飞机结构载荷/环境谱(txt+pdf+epub+mobi电子书下载)


发布时间:2020-07-09 07:22:22

点击下载

作者:蒋祖国,田丁栓,等

出版社:电子工业出版社

格式: AZW3, DOCX, EPUB, MOBI, PDF, TXT

飞机结构载荷/环境谱

飞机结构载荷/环境谱试读:

前言

飞机结构载荷/环境谱既是进行飞机结构疲劳/耐久性/损伤容限设计、分析、试验和评定的基础和输入,又是确定飞机结构使用寿命和飞机延寿的主要依据。载荷/环境谱编制贯穿于飞机结构设计、研制、定型和使用的全寿命过程,对飞机型号定寿和延寿起着非常重要的作用。

新中国成立以来,我国的航空工业走过了一条从仿制到自行设计的道路。20世纪80年代以前,国内服役的飞机,军用飞机大部分都是仿制的,小部分是外购的,还有一部分是国外飞机的改型设计;民用飞机则全是外购的。无论是哪种类型的飞机,当时大部分都是20世纪50年代至60年代按静强度准则设计的,没有使用寿命指标;即使少部分按安全寿命准则设计的国外进口飞机,也只有一个总的使用寿命指标,没有具体的相关资料,而这些当时服役的飞机,有的已出现各种问题,如局部裂纹、部分构件功能失效等;有的已飞行几千飞行小时,人们对这些飞机能够飞行多长时间一片茫然,即使少数有使用寿命指标的服役飞机,由于缺少相关资料,对于何时检修,如何检修,是否可延寿等心中无数。诸如此类问题,归结到一点就是亟待解决这些服役飞机的定寿延寿问题。

20世纪50年代末期,我国着手开始自行设计飞机,刚开始仍然是按静强度设计准则来设计的(如强5、歼8等)。到了70年代开始考虑疲劳强度,增加了安全寿命设计准则(如歼轰7等)。即使一开始按静强度设计的飞机,到后来也进行了疲劳补课。因此,我国自行设计的飞机都存在一个飞机定寿问题。

无论是我国当时仿制的飞机,还是自行设计的飞机,都要确定飞机结构的使用寿命。要定寿,首先就要解决载荷谱问题。载荷谱如何实测?要编制什么样的载荷谱?如何编制实测载荷谱和设计使用载荷谱?如何用载荷谱进行疲劳/耐久性/损伤容限试验和分析?这些问题都亟待解决。

为了解决上述问题,20世纪60年代,中国飞行试验研究院(简称试飞院)和空军航空装备研究所(原空一所)在国内率先开展了飞机载荷谱飞行试验实测和编制技术研究。从70年代开始,在航空工业部门和使用部门的共同领导和组织下,我国各种服役飞机陆续开展了载荷谱实测和编制工作,各设计单位也着手开展了自行设计飞机的设计使用载荷谱编制工作。到目前为止,几乎所有服役过的和现役的飞机及新设计的飞机都开展过载荷谱实测和编谱工作,其中,我国飞机设计使用载荷谱的编制基本上始于20世纪70年代中后期,比飞机实测载荷谱的编制稍晚一些。40多年来,国内各有关机种用所编制的使用载荷谱(包括实测载荷谱和设计使用载荷谱)去进行疲劳(耐久性)/损伤容限试验和分析,解决了这些服役飞机的定寿延寿问题。

为了满足当时我国飞机自行设计和研制的要求,也为了配合当时众多服役飞机型号定寿延寿工作,20世纪70年代末到21世纪初的20多年期间,在当时航空工业主管部门的领导、组织和协调下,由试飞院牵头,集中当时国内飞机强度专家和工程技术人员,开展了飞机强度规范研究工作,项目名称简称为“ASST系统工程”。涉及飞机结构静、动、疲、热四大载荷和强度专业,飞机载荷/环境谱专题研究是其中一项重要研究内容。

飞机载荷/环境谱专题研究大部分课题都是结合当时的型号飞机定寿延寿开展的,取得了大量研究成果,这些研究成果既解决了当时国内众多飞机载荷谱实测、编制和飞机定寿延寿中的重大技术问题,又为飞机强度规范的制定和规范的执行提供了依据。

本书是在40多年来国内飞机结构寿命和载荷/环境谱预研及型号应用成果的基础上,以国军标《军用飞机结构完整性大纲》和《军用飞机结构强度规范》等为依据,吸收国内外相关先进技术,加以归纳、总结和提高撰写而成。本书在全面叙述飞机结构载荷/环境谱有关内容的基础上,主要阐述飞机结构载荷/环境谱编制方面的内容,而重点放在飞机结构使用载荷谱的编制方面。

本书共分15章,第1章~第6章主要叙述飞机结构载荷/环境谱的基本概念、基础知识、基本原理及与飞机载荷/环境谱密切相关的问题,包括飞机结构设计、结构完整性、结构使用寿命、飞机使用方法、飞机疲劳载荷/环境和疲劳载荷统计分析基础等。这些内容是飞机载荷/环境谱研究、实测和编制的基础和依据。第7章主要阐述飞机载荷谱编制的基本方法和实施步骤,这些内容是飞机载荷谱编制的共性问题。第8章~第13章主要阐述飞机设计使用载荷谱编制方法、飞机实测载荷谱编制方法、飞机各主要部件载荷谱实测和编制有关内容及飞机环境谱和载荷—环境谱编制方法,这些内容涉及飞机各种不同载荷谱及环境谱编制的个性问题。第14章~第15章主要是前面各章有关疲劳载荷内容的进一步深化、扩展、总结和提高,其中有的内容具有一定的探索性。

在上述15章中,无论是与飞机载荷/环境谱密切相关的内容,还是飞机载荷/环境谱本身的内容,甚至是飞机载荷/环境谱编制方面的内容,都侧重于尽可能准确叙述有关领域和内容的基本概念、基本原理和基本方法,并力求找出这些领域和内容之间的内在联系和本身的规律性东西。至于各项技术内容和工作项目的具体做法、实施步骤和相关的技术细节,本书主要是给出基本思路和要点,详细内容读者可查阅有关的技术指南、手册、专题研究报告、技术报告、作业文件和程序文件等技术资料。

本书主要供从事飞机结构设计、分析、试验和使用的工程技术人员及飞机结构寿命研究的科研人员使用,特别适用于飞机结构载荷/环境谱研究、实测和编制的科研和工程技术人员。对从事其他机械装备结构设计、分析、试验、使用的工程技术人员和航空及其他理工科院校相关专业师生也有参考价值。

本书由蒋祖国主笔,第1章~第4章、第7章~第9章、第13章、第15章由蒋祖国撰写,第5章、第6章由蒋祖国、田丁栓、周占廷共同撰写,第10章、第11章由田丁栓撰写,第12章、第14章由周占廷撰写,最后由蒋祖国统编定稿。

