并非如此:所有的物体都以同样的方式落下。这意味着地球必定以不同的力吸引不同质量的物体。现在,地球以重力吸引一块石头,对它的惯性质量一无所知。地球的“召唤”力取决于引力质量。石头的“响应”运动取决于惯性质量。由于“响应”运动始终是相同的——从同一高度下降的所有物体都以相同的方式下降,我们必然可以推出引力质量和惯性质量相等。

同样的结论,由物理学家表达,就更具学究气了:下落物体的加速度与其引力质量成比例增加,与其惯性质量成比例减小。因为所有的下落物体具有相同的恒定加速度,这两个质量必定相等。

在我们奇妙的侦探故事中,没有被完全解决的问题,也没有永远不变的问题。300年之后,我们不得不回到最初的运动问题上修改侦查程序,寻找被忽视的线索,从而得到我们周围宇宙的另一幅图景。热是一种物质吗

现在,我们开始关注一条新的线索,它源于热现象的领域。然而,我们不可能将科学划分为独立且不相关的部分。实际上,我们很快就会发现,这里介绍的新概念与那些我们已经熟悉的概念及我们将会遇到的概念交织在一起。在一个科学分支中发展的思路通常可以用于描述一些特点与众不同的事件。在这个过程中,原始概念经常被修改,以便帮助我们理解那些现象的起源及它们将会被应用到哪里。

在热现象的描述中,最基本的概念是温度和热量。在科学的历史长河中,人们耗费了漫长的时间来区分这二者,但是一旦人们将其区分开,就会取得快速的进展。尽管现在人人都熟悉这些概念,我们也要仔细地审视它们,强调它们之间的差异。

我们的触觉非常清楚地告诉我们,一个物体是热的,另一个是冷的。但这是一个纯粹定性的标准,不足以进行定量描述,有时甚至含糊不清。一个众所周知的实验展示了这一点:我们有三个容器,分别装有冷水、温水和热水。如果我们将一只手浸入冷水中,而另一只手浸入热水中,那么我们得到的信息是:第一个容器中的水是冷的,而第二个是热的。如果我们随后将双手浸入相同的温水中,我们的两只手会得到两个相互矛盾的消息。出于同样的原因,当爱斯基摩人和某赤道国家的人在春天来到纽约,他们对气候是热还是冷抱有不同的看法。我们通过使用温度计来解决所有这些问题,这个工具最早是伽利略设计的。又是那个熟悉的名字!温度计的使用基于一些公认的物理假设。我们通过引用约150年前布莱克(他在解决与热量和温度这两个概念相关的困难方面做出了巨大贡献)讲座中的几行话来回顾它们:通过使用这种仪器,我们了解到,如果我们取1000或者更

多种不同的物质,如金属、石头、盐、木材、羽毛、羊毛、水及

各种其他液体,将它们一起放在一个没有火和阳光照射的房间

里,虽然它们起初的热量各不相同,但是热量会从较热的物体传

递到较冷的物体,在几小时或者一天之后,用温度计一一测量它

们的温度,它将精确地指向同一个度数。

根据现在的术语,文中加引号的热量应该用温度这个词代替。

医生从病人口中取出温度计,他可能是这样推理的:“温度计根据水银柱的长度显示自身的温度。我们假设水银柱的长度与温度的升高成比例地增加。但温度计与我的病人接触了几分钟,所以病人和温度计都有着相同的温度。因此,我的结论是,病人的温度就是在温度计上记录的温度。”医生可能只是在机械地工作,然而他没想到自己已经在运用物理学原理了。

可温度计所含有的热量是否与人体相同呢?当然不是。如果只是因为两个物体的温度相等就假设它们含有等量的热量,就会像布莱克所说的那样——把问题看得太马虎了。这是把不同物体的热量和热的强度混

淆了,尽管很明显这是两个不同的东西,并且在我们考虑热量分

布时应该始终区分它们。

我们可以通过一个非常简单的实验来了解这种区别。放在燃气火焰上的1磅水需要一些时间才能从室温达到沸点。用同样的火焰加热12磅放在同一容器中的水则需要更长的时间。我们将这一事实解释为,现在需要更多的“某物”,我们称之为“某种热量”。

另一个重要的概念——比热,可以通过以下实验获得:在一个容器中放1磅水,而在另一个中放1磅水银,二者都以相同的方式加热。水银比水变热得更快,说明它需要较少的“热量”就可以将温度升高1摄氏度。一般来说,具有相同质量的不同物质,如水、水银、铁、铜、木材等,从40华氏度升到41华氏度,需要不同的“热量”。我们说每种物质都有其自身的热容量或比热。