本书是国家科学技术学术著作出版基金资助项目(项目编号:2010-E-072),国家科学技术学术著作出版基金委员会、电子工业出版社和作者所在的中国飞行试验研究院给予了大力支持和帮助。在本书撰写过程中得到了有关领导和国内同行的大力支持和帮助,我国著名飞机设计专家、中国科学院和中国工程院顾诵芬院士在百忙之中审阅了本书相关内容并亲笔作序;北京航空航天大学刘文珽教授、中国飞行试验研究院周自全研究员审读了本书内容,提出了宝贵意见;李俊、汤阿妮、杨建忠、赵华、原正庭、舒成辉等为本书提供了部分素材;来宁等自始至终进行了稿件打印和修改;电子工业出版社为本书的出版付出了艰辛的劳动,在此一并表示衷心感谢。

由于作者水平和经历所限,时间仓促,书中难免有错误和不当之处,敬请各位专家和工程技术人员提出宝贵意见。

作 者

2012年4月

第1章 绪论

1.1 引言

飞机结构是指飞机运动中,用于承受和传递载荷且具有刚度和力学稳定性的金属或非金属机体部件、构件、元件或零件的总称,包括机身、机翼、尾翼、起落架、操纵系统的机械/结构元件、操纵面、雷达罩、发动机架、短舱、进气道构件、结构操作机构等。

飞机结构载荷/环境谱是指作用在飞机结构上各种疲劳载荷和飞机历经的各种使用环境(特别是腐蚀环境)所形成的谱的总称。从谱的组成来看,飞机结构载荷/环境谱包括以下三种类型的谱:(1)飞机结构载荷谱;(2)飞机结构环境谱;(3)飞机结构载荷-环境谱。

飞机疲劳载荷和使用环境是影响飞机结构使用寿命的两大主要因素,而且是性质不同的两大因素。疲劳载荷是以力学为其主要特征,使用环境则比较复杂,它既包括某些化学/热/气候等自然因素的环境,也包括某些化学/力学/热等诱发因素的环境。尽管两者如此不同,但两者又相互渗透,载荷中有环境,环境中也有载荷。换句话说,从载荷来源看,疲劳载荷既包括结构操作引起的载荷(如机动载荷),又包括结构环境引起的载荷(如阵风载荷);同样,从使用环境性质来说,环境既包括腐蚀环境(如各种化学环境和气候环境),又包括载荷环境(如大气紊流环境、振动环境)。正因为疲劳载荷和使用环境对飞机结构使用寿命影响的重要性和两者之间的相互渗透性,可把飞机结构载荷/环境谱作为对飞机结构使用寿命影响的整体属性来看待。

载荷和环境的这种相互渗透性使载荷/环境谱变得非常复杂,这样既不便于载荷/环境谱本身的研究、实测和编制,也不便于飞机结构使用寿命的分析、试验和确定,因此,有必要按两者的不同性质和学科进行适当调整和分类。前面提及的使用环境中的载荷环境属力学性质,与疲劳载荷中环境引起的载荷同属一类,因此,可把使用环境中的载荷环境放到疲劳载荷中,这样环境谱就主要是指由腐蚀环境所形成的谱。因此,如果不特别说明,本书中的飞机结构环境谱主要是指腐蚀环境谱。

疲劳载荷和腐蚀环境对飞机结构使用寿命的影响都非常重要,但两者在对飞机结构使用寿命影响的侧重面不一样。飞机结构使用寿命主要有三大寿命指标:飞行小时、飞行次数和日历寿命(使用年限)。相对来说,疲劳载荷对飞行小时寿命(或飞行次数)影响更大一些,对日历寿命影响在第二位;而腐蚀环境对日历寿命影响更大一些,对飞行小时寿命影响在第二位。但总的来说,疲劳载荷对飞机结构使用寿命的影响是最重要的因素,腐蚀环境影响是第二重要因素,也正因为这样,本书在对飞机结构载荷/环境谱的阐述中,主要是阐述飞机结构载荷谱的有关内容,而对飞机结构环境谱方面则是放在第二位。也就是说,飞机载荷/环境谱包括的上述三种类型谱中,根据具体情况和不同的侧重,本书中的飞机结构载荷/环境谱可以是指其中任意一种谱、两种谱或全部三种谱,但重点是指飞机结构载荷谱。

本章先简单介绍飞机结构载荷/载荷谱和环境/环境谱的一些基本知识,简述飞机结构载荷/环境谱在飞机结构设计中的重要性及飞机结构载荷/环境谱的历史发展,并介绍飞机结构载荷/环境谱所依据的标准和规范要求。

飞机结构载荷谱是飞机结构载荷的一种,属于飞机载荷范畴,它具有飞机载荷的共同属性;同样,飞机结构环境谱(特别是腐蚀环境谱)是飞机结构环境的一类,它具有飞机环境的共同属性。因此,本章将分别从飞机载荷和环境入手来阐述飞机结构载荷/环境谱的有关内容。

1.2 飞机载荷和载荷谱基本知识

1.2.1 飞机载荷

1.飞机载荷概念

飞机载荷是飞机在使用过程中作用在飞机结构上各种力的总称,简言之,飞机载荷是指作用在飞机上的力和力矩。例如,图1-1表示在对称飞行中作用在典型飞机上的气动力和气动力矩,这些力包括升力L、重力W、推力T、阻力D及俯仰力矩M等。这些力在飞机水平直线飞行中是处于平衡状态的,也就是说,升力、重力等各种垂直力之和等于零,推力、阻力等各种水平力之和等于零,机翼俯仰力矩、水平尾翼平衡力矩、推力线位置引起的力矩等各种力矩之和等于零,即图1-1 作用在飞机上的力和力矩

飞机在使用过程中,各零部件上作用有各种各样载荷,一些零部件在飞行中所受到的载荷是最危险的,而另一些零部件则是在起飞和着陆时最危险,它们往往会导致飞机一些零部件失效和结构破坏,甚至会导致机毁人亡。因此,在飞机设计和验证中必须对飞机载荷给予特别关注,要准确计算载荷并正确验证飞机结构载荷和强度,以确保飞机结构在使用中的可靠性和安全性。

2.飞机载荷分类

飞机载荷可以从不同角度进行分类。

1)按载荷性质分

飞机载荷可分为静载荷、动载荷(振动载荷、声载荷、冲击载荷等)、疲劳载荷和热载荷。

从力学角度来说,静载荷和动载荷是以载荷的变化速率为主要特征,用结构固有频率为参照,载荷大小、方向及作用点随时间缓慢变化者为静载荷,快速变化者为动载荷;疲劳载荷是以载荷的交变性和重复性为主要特征,无论什么载荷,只要反复多次作用于飞机结构,则都是疲劳载荷。所以,疲劳载荷可以是静态的,也可以是动态的。热载荷是以温度对载荷的影响为主要特征。

2)按载荷来源分

飞机载荷可分为外界环境所引起的载荷和结构操作使用所引起的载荷。前者如大气紊流引起的阵风载荷,机场跑道不平所引起的动态滑行载荷,水面不同浪高所引起的水面滑行载荷等;后者如飞行员空中操作所引起的机动载荷,下滑着陆操作所引起的着陆撞击载荷,地面操作所引起的地面操纵载荷(包括刹车、转弯、牵引、打地转、最小半径转弯、发动机地面试车、前轮静态操纵等)。

3)按飞机所处的位置和状态分

飞机载荷可分为飞行载荷和地面载荷。前者如飞行机动载荷、阵风载荷;后者如着陆撞击载荷、滑行载荷、地面操纵载荷。

4)按载荷作用方向分

飞机载荷可分为垂直力、水平力(航向力和侧向力)、俯仰力矩、滚转力矩和偏航力矩。

5)接受力部件分

飞机载荷可分为机翼载荷、机身载荷、平尾载荷、垂尾载荷、起落架载荷等。

6)按气动力和飞机运动状态关系分

飞机载荷可分为飞机飞行中由空气动力产生的气动载荷、由运动加速度产生的惯性载荷和结构总载荷,而且结构总载荷等于气动载荷和惯性载荷之和。

7)按与飞机质量的关系分

飞机载荷可分为两类:与飞机或飞机的部分质量相关的质量载荷(力)和与质量无关的表面载荷(力)。质量力包括重量力、与法向加速度和切向加速度相关的惯性力。质量力与质量成正比,它分布在飞机结构整体中。表面力包括飞机三个方向的气动力(升力、阻力和侧力)、发动机推力和飞机各部分之间的相互作用力。图1-2 结构载荷传递方式和机理

8)按载荷的分布方式分

飞机载荷可分为集中载荷、线分布载荷、面分布载荷和体分布载荷。

9)按飞机零部件载荷传递方式和机理分

飞机载荷可分为拉伸载荷(拉力)、压缩载荷(压力)、剪切载荷(剪力)、扭转力矩(扭矩)和弯曲力矩(弯矩)。结构载荷的传递方式和机理如图1-2所示。

3.飞机载荷的获取方法

飞机载荷的获取方法主要有以下几种:理论计算、风洞试验、飞行试验和参数识别。这些方法适用于飞机设计的不同阶段,而且有各自不同的适用范围。

初步设计阶段主要用理论计算的方法来初步确定飞机载荷,在打样设计阶段和详细设计阶段要用风洞试验的测力测压数据修正理论计算结果,有时甚至直接采用风洞试验测量的气动力。在整个设计阶段,载荷计算不是一次完成的,有一个由浅入深、由粗到精的反复计算和修正过程。在设计定型阶段则要通过飞行试验来获得真实飞行条件下的结构载荷,以验证计算是否满足设计要求。利用飞行试验所获得的实测载荷和相关的飞行参数,通过参数识别方法建立载荷和参数之间的统计关系,由此关系可以求出由于飞行试验可能测不到的高载和飞行试验测不出或测不准的某些动载荷,还可用于飞机投入使用后的飞机使用寿命监控中的疲劳载荷计算。1.2.2 飞机载荷谱

飞机结构在使用中所受到的载荷包括静载荷、动载荷、疲劳载荷和热载荷。疲劳载荷有以下主要特征:一是交变载荷;二是反复多次作用于飞机结构上。从这个角度来说,疲劳载荷也称重复载荷,即疲劳载荷是一种交变的重复载荷,而载荷谱则是对这种交变重复载荷的描述。由于载荷谱总是在飞机使用中才会产生,因此,人们通常把载荷谱称为使用载荷谱。

1.疲劳载荷源

作用于工程结构上的疲劳载荷有两个主要来源:结构环境和结构使用。

结构环境指工程结构在使用过程中所经受的环境因素。以飞机结构为例,从环境位置来说包括飞机外部环境和内部环境;从载荷状态来说包括空中环境和地面环境;从环境性质来说包括载荷环境和腐蚀环境,载荷环境会带来飞机结构的疲劳破坏,而腐蚀环境会带来飞机结构的腐蚀损伤。这两种环境都直接决定飞机结构的使用寿命,只不过前者(载荷环境)主要决定飞机结构使用寿命的两个重要指标——飞行小时和起落次数,后者(腐蚀环境)主要决定飞机结构使用寿命的另一个重要指标——飞机日历年限。

就飞机载荷环境而言,主要包括如下几种:大气紊流所引起的阵风载荷、跑道不平度所引起的滑行载荷、结构振动所引起的振动载荷、航空噪声所引起的声载荷、飞机局部热源或高速战斗机气动加热引起的热载荷等,它们既属于飞机载荷范畴,又是飞机使用环境。

结构使用是指能产生载荷的结构操作。以飞机结构为例,它主要包括空中操作和地面操作,例如,发动机地面开车、功能检查、顶起、牵引、转弯、机动飞行、操纵系统工作、地形跟踪飞行、座舱增压、着陆撞击、刹车、地—空—地循环等。

2.载荷谱含义

载荷谱包括以下三层含义:(1)载荷谱是一种客观存在。从谱的原始表现形态来看,载荷谱主要表现为载荷大小随时间的变化,即载荷时间历程,如图1-3所示。图1-3 某运输机一次飞行经受的载荷时间历程示意图(2)载荷谱又是一种主观产物,是主观对客观的反映。因为任何原始形态的载荷时间历程因种种原因不可能直接用于结构的疲劳分析或疲劳试验,必须要经过一定的改造制作工夫,也就是要把客观的载荷时间历程编制成使用载荷谱。另一方面,从工程结构设计角度来看,在新产品未使用之前,还不存在这种客观的载荷时间历程,必须根据产品相关标准、资料或以往类似产品的使用数据及经验来编制设计使用载荷谱。(3)从载荷谱编制的角度来看,载荷谱实质上是工程结构使用中各级载荷大小出现频数的排列,因此,载荷谱有三个基本要素:载荷大小、出现频数和先后顺序,它们各自对结构使用寿命带来直接影响,这三个缺一不可。从某种程度上来说,编制使用载荷谱的过程实质上就是把疲劳载荷的时域转换为频域的过程,也是按可靠性设计要求对疲劳载荷进行统计分析的过程。

载荷谱中的一个交变载荷就是一个载荷循环,一个载荷循环的载荷大小通常可用5个参数来描述:最大载荷、最小载荷、载荷幅值(或载荷变程)、载荷均值和载荷比。为便于说明,这里用如图1-4所示的常幅应力谱来代表载荷谱,其载荷大小变成相应的应力大小。设最大应力为S和最小应力为S。定义应力幅值S、应力均值maxminaS、应力比R分别为m图1-4 常幅载荷谱