一旦有了热量的概念,我们就可以更密切地研究它的本质。我们有两个物体,一个是热的,另一个是冷的,或者更准确地说,一个比另一个的温度更高。我们将它们靠在一起,并且使它们免受所有的外部影响。最终,我们知道,它们将达到相同的温度。但这是怎么发生的呢?在它们接触的瞬间与达到相同温度之间发生了什么呢?热量从一个物体“流动”到另一个物体的图景,就像水从高处流往低处一样。这幅图景虽然很粗糙,但似乎符合许多事实,我们因此可以提出这样的类比:水—热量高处—高温低处—低温

热量的流动一直进行到两个温度相等。这种朴素的想法在定量考量中更加有用。如果将给定温度和质量的水和酒精混合在一起,那么比热的知识将使我们能够预测混合物的最终温度。反过来,观察最终温度再用上一点代数运算,我们就能够找到两个比热的比率。

在热量概念中,我们认识到,这里出现的热量与其他物理概念相似。我们认为,热量是一种物质,正如力学中的质量。它的数量可能改变,也可能不改变,就像钱可以存在保险箱也可以花掉一样。只要保险箱保持锁定,保险箱中的金额将保持不变,同理,隔离物体内的质量和热量也保持不变。理想的保温瓶类似于这种保险箱。而且,正如隔离系统的质量在发生化学反应时也不改变一样,热量即使从一个物体流到另一个物体也是守恒的。就算不用热量来提高物体的温度,而是用它来融化冰,或者将水变成蒸汽,我们仍然可以将其视为一种物质,并通过冷冻水或者液化蒸汽来重新获得它。一个旧名称——熔化或汽化的潜热,表明这些概念是从热量作为物质的图景中得出的。潜热暂时隐藏起来,就像储存在保险箱里的钱一样,但如果有人知道密码锁的数字组合就可以用它。

但热量与质量肯定不是同样意义上的物质。质量可以通过秤来测定,但是热量呢?红热时的铁板比冰冷的时候更重吗?实验表明没有。如果热量是一种物质,那么它就是一种没有重量的物质。“热物质”通常被称为卡路里,它是我们在整个无重量物质家族中最先认识的。稍后我们还有机会追随这一家庭的兴衰史。现在只要注意到这一成员的诞生就足够了。

任何物理理论的目的都是能够解释尽可能多的现象。只要它使各种现象可以理解,它就是有道理的。我们已经看到,物质理论解释了许多热现象。然而很快我们就会知道,这又是一条错误的线索,热量不能被看成是一种物质,即使是没有重量的物质也不可以。我们只要想一下标志着文明开始的几个简单实验,便能明白这一点。

我们认为物质是一种既不能被创造也不能被毁灭的东西。然而原始人通过摩擦产生足够的热量来点燃木材。事实上,通过摩擦生热的例子太多太熟悉了,不必一一列举出来。在所有这些情况下都会有一定的热量产生,这是物质理论难以解释的事实。诚然,这个理论的拥护者可以找出一些论据来解释这些事实。他的推理可能是这样的:“物质理论可以解释表观上热量的产生。举一个最简单的例子,将两块木头相互摩擦。这时摩擦会影响木头并改变它的性质。这些性质很可能是这样变化的,即热量保持不变而产生的温度比之前高。毕竟,我们注意到的只有温度的上升。可能是摩擦改变了木头的比热,而不是总热量。”

在目前这个讨论阶段,与物质理论的拥护者争辩是没有用的,因为这个问题只能通过实验来解决。想象有两块相同的木头,假设我们用不同的方法使温度发生同样的改变;例如,一个是通过摩擦,而另一个是通过和散热器接触。如果这两块木头在新的温度下比热相同,那么整个物质理论就被推翻了。我们有非常简单的方法来确定比热,物质理论的命运取决于这些测量结果。在物理学发展史上,经常有实验能够宣判一个理论的生死,这些实验被称为判决实验。一个实验的核心价值只能通过问题提出的方式来揭示,而且只有现象的一种理论可以受到审判。两个相同的物体分别用摩擦和传热的方法达到相同的温度,然后测定它们在这一温度下的比热,这就是判决实验的一个典型例子。这项实验在大约150年前由伦福德完成,对热的物质理论进行了致命的打击。