若应力比R=-1,则称为对称循环疲劳载荷;若R=0,则称为脉动循环疲劳载荷。5个参数中只要知道其中任意两个,就可求出其他三个。

载荷出现频数是指某一载荷谱块中各级载荷出现的次数。一个载荷谱块可大可小,最大的可用一个寿命期作为一个载荷谱块,小的可用一次飞行或一个任务段时间作为一个载荷谱块,比较常用的是用1000飞行小时、100飞行小时的整数倍、飞行训练大纲的一个训练周期或一年的飞行时间作为一个载荷谱块,一个载荷谱块也称一个载荷谱周期。一个载荷谱周期载荷出现频数有两种表示法:各级载荷大小实有出现频数和累积出现频数。

载荷顺序指载荷谱中各级载荷大小排列的先后次序,载荷顺序既包括一个载荷谱块内各级载荷大小的排列顺序,也包括一个谱块内各种任务及各次飞行的排列顺序。

3.飞机载荷谱分类

1)按疲劳载荷来源分

可分为机动载荷谱、阵风载荷谱、座舱增压谱、着陆撞击谱、滑行谱、地面操纵载荷谱(包括刹车、转弯、牵引、打地转、最小半径转弯、发动机地面试车等)、振动谱、声载荷谱、热载荷谱等。

2)按编谱目的分(1)过载谱。根据飞机三向过载(主要是重心法向过载)的时间历程而编制的谱,该谱用于评价载荷谱的严重程度,且作为编制飞机部件载荷谱或应力谱的基本输入。(2)试验载荷谱。主要用于飞机元件、构件、部件或全机疲劳、耐久性或损伤容限试验。(3)应力谱。主要用于估算飞机结构关键部位的疲劳寿命,并用于进行疲劳及断裂分析。

3)按飞机型号全寿命管理周期分(1)设计使用载荷谱。在飞机设计阶段为进行疲劳/断裂分析和疲劳、耐久性和损伤容限试验所编制的载荷谱。(2)服役使用载荷谱。在飞机服役期间(包括领先飞行期间)通过专门测试设备的飞行实测或使用寿命监控所编制的载荷谱。服役使用载荷谱也称实测载荷谱。从飞机使用寿命监控角度来说,服役使用载荷谱包括基准使用载荷谱和单机使用载荷谱。

4)按使用寿命监控的飞机范围和数量分(1)单机使用载荷谱。飞机机队中每架飞机在整个使用寿命期内的载荷经历,一般通过单机监控获得。(2)飞机机队基准使用载荷谱。代表飞机机队基准使用情况的载荷谱,一般通过机队抽样监控获得。(3)飞机基准使用载荷谱。代表某一型号飞机所有机队基准使用情况的载荷谱。换句话说,它是该型飞机所有机队的加权基准使用载荷谱。

现代飞机往往具有多用途能力,会执行各种不同的任务,战术技术和训练方法也会发生很大变化。不仅机队飞机实际的使用情况和设计预定的使用情况有显著差别,各个机队之间的使用情况也不相同,单架飞机的使用情况与机队基准使用情况也有显著差别。单机使用载荷谱有的要比机队基准使用载荷谱严重,有的则要轻得多。机队基准使用载荷谱和飞机基准使用载荷谱之间也有类似的情况。因此,很有必要编制这几种不同类型的服役使用载荷谱。

5)按载荷顺序分(1)无顺序载荷谱。指各级载荷大小的实有频数或累积频数。在这种谱中,没有载荷顺序的信息。这种谱主要用做编制飞-续-飞谱或程序块谱的直接输入,还可用于判断和比较各种载荷谱的严重程度。(2)等幅谱。载荷大小为某一定值的载荷谱,其载荷顺序很显然是单一的,如图1-4所示。这种谱主要用于材料疲劳性能试验,也用于疲劳分析方法的研究,有时还用于比较两个结构疲劳性能的优劣。(3)程序块谱。在一个载荷谱块(如100飞行小时或一个飞行训练周期)中载荷顺序为某种固定顺序的载荷谱。固定的载荷顺序一般为低—高—低、低—高或高—低等,如图1-5所示。图1-5 程序块谱(4)飞—续—飞谱。按一次飞行接着一次飞行所构成的载荷谱。在一次飞行或一次飞行的一个任务段中,载荷顺序可以是随机的,也可以是程序化的。各次飞行之间的排列可以是随机的,也可以是程序化的。飞—续—飞谱从不同角度还可以分成若干种类,这在后面将提到。

值得一提的是,程序块谱和飞—续—飞谱既可以是试验谱,也可以是应力谱。换句话说,这两种谱根据不同的目的,既可以用作疲劳/耐久性/损伤容限试验,也可以用作寿命估算和疲劳/断裂分析。

6)按任务剖面形式分(1)任务段谱。以任务段作为编谱单元编制的载荷谱。(2)任务谱。以各种任务的一次飞行作为编谱单元编制的载荷谱。一般来说,它由任务段谱导出,也可直接从实测结果给出。(3)总谱。按飞机所有使用情况编制的载荷谱,可由任务段谱或任务谱导出。

7)按实测载荷谱编制方法分(1)传统均值载荷谱。按传统均值载荷谱编制方法编制的实测载荷谱。(2)代表起落随机载荷谱。按代表起落随机载荷谱编制方法编制的实测载荷谱。

8)按零部件载荷传递方式分

可分为弯矩谱、剪力谱、扭矩谱、拉压载荷谱。

9)按谱的严重程度分(1)平均谱。按飞机使用分布内的平均使用情况编制的载荷谱。(2)严重谱。按飞机使用分布内的严重使用情况编制的载荷谱。

1.3 飞机环境和环境谱基本知识

1.3.1 飞机环境

飞机使用环境指飞机在服役使用过程中所经受的环境因素。飞机环境因素可分为自然环境因素和诱发环境因素两大类,见表1-1。从该表可以看出,自然环境因素主要包括化学、热和气候等因素,诱发环境因素主要包括化学、力学和热等因素。从环境性质来说,飞机环境包括载荷环境和腐蚀环境,载荷环境会给飞机结构造成机械破坏,而腐蚀环境会给飞机结构造成腐蚀损伤。载荷和环境的联合作用会造成结构的应力腐蚀开裂和腐蚀疲劳损伤。表1-1 飞机使用环境分类1.3.2 飞机环境谱

飞机环境试验一般可分为环境鉴定试验和环境可靠性试验。环境鉴定试验是取含一定风险率的合理极值进行试验,而可靠性试验要尽可能模拟真实环境,各级环境强度和施加次序与实际环境尽量相同或相当,因此,需要用环境谱来进行试验。

1.飞机环境谱概念

环境对飞机材料性能和飞机结构使用寿命的影响是一种客观存在,如何去描述使用环境并反映这种客观存在呢?正如人们用载荷谱去描述飞机所经受的疲劳载荷一样,人们也用环境谱去描述飞机所遭受的化学、热和气候环境。这里所研究的飞机环境谱,是指飞机在实际使用过程中,影响飞机结构使用寿命的那些腐蚀环境以及由这些腐蚀环境所编制的谱。

人们对于飞机使用载荷谱是相当熟悉了,下面从载荷谱和环境谱的比较来阐述飞机环境谱概念。

从谱的来源看,载荷谱和环境谱有着形式上相似的来源。飞机疲劳载荷有两种主要来源:外界自然环境,如大气紊流、跑道不平度等;内部结构使用,如空中操作、地面操作等。飞机腐蚀环境也有两种主要来源:外界自然环境,如气温、湿度、盐雾、大气污染等;内部结构使用,如气动加热、喷气燃油、撒农药等。

从谱的原始表现形态来看,载荷谱主要表现为载荷大小随时间的变化,即载荷时间历程,环境谱也主要表现为环境强度随时间的变化,即环境时间历程,两者相似。然而在具体表现形态上,两者却有很大差别。就一次飞行的载荷时间历程来说,载荷大小的变化比较急剧。这体现在载荷变化速率较快,载荷峰谷出现的次数相当多,在每个峰谷上基本没有或只有很短的持续时间,因此,载荷波形可简化为三角波;就一次飞行的环境时间历程来说,环境强度的变化比较平稳,这体现在环境强度变化速率较慢,环境强度峰谷出现的次数很少,并且在每个峰谷上基本都有长短不同的持续时间,因此,环境强度波形可简化为梯形波。

作为两种谱表现形态不同的一个例子,图1-6给出一次飞行重心法向过载时间历程和飞机总温时间历程的示意图,这两个时间历程都是根据飞行实测结果经过滤波简化处理而得。由图1-6看出,法向过*载n在一次飞行中共有61个峰谷;而总温T只有7个峰谷,不仅每个z峰谷上都有持续时间,并且有的峰与相邻的谷之间还有平台过渡,使波形呈阶梯形,与n密集的三角波形完全不同。z图1-6 飞机载荷时间历程和温度时间历程的比较

从谱的要素来看,两者既有相同又有不同的地方。飞机载荷谱有三个基本要素:载荷大小、出现频数和先后顺序。一般来说,飞机环境谱也有三个基本要素,但与载荷谱的三个基本要素不完全相同,它们是环境强度、持续时间和先后顺序。也就是说,飞机使用环境谱是用各级环境强度的持续时间和先后顺序表示。

环境谱和载荷谱基本要素的不同正是由于两者的原始表现形态不同所致。如上所述,在飞机载荷时间历程中,载荷循环次数很多,每个载荷循环所花的时间很短,经过数据处理和统计分析后,作为原始历程里的时间因素淡化了,而是用某一载荷谱周期(如1000飞行小时)内各级载荷出现的频数所代替。在飞机环境时间历程中,尽管也存在各级环境强度的频数,但在同一次飞行中,各级环境强度的出现频数比各级载荷大小的出现频数少得多,而某级环境强度的持续时间比某级载荷大小的持续时间长得很多。因此,在对原始环境历程进行数据处理和统计分析时,似乎可以淡化出现频数,强化持续时间,用各级环境强度的持续时间去代替各级环境强度的出现频数。

由以上分析可以看出,飞机使用环境谱实质上是飞机使用过程中各级环境强度随不同持续时间的排列,这一基本认识正是编制飞机使用环境谱的出发点。

2.飞机环境谱分类

可从不同的角度对经受腐蚀和腐蚀疲劳的飞机环境谱进行分类。

1)环境状态

从环境状态来看,飞机环境谱可分为液体谱(污水、盐水、酸雨、液态农药等)、气体谱(空气、水蒸气、氢、二氧化硫等)、压力谱、湿度谱、浮沉物谱和砂粒谱等。

2)环境性质

从环境性质来看,可分为化学环境谱和气候环境谱,前者包括盐水(雾)谱、氢谱、二氧化硫谱、农药谱等,后者包括温度谱、湿度谱、大气压力谱等,酸雨谱介于这两者之间。

3)环境来源

从环境来源来看,可分为外界自然环境谱和内部工作环境谱,后者包括服役使用和人为因素引起的环境谱。

4)编谱方法

从编谱方法来看,可分为空中环境剖面谱、地面停放环境谱、环境频率谱、环境总谱、飞—停—飞(或停—飞—停)环境谱等。

5)编谱目的

从编谱目的来看,可分为使用环境谱和当量环境谱。前者是按飞机的实际使用环境而编制的环境谱,因而这种环境谱基本上能反映飞机的真实使用环境情况。后者是对使用环境谱经过一定的当量化处理后所编制的环境谱,主要用于当量环境条件下的加速试验,因此,当量环境谱从某种程度(某种试验条件下)来说也称加速试验环境谱。

6)载荷和环境组合

从载荷谱和环境谱的组合来看,可分为飞—续—飞载荷—环境谱和程序块载荷—环境谱。很显然,参与这种组合的环境谱只能是当量环境谱。

7)飞机结构部位

从飞机结构部位来看,可分为飞机总体环境谱和飞机结构局部环境谱。前者指从总体来说飞机所遭受的各种使用环境谱,但这些总体环境谱对飞机结构不同部位的严重程度不同,不同部位对各种环境的敏感性也不相同,因此,还应根据总体环境谱来确定飞机主要结构部位的局部环境谱。

1.4 飞机载荷/环境谱的重要性

飞机载荷/环境谱编制是飞机设计研制工作的重要组成部分,它对确定飞机结构使用寿命起着非常重要的作用。飞机整个研制过程和全寿命管理中都离不开载荷/环境谱的编制,在新机设计阶段,需要编制设计使用载荷/环境谱对新机进行初步疲劳/断裂分析,以确定飞机结构型式、选择结构材料、给出目标设计寿命等;设计定型后期需要编制试验谱进行全机或主要部件的全尺寸耐久性/损伤容限试验,以确定并验证设计使用寿命;飞机投入使用后,还要通过专门的飞行试验或寿命监控编制飞机服役使用载荷/环境谱,以重新评定飞机使用寿命,并随时监控单机使用寿命的耗损情况。从现代飞机耐久性/损伤容限设计准则来说,载荷/环境谱是飞机结构进行耐久性/损伤容限设计、分析、试验、评定的基础和输入,也是飞机型号定寿和延寿的主要依据。

1.5 飞机载荷/环境谱的历史发展

既然载荷/环境谱对飞机结构定寿和延寿如此重要,那究竟需要编制什么样的载荷/环境谱呢?从确定飞机结构使用寿命的要求来说,需要编制能真实反映飞机实际使用情况的复杂的载荷/环境谱。不过,编制载荷/环境谱与人们对飞机疲劳问题的认识能力、与飞机设计准则的选择,以及与社会的整个科学技术发展水平密切相关。随着人们认识能力的不断深化和社会整个科学技术发展水平的不断提高,载荷/环境谱的研究、编制和试验经历了一个由浅入深、由简到繁、由低级到高级的发展过程。就载荷谱而言,在20世纪40年代至50年代,人们用最简单的常幅载荷谱来进行疲劳试验和寿命估算;到50年代至60年代,发展到用程序块载荷谱;而从70年代至今,在飞机疲劳/耐久性/损伤容限试验和疲劳/断裂分析中,广泛应用能模拟飞机使用载荷历程的飞—续—飞载荷谱。从20世纪70年代开始,逐步考虑腐蚀环境影响,提出了编制载荷/环境谱要求。