以下摘录了伦福德自己的陈述:人们在日常生活和工作中,经常有机会思索大自然的一些最

奇特的运作,而且几乎不用花费人力和财力,只要利用那些仅为

工艺制造而设计的机械,就可以进行很多非常有趣的哲学实验。我时常有机会做这样的观察,而且我深信,时刻留意日常生

活中发生的一切这一习惯,往往会带给我们有益的怀疑及研究和

改进的合理方案。有些是偶然发生的,有些是在想象中畅游时发

生的,还有的是在沉思极普通的现象时发生的。这些怀疑和研究

与改进的方案,比哲学家工作时几小时的苦思冥想还要多。最近,我在慕尼黑的兵工厂里参与监督大炮的钻制,我很惊

讶,铜炮在被钻很短的时间中,就产生了大量的热;而被钻头从

大炮上钻出来的金属屑更热(我在实验中发现,它们远比沸水要

热)……在上述的机械操作中产生的热究竟是哪儿来的呢?它是由钻头在坚硬的金属上所钻出来的金属屑提供的吗?如果是这样的话,那么根据潜热和热量的现代学说,它们的

热容不仅会改变,而且要变得足够大才可以解释一切所产生的热

量。但是这样的变化并没有发生;我拿取了一定重量的金属屑,

之后用一把很好的锯子从这个金属块上锯下同等质量的细金属

条。令它们都处在沸水的温度,之后将它们浸于等量冷水中(水

温为15摄氏度)。我发现盛有金属屑的水被加热的程度与盛有金

属条的水完全一样。

最后,我们读到伦福德的结论:在这个问题的推理中,我们不能忘记考虑最显著的情况,那

就是在这些实验中由摩擦产生的热似乎是无穷无尽的。无须多说,在与外界隔绝的物体或系统中,任何可以不受限

制地连续增加的物体都不可能是有质量的物质;对我来说,即使

可能的话,也很难想到任何明确的事物会和这些实验中的热一样

被激发和传播,除非它是运动。

如此,旧理论崩溃了,或者更确切地说,物质理论不适用于热流问题。正如伦福德所暗示的那样,我们必须重新寻找新的线索。要做到这一点,让我们暂时放下热量问题,再回到力学上吧。云霄飞车

我们来研究备受欢迎的快乐制造者——“云霄飞车”的运动轨迹。一辆小车被抬升到轨道的最高点。当被释放后,它会在重力作用下开始向下滑动,然后沿着一条奇特的弯曲轨道上下飞驰,因为速度的极速改变,乘客得到惊险刺激的快感。每一个云霄飞车都有它的最高点,那就是它开始的地方。在整个运动中,它不会再次达到和出发点同样的高度。完整地描述整个运动会是非常复杂的。一方面是机械方面的问题,即速度和位置随时间的变化。另一方面,由于存在摩擦,导致轨道上和车轮上有热量产生。将物理过程划分为这两方面的唯一重要原因是可以使用前面讨论过的概念。这种划分使其变成一个理想化的实验,因为一个只表现力学方面的物理过程是只能想象而无法实现的。图1-18

对于理想化的实验,我们可以猜想已经有人懂得如何完全消除随运动一起出现的摩擦。他决定将他的发现应用于云霄飞车的建造中,并且一定要找出建造的方法。小车会上下滑动,假定它的起点离地面100英尺(约30米)。很快,通过反复地试验,他发现必须遵从一个很简单的原则:只要轨道上的任意点不高于起点,他就可以随心所欲地建造他的轨道。要让小车自由地前进到轨道的尽头,只要他愿意,小车的高度可以多次达到100英尺,但绝不能超过去。由于摩擦,小车在实际轨道上是无法达到初始高度的,不过我们假设的工程师无须考虑这一点。

让我们来跟随理想小车从理想轨道的起点向下翻滚的运动。随着它的运动,它与地面的距离减小了,但它的速度增加了。这句话乍一看来可能会让我们想起语文课中的句子:“我没有铅笔,但你有六个橘子。”然而,这句话并不是那么可笑。“我没有铅笔”和“你有六个橘子之间”没有联系,但是小车与地面的距离和它的速度之间存在非常真实的关系。如果我们知道小车在地面上的高度,我们就可以计算出小车在任一时刻的速度,但我们在这里略过这一点,因为它的定量性最好用数学公式来表示。

在最高点时,小车的速度为零,且离地面100英尺。在最低点时,小车与地面距离为零,且速度最大。这些可以用另一种术语来表达:在最高点时,小车具有势能但没有动能;在最低点时,小车动能最大但没有任何势能。在所有的中间位置上,小车既有速度又有高度,因此它具有动能和势能。势能随着高度的增加而增大,而动能随着速度的增加而增大。力学原理足以解释这种运动。能量的两种表达出现在数学描述中,每种表达都可能会发生变化,然而它们的总和不变。这样,我们就可以在数学上严格地引入两个概念:与位置有关的势能和与速度有关的动能。当然,这两个名字的引入是随意的,而且只是为了方便。这两个量的总和保持不变,称为运动常量。举例来说,动能和势能的总能量可以和总额不变的钱相类比,它们根据固定的汇率不断地从一种货币兑换为另一种,如从美元兑换成英镑,再从英镑兑换回美元。

在真实的云霄飞车上,虽然摩擦阻止小车再次达到与起始时一样高的点,但动能和势能之间仍然在不断地转换。不过,在这里,它们的总和不是保持不变,而是逐渐地减小了。现在,我们需要迈出重要且大胆的一步才能把运动的力学和热学方面联系起来。稍后,我们将看到从这一步得出的丰富推论和总结。

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载