不同的设计准则需要编制不同类型的载荷/环境谱。飞机结构设计经历了静强度设计、安全寿命设计、损伤容限设计和耐久性设计这样几个发展阶段。静强度设计不需要编制载荷谱,早期的安全寿命设计(20世纪60年代以前)编制程序块载荷谱基本上可满足设计要求,也无须编制环境谱。到了70年代以后,安全寿命设计及耐久性设计往往是和损伤容限设计一起考虑的,这时,就需要编飞—续—飞载荷谱来进行试验和分析,并且还需要编制环境谱来考虑腐蚀环境对飞机使用寿命的影响。进入到21世纪初,又需要分别编制耐久性设计使用载荷谱和损伤容限设计使用载荷谱来进行耐久性/损伤容限试验和分析,并着重强调了载荷/环境谱对使用寿命的影响。

较详细回顾这一历史进程,对今后深入开展该领域的工作或许有所裨益。尽管在20世纪70年代美军标就提出了编制载荷/环境谱的要求,但国外有关飞机环境谱研究和编制方面的公开资料却很少,因此,我们将以载荷谱为主来回顾这一历史进程。

飞—续—飞载荷谱是按一次飞行接着一次飞行所编制的载荷谱。与传统的程序块载荷谱相比,飞—续—飞载荷谱的最大优点是它能较好地模拟飞机的使用载荷历程。用飞—续—飞载荷谱所进行的试验称为飞行模拟试验。下面以飞—续—飞载荷谱为线索来回顾国外飞机载荷谱研究、编制和试验的历史进程。1.5.1 国外发展概况

用飞—续—飞载荷谱进行飞行模拟试验,可追溯到20世纪60年代初期。从1959年到1961年,瑞士Federal飞机工厂(F+W)根据飞行实测结果,用飞—续—飞载荷谱进行了商用飞机P3机体飞行模拟试验的尝试。在整个20世纪60年代,人们也曾进行过一些探索性工作,不过那时主要局限于用飞—续—飞载荷谱进行材料的疲劳性能研究。例如,1969年,Ronay报道了用飞—续—飞载荷谱研究高强度钢的疲劳特性结果,Imig和Illg用飞—续—飞载荷谱研究温度对钛合金缺口试件疲劳寿命的影响等。

20世纪70年代开始,引起人们对飞—续—飞载荷谱和飞行模拟试验的广泛重视。1970年,荷兰宇航实验室(NLR)在对F-28机翼疲劳试验时施加了飞—续—飞载荷谱。1969年到1973年,西德工业设备经营有限公司(IABG)对F-104G进行了全机飞—续—飞载荷谱的飞行模拟试验。1972年,荷兰疲劳权威J.Schijve发表了权威性论文“飞机材料和结构的累积疲劳损伤”,该文在综述飞机材料和结构的有关疲劳问题的同时,对飞—续—飞载荷谱和相应的飞行模拟试验进行了全面的理论分析,并强调指出,对飞机结构应该编制飞—续—飞载荷谱和进行飞行模拟试验。尔后,美国、英国、澳大利亚、日本等西方发达国家都在逐步采用飞—续—飞谱对试件、元件、部件和全机进行飞行模拟试验。就部件和全机而言,例如,英国皇家航空研究院(RAE)1973年对协和号飞机和鹰式飞机、澳大利亚航空研究实验室(ARL)于20世纪70年代中期对幻影Ⅲ飞机机翼、日本防卫厅技术研究本部1974年对中型运输机C-1、1975年对高级教练机T2等,都是编制飞—续—飞载荷谱进行飞行模拟试验。至于用试件或元件进行飞—续—飞载荷谱研究和试验的例子就更多了。

不仅如此,在西欧一些国家各自研究的基础上,彼此进行合作,还研究出了标准的飞—续—飞载荷谱。对以阵风载荷为主的运输机,荷兰NLR和西德操作强度实验室(LBF)于1973年研究出了运输机标准的飞—续—飞载荷谱TWIST。对于以机动载荷为主的战斗机,荷兰NLR、西德LBF、西德IABG和瑞士F+W四个单位合作,于1975年研究出了战斗机标准的飞—续—飞载荷谱FALSTAFF,并已用于评定飞机疲劳性能的某些专门研究中。

美国在这个领域里的研究是集大成者。首先,美国的有关军用规范和军用标准,如美国国防部于1974年公布的损伤容限规范MIL-A-83444、于1975年颁布的飞机结构完整性大纲MIL-STD-1530A,以及1975年颁布的耐久性规范MIL-A-008866B等,都要求承包商提供飞—续—飞载荷谱,并进行飞行模拟试验。为了满足规范要求,自20世纪70年代以来,无论是新设计飞机,或者是使用中的现役飞机,战斗/攻击型飞机如F-14、F-15、YF16、A-4;轰炸/运输型飞机如B-1、B-52D、C-5A、C-141;空中警戒指挥机(AWACS)等,都是编制飞—续—飞载荷谱,并进行损伤容限和耐久性评定。

不仅如此,美国在对飞—续—飞载荷谱的编制方面更是有自己的独到之处,各有关部门形成了各自的一套完整方法,把编制飞—续—飞载荷谱提到一个完全崭新的水平。(1)1976年,北大西洋公约组织国家结构和材料委员会组织有关专家编写的关于战斗机疲劳设计的指导性手册中,特请美国俄亥俄州兰特帕特森空军基地的A.Landy等几位工程专家撰写《疲劳和裂纹扩展分析载荷谱的编制》专论,并且,A.Landy等人还于1976年和1979年相继发表《美国空军飞机载荷谱的编制》等文章。这些文章已成为人们编制飞—续—飞载荷谱的指导性文件。(2)1979年,美国得克萨斯州达拉斯伏沃特公司结构寿命管理局工程专家N.H.Sandlin等人,从对载荷(应力)和飞行参数进行回归分析入手,提出了编制具有飞—续—飞性质的战斗机飞行载荷谱FLESPEC的一整套方法。(3)1979年,美国加利福尼亚埃尔塞贡多的洛克韦尔国际公司技术处成员A.G.Denyer报道了编制具有变后掠翼的新型超音速战略轰炸机B-1飞—续—飞载荷谱的最新方法。

美国在以上几方面从不同角度和不同机种所提出的编制飞—续—飞载荷谱的方法,目前在世界上也是一流水平,是当时这一领域内的最高成果。

20世纪70年代到80年代初,是国外飞机载荷谱领域蓬勃发展的时期,从20世纪80年代到21世纪初,国外飞机载荷谱领域进入了一个稳定发展时期。1998年10月30日,美国国防部颁布了联合使用规范指南《飞机结构》。该规范规定了分别编制耐久性设计使用载荷谱和损伤容限设计使用载荷谱要求,并明确规定耐久性设计使用载荷谱反映设计使用分布内的严重使用情况,损伤容限设计使用载荷谱反映设计使用分布内的基准使用情况。这意味着美国飞机载荷谱领域在21世纪开始又进入了一个新的发展时期。1.5.2 迅速发展的原因

如前所述,尽管在20世纪60年代人们就开始探索飞—续—飞载荷谱和飞行模拟试验,但在70年代才引起人们的广泛重视。从70年代初到80年代这短短的十来年,飞—续—飞载荷谱的研究获得了迅速的发展,在飞机疲劳/耐久性/损伤容限试验和疲劳/断裂分析中得到了广泛的应用,大有代替传统的程序块谱的趋势。

为什么飞—续—飞载荷谱在那短短十来年会获得如此迅速的发展呢?

任何一种新技术的产生、发展和应用,都是以现实的需要和实际的可能这两者作为基本前提条件的,飞—续—飞载荷谱的研究也不例外。

载荷谱的编制与飞机设计准则的选择有密切关系。静强度设计不涉及疲劳强度,也就谈不上编制载荷谱。安全寿命设计涉及疲劳范畴,可编制等幅载荷谱或程序块谱。损伤容限设计和耐久性设计涉及断裂力学范畴,需要编制飞—续—飞载荷谱。

就世界范围来说,20世纪50年代以前的飞机,基本上是按静强度设计的。1954年,英国两架彗星1号飞机相继因疲劳而机毁人亡,在全世界航空界引起震惊,伴随阵痛而来的是新的设计思想——安全寿命设计思想的产生。因此,从20世纪50年代后期到整个60年代,全世界航空工业发达的国家除用静强度准则设计飞机外,还逐步用安全寿命思想进行飞机设计。

随着军备竞赛的日益尖锐和航空工业的不断发展,人们对现代飞机,特别是现代战斗机的战术性能要求不断提高,飞机结构型式更加复杂,飞机所受的疲劳载荷也就更加严重。另一方面,由于现代飞机的成本越来越高,人们也就尽可能想要提高飞机的使用寿命,对战术飞机来说,其使用寿命要求可高达8000飞行小时,这样,因飞机疲劳所带来的矛盾也就更加尖锐和突出。飞机如果仅按安全寿命思想设计,就往往不能保证飞机的安全。最为典型的例子是1969年美国F-111飞机因断裂而造成的灾难性事故。

F-111是美国通用动力公司20世纪60年代初期生产的一种高速战斗机,设计思想是以静强度为主,并与安全寿命思想相结合。最大速度为M=2.5,设计限制过载为7.33g,设计使用寿命为4000飞行小时。1969年12月,一架F-111飞机在美国维什康西州Nellis空军基地进行低空投弹试飞,飞行过载为3.5g,飞行中,突然左翼断裂,飞机滚转,飞行员弹射出来,但由于降落伞没打开而摔死。该架飞机实际上只飞了104.6飞行小时,离预计的使用寿命还差得很远,为什么机翼枢轴会突然断裂呢?从疲劳的观点是无法解释的。经专家们对飞机残骸进行分析,发现飞机从制造厂出来就带有初始裂纹,这正是断裂力学观点。因此,1969年12月是美国飞机应用断裂力学的里程碑。

伴随着阵痛而来的是美国飞机设计思想的革命性变革。从20世纪70年代初期开始,美国在原有的安全寿命设计思想的基础上探索新的设计思想——损伤容限和耐久性设计思想,并以军用规范和军用标准的形式把这些设计准则固定下来,因此,美国是世界上最早把断裂力学应用于飞机设计的国家。

设计思想的更替对载荷谱的编制提出了更高要求,损伤容限和耐久性设计要求编制能反映飞机真实使用情况的复杂的载荷谱,换句话说,要用随机的飞—续—飞载荷谱代替人为简化了的程序块谱。

断裂力学是20世纪70年代以来获得迅速发展的一门新兴学科,它的兴起和发展大大促进了飞—续—飞载荷谱的研究。这是因为,一方面,损伤容限和耐久性设计准则是以断裂力学作为理论基础的;另一方面,断裂力学本身的研究直接促进了飞—续—飞载荷谱的研究。例如,应力相互作用和高载效应对裂纹形成寿命和裂纹扩展寿命有很大影响,试验研究指出,一个高峰值载荷顺序从正到负变成从负到正,其试件寿命差4倍,长周期程序块谱的寿命可为随机谱寿命的6倍。在一般情况下,载荷顺序和块的大小可使寿命相差两倍多。这些研究结果告诉我们,在编制载荷谱时,不仅要考虑载荷大小和出现频数,还应考虑载荷出现的真实顺序,传统的程序块谱不能较好地满足这些要求,而飞—续—飞载荷谱正好在这三方面都能较好地模拟飞机实际的载荷历程。因此,飞—续—飞载荷谱在那个时代的迅速发展是应用断裂力学研究成果的必然结果。

20世纪70年代以来,电—液压伺服控制系统的广泛使用为飞—续—飞载荷谱的研究和应用开辟了广阔的前景。飞—续—飞载荷谱不能在一般的疲劳试验机上进行试验,它必须在专用的电—液压伺服控制系统上进行,这种系统用计算机进行控制,既可作程序试验,又可作随机试验。这种系统尽管在20世纪60年代就问世了,但获得广泛使用还是70年代以后的事。目前,国外已有各种不同的系列和型号,既有作全机或部件试验用的大型系统,也有作元件或试件用的中、小型试验机。这样的控制系统目前我国从20世纪80年代已有引进,如从美国引进的MTS系统,从日本引进的日立80,以及从德国森口公司引进的PC160N等。

综上所述,20世纪70年代以来,设计思想的更替和断裂力学的兴起和发展从现实需要方面大大促进了飞—续—飞载荷谱的发展,电—液压伺服控制系统的广泛使用从实际可能方面为飞—续—飞载荷谱的研究和应用提供了可靠保证。这就成为飞—续—飞载荷谱在20世纪70年代到80年代能获得迅速发展的主要原因。1.5.3 国内发展概况

新中国成立以来,我国的航空工业走过了一条从仿制到自行设计的道路。20世纪80年代以前国内服役的飞机,军用飞机大部分都是仿制的,小部分是外购的,还有少部分是国外飞机的改型设计;民用飞机则全是外购的。无论是哪种类型的飞机,当时大部分都是20世纪50年代至60年代按静强度准则设计的,没有使用寿命指标;即使少部分按安全寿命准则设计的国外进口飞机,也只有一个总的使用寿命指标,没有具体的相关资料,而这些当时服役的飞机,有的已出现各种问题,如局部裂纹、部分构件功能失效等;有的已飞行几千飞行小时,究竟这些飞机能够飞行多长时间,一片茫然,即使少数有使用寿命指标的服役飞机,由于缺少相关资料,它们何时检修,如何检修,是否可延寿等,也是心中无数。诸如此类问题,归结到一点,就是亟待解决这些服役飞机的定寿延寿问题。

另一方面,20世纪50年代末期我国就着手开始自行设计飞机,刚开始的自行设计飞机仍然是按静强度设计准则来设计的(如强5、歼8等)。到了70年代就开始考虑疲劳强度,增加了安全寿命设计准则(如歼轰7等);即使一开始按静强度设计的飞机,到后来也要进行疲劳分析。因此,我国自行设计的飞机都存在一个飞机定寿问题。

无论是我国当时服役的飞机,还是自行设计的飞机,都要确定飞机结构的使用寿命。要定寿,首先就要解决载荷谱问题。载荷谱如何实测?要编制什么样的载荷谱?如何编制实测载荷谱和设计使用载荷谱?如何用载荷谱进行疲劳/耐久性/损伤容限试验和分析?这些问题都亟待解决。

1.飞机载荷谱实测

国内飞机载荷谱实测始于20世纪60年代,空军航空所(原空一所)为解决米格15飞机延寿问题,从1965年开始进行了载荷谱实测工作,当时选用CΠ-11单向过载自记器用部队一架现役飞机完成了约32个起落的单参数载荷谱实测,由此编制了该飞机试验谱进行了相应的疲劳试验,解决了该机延寿问题。几乎同时,飞行试验研究院在国内率先开展了飞机载荷谱飞行试验多参数实测技术研究,当时用的飞行试验研究院一架歼6飞机进行参数法载荷谱实测,实测了十几个飞行参数和平尾、垂尾的载荷,并编制了相应的载荷谱,这是当时国内载荷谱多参数飞行实测和编制的最早尝试和探索。紧接着在20世纪70年代初,根据当时空军在轰5使用中发现发动机架和发动机撑杆出现的疲劳裂纹,飞行试验研究院开展了轰5发动机架和发动机撑杆载荷谱实测工作,用的一架部队现役轰5飞机进行应变法载荷谱实测,这是当时国内首次开展的应变法载荷谱实测工作。当时在被试的发动机架和发动机撑杆相应位置上粘贴了若干应变计,经过实验室载荷标定试验,用回归分析方法获得了载荷方程。通过飞行实测,编制了轰5发动机架和发动机撑杆载荷谱并使之用于相应的疲劳试验,根据试验结果采取措施,解决了轰5飞机外场使用的疲劳问题。

从20世纪70年代开始,在航空工业部门和使用部门的共同领导和组织下,我国各种服役飞机陆续开展了载荷谱实测工作。到目前为止的40年期间,除客机外,几乎所有服役过的和现役的飞机都开展过载荷谱实测工作,实测过载荷谱的飞机不少于30个机型(含改型)。40多年来,我国飞机载荷谱实测工作经历了如下发展过程。(1)载荷谱飞行实测的飞机种类和机型繁多,既有进口飞机,又有国产飞机;既有当时没有使用寿命指标的20世纪50年代、60年代生产的老式飞机,又有有使用寿命指标的21世纪初生产的现代飞机;既有军用飞机,又有民用飞机;既有小型战斗机(歼击机、强击机等),又有中、大型运输机和轰炸机;在安排飞行实测的飞机中,既有在服役部队或使用部门专门选一架正在服役的飞机,也有从生产线上专门选一架飞机进行架内和架外改装后进行载荷谱飞行实测。(2)载荷谱飞机实测的参数由少到多,由简到繁。从20世纪60年代起,一些单位一开始用当时某些飞机上带有的单参数(过载)或三参数记录仪(速度、高度、过载)来实测并搜集有关数据,发展到十几个、几十个、甚至几百个参数的载荷谱飞行实测。测试参数既包括反映一般飞行状态的飞行参数(速度、高度、迎角等),又包括反映疲劳受载情况的载荷响应参数(三向线加速度、三向角速度、三向角加速度等);既包括飞行参数和响应参数,又包括某些活动部件的运动参数(如操纵面偏角等);既包括与疲劳损伤有关的参数,有时还包括腐蚀损伤或腐蚀疲劳有关的参数(温度、湿度、大气腐蚀环境参数、结构腐蚀环境参数等)。(3)载荷谱飞行实测的飞机结构部件由少到多,由简到繁。在20世纪60年代至70年代,主要是围绕编制飞机法向重心过载谱来进行载荷谱飞行实测,重心过载谱有两个突出优点:一是它能从整体上基本反映该飞机的疲劳受载情况;二是它与机翼或翼身组合体的载荷谱有强相关关系,因此,它能基本上反映翼身组合体的疲劳受载情况,通过它能比较方便导出机翼或翼身组合体载荷谱。然而,很难甚至不能直接由重心过载谱导出尾翼谱、前后机身谱、起落架谱等,即使由重心过载谱导出的机翼谱或翼身组合体谱也具有较大的误差,因此,除实测重心过载谱外,还应实测飞机主要部件的载荷谱,于是,从20世纪70年代中后期开始,各有关单位就开始用应变法开展飞机主要部件的载荷谱实测工作,刚开始是机翼、尾翼、起落架载荷谱实测,后来发展到飞机的几乎所有主要承力部件、构件和系统。例如,21世纪初进行的某型飞机载荷谱实测,实测的结构件包括左右机翼、机身、平尾、垂尾、起落架、活动翼面、操纵系统、座舱盖等共约20多个部件、构件和系统。(4)载荷谱飞行实测方法由单一方法到几种方法并用。在20世纪60年代至70年代,几个机种载荷谱实测基本上是参数法实测,而且实测的参数很少,然后根据实测的参数导出有关结构的载荷和载荷谱。从20世纪70年代开始,有关单位(主要是试飞院)就开始尝试用应变法来实测飞机结构载荷和载荷谱,最初是实测简单构件的载荷谱(如发动机架和撑杆)发展到实测复杂结构的载荷谱(如机翼、机身、起落架、尾翼),进而发展到用应变法测飞机几乎所有受力构件的载荷谱,上例提到的21世纪初某型号的几乎所有受力构件的载荷谱实测,就是用应变法实测全机载荷谱的典型实例。不仅如此,该型飞机还把载荷谱实测的参数法和应变法很好地结合使用,取得了明显的效果。(5)载荷谱飞行实测的测试仪器和设备由简大粗到高精尖。20世纪60年代至70年代,用于空测载荷谱的测试仪器由机械式划针或

试读结束[说明:试读内容隐藏了图片]

下载完整电子书


相关推荐

最新文章


© 2020 txtepub下载